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ABSTRACT
The rank aggregation problem has been studied extensively
in recent years with a focus on how to combine several dif-
ferent rankers to obtain a consensus aggregate ranker. We
study the rank aggregation problem from a different per-
spective: how the individual input rankers impact the per-
formance of the aggregate ranker. We develop a statistical
framework for generating the ground truth ranker and the
individual rankers. The individual rankers, which are the
inputs to the ranker aggregation algorithm, are statistical
perturbations of the ground truth ranker. Within this sta-
tistical framework, we give a rigorous experimental evalua-
tion of how different characteristics of the input rankers af-
fect the aggregate ranker, including: asymmetry among the
rankers; type of noise and noise level of the rankers; correla-
tion among the rankers; outliers among the rankers, includ-
ing the effect of ”bi-partisan” (or multi-partisan) rankers.
We introduce and study a novel local optimization rank ag-
gregator, which we compare to some well known rank ag-
gregation algorithms (average, median and Markov chain
aggregators (including PageRank)). We determine condi-
tions under which it is better to use one aggregator over
another.

1. INTRODUCTION
The rank aggregation problem supposes that a set of ob-

jects are ordered by several judges. Typically, the goal is
to best represent, according to some measure, the input
rankers, independent of the accuracy or correctness of the
individual rankers. Such an approach tends to overlook the
ultimate goal, which is to obtain a ranking that is ”closer” to
some ground truth ranking. For Web information retrieval,
data in the form of individual rankers is abundant, for ex-
ample Google, Yahoo, MSN, . . . , which are generally based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

upon ranking algorithms such as PageRank [5], hubs and

authorities [15] and information retrieval methods. Unfor-
tunately, query results are subjective since different rankers
use different ranking criteria. Further, query results are
dynamic with new and changing content depending on the
ranker databases. From a user perspective, the problem of
accessing the ground truth ranking function appropriate for
that user (or a group of users) is no longer equivalent to the
problem of providing an overall aggregate representation of
all the rankers. Rather, one must take into account how
the individual rankers relate to the ground truth ranker in
forming a consensus ranking.

To illustrate, imagine two sets of bi-partisan rankers, one
representing the left and the other the right points of view.
Given these two sets of rankers, is it appropriate to output
a consensus ranking that represents all the rankers, in some
sense rendering a non-opinion, or does it make more sense to
output a consensus ranking from one of these sets of rankers
according to what is more appropriate for a particular user?
The answer to this question is dependent on the objective
of the consensus ranking: is it to somehow give a summary
ranking for the population of rankers (for general queries)
or is it to give a ranking that is most useful for the specific
user to make actionable choices (with the consideration of
user preferences). We take a step along the latter direction
by investigating how the specific relationship between the
individual rankers and the ground truth ranker affects the
performance of the the aggregate ranker with respect to the

ground truth ranker. Thus, given qualitative criteria govern-
ing the properties of the input rankers and the preferences
of the user, one is better positioned to select an appropriate
consensus ranking that is most useful to the user.

The impact of changing the input rankers on the rank
aggregation methods can be evaluated given specific knowl-
edge regarding the input rankers. In this paper, we present
a realistic statistical framework in which the dependencies
between the ground truth ranker and the individual rankers
can be modeled. We then study the performance of various
aggregation techniques under different model assumptions.
We observe that different model hypotheses can significantly
impact the performance of an aggregation algorithm, and
we give guidelines for which aggregator is appropriate given
the model assumptions. Two important characteristics of
any aggregator are that it be computed efficiently and that



it gives an accurate consensus ranking. We introduce and
study a novel local optimization aggregator which may be
used as an aggregator itself, or as an engine for improving
any other aggregator. The specific major contributions of
this paper are:

• a statistical model for evaluating aggregation algorithms
with respect to the properties of the input rankers and
ground truth ranker;

• a detailed study of how input ranker characteristics
affect the performance of the aggregation algorithms,
including: asymmetry among the rankers; type of noise
and noise level of the rankers; correlation among the
rankers; outliers among the rankers, including the ef-
fect of ”bi-partisan” (or multi-partisan) rankers;

• a novel local optimization aggregation algorithm to
produce a better consensus ranking starting from an
initial ranking, which could be randomly chosen or the
output of some another aggregator.

2. RELATED LITERATURE
In the case of web searching, ranking of web sites is a

combination of multiple factors from link analysis to num-
ber of times a keyword occurs in the various places in text
and anchor text [5]. In most cases, rank aggregation algo-
rithms have been compared to Borda’s method [4]. Dwork
et al. [8] introduce the notion of an aggregate rank which
minimizes the total Kendall-tau distance models the con-
sensus ranking based on an analogy with voting. Since such
an aggregation is NP complete, they introduce a number
of Markov chain models to approximate it. These rank ag-
gregation methods are compared with well-known methods
in hopes of decreasing the appearance of spam documents.
Renda et al. [17] perform a more extensive study of these
Markov chain methods that also compares rank-based to
score-based aggregation methods.

Other rank aggregation methods have been proposed such
as [3, 6, 11, 16] to improve a particular measure or execute
more efficiently. Beg et al. [3] propose a rank aggregation
algorithm which optimizes the footrule measure. Their ge-
netic algorithm uses reproductions, crossover and mutation
approaches observed from biology to construct the aggregate
ranker. Chin et al. [6] present a heuristic rank aggregation
algorithm using weighted version of the extended Cordorcet
criteria and optimizes the final ranking with respect to the
Kendall-tau measure. The medrank [11] algorithm was de-
signed for similarity search and classification applications
and approximates the selection of the median rank of a set
of input rankers where median can be retrieved once at least
50% of the rankings have seen that particular object.

Machine learning approach is another way to solve the ag-
gregation problem. But, it requires access to a set of good
training data and/or ground truth. It does not generally
give insight as to how the search engine results should gener-
ally be combined based on ranker quality which our empha-
sis here. The study in [13] tries to learn the relevant objects
of a search query by using the clickthrough data recorded
by search engines themselves. The objects that users select

provide ample information in distinguishing the more rele-
vant objects from those less importance objects. The learn-
ing of the retrieval and ranking functions can provide better
results than established search engines. The offline experi-
ment compares the rank of an object in other search engines,
the query match and popularity-attribute correlation. The
on-line experiment compares the learned framework for the
retrieval and ranking function with selected search engines
in the number of observed clicks. The authors of [1] set
up a user study comprising of several experts for a set of
popular search queries. The objective of the study is to as-
sess how the rankings match human opinion using in-degree,
out-degree, PageRank and the authority and hub score from
Kleinberg. The experts ordered the objects with some de-
gree of consensus but unable to obtain complete agreement
for all objects. The conclusions indicate that the in-degree
measure performs just as well as the more complex PageR-
ank and Kleinberg approaches.

These methods take as input several rankers of a set of ob-
jects that are ordered with respect to some criteria. When
all objects are ordered with monotonically increasing ranks,
this is referred to as a full list ; otherwise we have a par-

tial list. A theoretical framework that compares different
distance measures such as Kendall-tau, footrule, and others
on ordered lists of objects are presented by Fagin et al. [10,
9]. They show the relationships between these measures for
partial and full lists. In the event of real-world applications,
Jansen et al [12] perform tests on user queries on the web
discovering that a user query is on average 2 or 3 search
terms which is far lower that other traditional information
retrieval systems. The study also examined the components
of successive queries by the same user as well as term fre-
quency. Other studies of search engine performance have
been performed, which address performance over time [2]
and uses human subjects to evaluate performance balancing
the precision and recall measures [18].

Prior research tries to rank for a community of users using
either query-independent or query-dependent collection of
relevant objects. Certain assumptions are also made about
the quality of the input rankers from the Web whereas we
investigate the information quality provided by the input
rankers. We formulate a statistical model for construct-
ing input rankers so we can analyze them with respect to
the well-established aggregation algorithms. The statistical
model for aggregation offers us a distinction between manip-
ulated (bad) input rankers from (bipartisan) rankers that
provide a different perspective of the same information. We
propose a local optimization aggregation algorithm based
on the principles found in [14]. This algorithm can be used
as a stand-alone method or in conjunction with the current
methods that produces a better ranking than the traditional
aggregation methods.

3. ERROR MEASURES
In order to assess the degree of closeness or similarity

between two rankers, r1 and r2, we use an error measure
E(r1, r2). We select four error measures to serve as compar-
ison tools for our model. These measures have been used



in prior research (individually or as a subset) but not as a
collection. These error measures provide a more complete
perspective of the rankers that have not been previously
been studied. Suppose Ak is the ground truth ranking of
the top-k objects and Bk is the result of a specific aggre-
gation algorithm for the top-k objects. The error measures
under consideration are:

1. Precision (prk = Ak ∩ Bk) which gives the common
objects are in the top-k.

2. Recall (rclk = n(k)) where n(k) is the lowest j such
that all the objects in Ak are seen in Bj .

3. Kendall-tau (τk = Z) where Z is the total number
of pairwise disagreements between rankers Ak and Bi,

Z =
P

i,j∈Ak,Bk
K

(p)
i,j (Ak, Bk).

4. Footrule (F =
P

|A(o)−B(o)|) where A(o) is the rank
of object o in ranker A (and similarly for B(o)).

Each of these error measures have strengths and drawbacks.
Precision and recall require little computation. Precision
measure fails to provide the amount of sortedness between
the two rankers. Recall is a subjective measure with many
interpretations since the universe of relevant documents is
unknown typically defined as the proportion of relevant doc-
uments that are retrieved. If any object in the top-k of A is
ranked in the bottom of B, then the error measure must it-
erate almost the full ranker B resulting in a very high recall
value.

The Kendall-tau and footrule error measures requires more
calculations as the number of objects observed increase. Both
measures take the rank of the objects under consideration.
For objects that are not in the top-k for a particular ranker,
both measures assign the rank to be k + 1 meaning that
the object’s rank is at least greater than k. Kendall-tau is
sensitive to sortedness of the objects requiring every pair of
distinct objects to be compared to every other pair of objects
in order to exhaust all possible combinations, which results
in the bubble sort algorithm. We can consider versions of
Kendall-tau using different penalties in the cases that ob-
jects exists in one ranker but not in the other as outlined
in [10]. We review the four cases for objects i and j and
display them in the table below.

In Case 1, i and j appear in both rankers. Case 2 states
that i and j appear in one ranking (Ak), and only one of i or
j appears in the other ranker (Bk). Case 3 suggests that i,
but not j, appears in a ranker (Ak), and j but not i, appears
in the other ranker (Bk). Lastly in Case 4, i and j appear
in one ranker (Ak), but neither appear in the other ranker
(Bk). For each case, there are two possible interpretations.
The order of i and j are preserved in both rankers or the
order of i and j constitutes a pairwise disagreement. In
addition, the penalty p associated with a pairwise disagree-
ment (in Case 4) can take an optimistic (p = 0) or neutral
(p = 1/2) approach. If we select p = 0, then the result
will be the minimizing of Kendall-tau distance. If we select
p = 1/2, then the result will be the averaging of Kendall-
tau distance. We chose the optimistic approach by assigning
p = 0.

Order Preserved Pairwise Disagreement

Case 1 K
(p)
i,j (Ak, Bk) = 0 K

(p)
i,j (Ak, Bk) = 1

Case 2 K
(p)
i,j (Ak, Bk) = 0 K

(p)
i,j (Ak, Bk) = 1

Case 3 N/A K
(p)
i,j (Ak, Bk) = 1

Case 4 N/A K
(p)
i,j (Ak, Bk) = p

The footrule error measure provides some degree of sorted-
ness. A ”disagreement” in footrule is a measure that consid-
ers and object’s position and not its relationship with with
other objects (as seen with Kendall-tau). Footrule amounts
to an addition of 1 to k (

P

|A(o)−B(o)|) and for this reason
may make it hard to quantify the impact of input rankers.
The maximum value of footrule error measure is achieved by
the summation of differences in the rank positions. In the
worse case, both rankers contain a distinct set of objects,
which reduces to 2 ∗

P

k
k = 2 ∗ 1/2 ∗ (k2 + k). As proven

in [7], for any full rankers, the footrule distance is within 2
factors of Kendall-tau distance.

4. RANK AGGREGATION METHODS
We review the rank aggregation methods of interest for

our study and present an aggregation optimization tech-
nique. We select these methods based on their popularity in
prior research and quality of their aggregate ranker. Rank
aggregation methods can be performed on full lists of ob-
jects if each ranker contains the same objects. The top-k
objects can be returned by the rank aggregation method
when partial lists of k objects are only available. We com-
pare and analyze the Borda’s method (we refer also to it as
average), median rank and PageRank aggregation methods.
The first two methods have proved to provide a meaningful
representation of the input rankers while maintaining a low
computational cost. The PageRank is slightly more costly
with the creation of the graph of relevant objects. With
any rank aggregation method, ties amongst the objects may
be formed, which we have chosen to break arbitrarily. The
order of the objects, as returned from the specific rank ag-
gregation method, contains the distinct objects from all in-
put rankers. We refer to this ordering of distinct objects as
the aggregate ranker. In the case of top-k queries, we only
return the first k objects in the order of appearance.

4.1 Average
The popularity of Borda’s method lies in its usage of each

input ranker to provide an unbiased representation produc-
ing an aggregate ranker. The difference in the average and
Borda’s method is its values associated with a particular
position. In Borda’s method, we assume full knowledge of
the number of objects amongst the rankers where the highly
ranked objects receive the largest value. We impose average,
which is the reversal of the values given to Borda’s method,
since we can not make such claims on the number of objects.



4.2 Median
The median rank is slightly different from average since

it relies on the middle value to determine the order of the
objects. By not considering each object’s rank in every input
ranker, it is not sensitive to outlying values. The likelihood
of ties may be more predominant with this model since the
median can come from any one of the input rankers. As
shown in [11], the median rank can approximate the footrule
which in turn approximates the Kendall-tau when we have
full access to all input rankers in order to accurately compute
the median value. The benefit of this aggregation method
can be shown through the bipartisan input rankers.

4.3 PageRank
The Markov chain aggregator (MC4) in Dwork et al. [8]

constructs the aggregate ranker in which the transition of
an object in MC4 occurs if the next object is ranked higher
for the majority of the input rankers. The PageRank al-
gorithm [5] can be directly used to construct the aggregate
ranker in a similar fashion. For given input rankers, the
algorithm proceeds as follows. Each distinct object (from
the input rankers) represents a node in the graph. A link
is made between two objects, we refer to them as in-degree
and out-degree objects, respectively, when the out-degree
object (lower rank) points to the in-degree object (higher
rank). The pagerank algorithm of Google uses a similar
model to compute the probability of being at a specific
node in a graph through navigation. However, it assumes
that at each node, the user will navigate with probability
α and randomly jump to a page with probability 1 − α.
This model is very similar to the Markov model except
it does not allow any sink nodes to exist. We compute
the probability of each object o of being the next tran-
sition state through the other objects it links to, we call
them neighbors N(o), where d is the number of links be-
tween o and i and n is the number of objects in the graph:
pagerank(o) = α∗

P

i=N(o)
d

out−degree(i)
+(1−α)∗ 1

n
. The α

parameter measures the likelihood of transitioning to a ran-
dom object or one of the neighbors. Hence, the aggregate
ranker can depend solely or in part on the graph structure of
the input rankers. The starting probabilities of the objects
are uniformly distributed ( 1

n
) and the out-degree links are

each assigned the value of 1 making the endorsement of an
object’s final position the same for each pairwise compari-
son. We alter the PageRank in the following two manners:
(1) starting probabilities to be the number of in-degree links
of each object and (2) the weight of each link for every rank

j to be
Pj

i=1
(j−i)

0

@

j
2

1

A

= 1. Hence, a link is created for each

pair of objects at positions i and j. In this case, the major
proportion of the weight is given to the higher ranked ob-
jects. We normalized the weight for the out-degree links by
the number of input rankers.

4.4 Local Optimization for Aggregation
We present a novel aggregation algorithm based on an al-

gorithm to perform local combinatorial optimization which
was introduced by Kernighan and Lin [14] in the specific

context of graph partitioning. Our goal here, however, is
to reduce the average error between the aggregate ranker
rA and the input rankers r1, . . . , rs, where we define the
average error to be Eav = 1

s

Ps

i=1 E(ri, rA). If the input
rankers give unbiased estimates of the ground truth rank-
ing, then minimizing the average error should also reduce
the expected error w.r.t. the ground truth ranking. This
minimization problem is usually NP-complete (for example
if E is the Kendall-τ error measure), hence we resort to local
optimization. The general idea behind our algorithm is to
perform a sequence of greedy swaps that eventually leads to
a good local minimum of the average error. We begin from
some initial ranking, which could, for example, be the out-
put of an initial aggregation algorithm (eg. average, median
or PageRank). The algorithm proceeds as follows.

1: for each object [n] do
2: for every possible swap [n − 1] do
3: Compute Eav after the swap;
4: Keep the swap with minimum Eav; {Eav may increases}
5: n+1 rankings are visited; {including the initial ranking}
6: return the one with minimum Eav;

Note that the algorithm is forced to make a swap when con-
sidering each object sequentially (according to some arbi-
trary ordering). The best swap is made even if this leads
to a temporary increase in the average error. It is exactly
this flexibility which has been found to help the algorithm
escape from bad local minima. The algorithm above is re-
peatedly executed, each time starting from its own output
until no further progress is made (i.e., the ranking no longer
changes). A straightforward implementation which com-
putes the average error after each swap would have compu-
tational complexity O(s · f(n) ·n2) where f(n) is the cost of
computing the average error for an aggregate ranking. rank-
ings, we output the best which may be the initial ranking.
For the remainder of this paper, we use the Kendall-τ error
measure, for which f(n) = O(n2). However, we perform
a pre-processing step which allows us to update the aver-
age error, instead of recomputing it from scratch, each time
a swap is made. The resulting algorithm has an improved
computational complexity of O(s · n3).

5. STATISTICAL MODEL FOR
AGGREGATION

In this section, we describe a statistical model that we
use to evaluate the rank aggregation algorithms and their
input rankers. In our framework, we suppose we can pose
a web query to some search engine. The result returns a
set of objects, we denote p1, . . . , pq. This search engine uses
a rank function in order to determine the order of these
objects. The rank function comprises of a set of proper-
ties or factors, which we term f1, . . . , fg where fi = [0, 1].
Typically all factors are used in the rank function but ev-
ery factor may have different significance to the user. Thus
each factor should be weighted according to user specifica-
tions which is represented by weights = w1, . . . , wg where
wi ≥ 0 and

Pg

i
wi = 1, the number of factors. Now we can

see that the rank of an object is based upon a combination



ground truth r ranker r1 ranker r2 ... ranker rs aggregator rA

p1 V (p1) =
Pg

i
wi ∗ fi V r1(p1) =

Pg

i
wi ∗ fr1

i V r2(p1) ... V rs(p1) V rA(p1)
p2 V (p2) =

Pg

i
wi ∗ fi V r1(p2) =

Pg

i
wi ∗ fr1

i V r2(p2) ... V rs(p2) V rA(p2)
... ... ... ... ... ... ...
pq V (pq) =

Pg

i
wi ∗ fi V r1(pq) =

Pg

i
wi ∗ fr1

i V r2(pq) ... V rs(pq) V rA (pq)

Figure 1: Matrix of objects and their values in our framework

of the factors and its weights that produces a score ranging
[0, 1]. The scores are then sorted in descending order and
assigned ranks between 1 to q.

By varying the rank function, we can construct many or-
derings of these objects. We represent each rank function
using the term rankers = r, r1, . . . , rs where r is the ground
truth ranker and r1, . . . , rs are the input rankers that are
based on r with some degree of error. We impose this
ground truth as a baseline for comparison and useful for
error analysis. Let us assume the factors for the ground
truth ranker, f1, . . . , fg , and each weighted factor wi = 1

g
.

We suppose that the value of the factor of the ground truth
ranker(fi) and every other ranker(f

rj

i ) are related as follows:
f

rj

i = fi + ε
rj

i . Thus, we introduce an error measure (ε) per
factor for every ranker. We can therefore obtain for each
ranker rj the value of a object is based on the weighted fac-
tors to be V rj (p)=

Pg

i
w

rj

i ∗ f
rj

i and the results are ranked
with respect to their value. These rankers, ground truth
and input, combine the factors, weights and errors in a lin-
ear combination formula.

We can generate a set of object containing a set of factors
such that for each object pi = (f1, . . . , fg). We generate the
error measures(~ε1, . . . , ~εg) as well where ~εi is independent of
~εj for all i and j but the components of ~εi may be dependent
for each ranker. Hence, the errors for each factor are inde-
pendent of each other. But, different rankers for the same
factor may make errors that are correlated to each other. A
simple, analytically tractable and common distribution as-
sumption for ~ε that has these properties is to assume that
the errors are jointly normally distributed with the specified
covariance matrix. Let Y be a multivariate normal random
variable with mean 0 identity covariance matrix. Each com-
ponent of Y is either y1 or y2, which are two independent
normal random variables each with mean zero and unit vari-
ance. Note that it is not known how to generate one Gaus-
sian random variable, but it is known how to generate two.
If you want one, you can always generate two and throw one
away. Thus we can generate each component of Y.

Given any matrix, A, let X = AY. Then X is a joint
normal random vector, with mean 0 and covariance matrix
Σ = AAT . This is one way to get a correlated random
vector X from Y, which is independent. The resulting X
matrix represents the correlated error vector for every object
for each factor component. The error measures are depen-
dent on the factor values. Thus,for some fixed factor i,

2

6

6

6

4

εi1

εi2

...
εiq

3

7

7

7

5

∼ (0, Σ),

where Σ is the covariant matrix. We have thus fully speci-
fied the probabilistic model, which assigns a probability dis-
tribution to the ground truth ranking via the distribution
of the V (pi)’s, and determines how the rankers obtain their
rankings. Thus the error measure for the factor f lies within
range [f, 1− f ]. We want to ensure that the values assigned
to the input rankers also lie in range [0, 1]. We devise the
covariance matrix with the diagonal values being 1 and mul-
tiply it by a coefficient, σ. We arbitrarily select σ to be f̄

g

where f̄ = min{f, 1−f} and g is the number of factors. The
coefficient serves as a method to create the dependency of
error measures to factors. Hence, it is assumed if the ground
truth score of an object for a factor is very high or very low,
the errors for that factor are likely to be low, and rankers
will get this factor mostly correct. Suppose we have two
factors, f1 = 0.1 and f2 = 0.9, the maximum error possible
for either factor is 0.1. The influence of the errors associated
to the factors is varied in which a smaller ground truth fac-
tor value can have a large proportionate error while a larger
ground truth factor value has a small error. For example,
if we consider two factors pagerank, and keywordMatch. If
two different rankers use the same database of objects for
their ranking, then the resulting factors may have similar
errors. In this case, the same amount of links are missing in
the computation of PageRank. But, the errors in page rank
and keyword match are not correlated since they depend on
different attributes of data.

Figure 1 displays the values created for each object for
the ground truth, input and aggregate rankers. Now we
can produce the ground truth ranker, e.g. V (p1), . . . , V (pq).
Then we can compute a set of rankers, V r1 , . . . , V rs , ad-
justing the weights. The aggregator uses the rankers as
input. We can investigate the effects of the error measure,
factors and weights on the aggregator. We assume that each
search engine has its own ranking. Today’s search engines
use weights that are an estimate of the ground truth weights
for a population, but for different queries and user groups,
these weights might differ greatly from the optimal weights.

Let A generically refer to an aggregator, and let E(r, rA)
be a measure that measures the difference between the ground
truth ranker r and the ranker rA obtained by the aggregator.
One possible measure is pairwise disagreements. Among the
available aggregators, we would like to select the one with
the smallest average error. We can thus estimate the av-
erage error of any aggregator (or set of aggregators) within
our model as follows.

1: // Evaluation of Aggregators
2: while Not Done do
3: Generate {fi)}

g
i=1 from a normal distribution N(0, 1).

4: Construct weights vector such that
Pg

i
wi = 1.



5: for all objects q do
6: Generate V (pi)

q
i=1 =

Pg

k=1 wk ∗ fk

7: Sort {V (pi)} to obtain the ground truth ranker r.
8: for each ranker rj , generate V rj (pi) as follows do
9: Generate εi1, . . . , εig by drawing from the gaussian

normal distribution N(0, Σ).
10: Generate V rj (pi) =

Pg

k=1 wk ∗ f
rj

k .
11: For each ranker rj , generate its rankings by sorting

V rj (pi).
12: Denote the resulting rankers by the vectors r(1), . . . , r(s).
13: for each aggregator A do
14: Compute the aggregate ranking rA = A(r(1), . . . , r(s)).
15: Compute the error E(r, rA)and update the average

error of aggregator A.

6. EXPERIMENTAL EVALUATION
For our evaluation of the rankers and aggregation meth-

ods, we fix several of the input parameters providing a basis
for comparison. Our statistical framework is designed us-
ing MatLab making the matrix computations more efficient.
We perform tests on a test bed of 100 objects which is com-
putationally easy for MatLab. The number of factors and
number of rankers is fixed to 5. We also make the weights
assigned to each factor equal (wi = 0.2) except in the case
of the bi-partisan approach, which we will discuss later. As
part of the aggregation procedure, the input rankers consist
of the top-k objects from each ranker. When we retrieve
top-k objects from different ranked lists, we estimate all the
missing ranks of objects to be k + 1. These are objects
that are returned by some ranked lists but not all. For the
PageRank algorithm, we fixed the α parameter at 0.85 since
we did not observe any significant dependence of α in our
experiments. We perform tests without and with the lo-
cal optimization for aggregation. We execute 1000 datasets
(where each dataset contains its own ground truth ranker
and five input rankers) in which we compute the average
to display the steady state of our model. When k < 100,
we did not observe a dataset comprising of all the same ob-
jects in the ground truth and input rankers, nor a case of all
distinct objects for all rankers. For each error measure, we
record the aggregation algorithms and the counts based on
the measure of comparison. We should note that the preci-
sion error measure is a maximization function whereas the
other error measures are minimization functions.

In Figure 2, we display the results of the aggregation
methods of average, median and the PageRank algorithm
for the partial lists of top-10, top-25, top-50 and full list of
top-100. The results shown in the table serve as a baseline
of these rank aggregation methods. We notice that average
and PageRank give similar counts with respect to each error
measure. The median, on the other hand, gives worse per-
formance, but remains close to the counts obtained with the
other algorithms. In the case of top-100, precision and recall
have values of 100 since we have full access to all objects un-
der consideration in our model. We see that as we increase
the value of k, the difference between average/PageRank
and median gets larger for the Kendall-tau and footrule er-
ror measures. The estimation of ranks not appearing in all

rankers becomes more predominant due to the nature of the
measure. For instance with k = 10, the amount of error
incurred will be lower with the maximum rank of 11 than
when k is larger making the maximum rank larger. We
found that the recall measure is a difficult measure to opti-
mize since more objects in the top-k increases the possibility
of error (the value of n(k) thereby making improvements dif-
ficult to achieve). We also observed that the footrule error
measure gives similar trends to that seen in Kendall-tau so
we elected to only report the results of the Kendall-tau for
the remaining tests.

Since users are mostly interested in the top few objects,
for the remainder of the tests we only show the top-10 and
top-15 objects. In Figure 3, we display the results of the
aggregation methods of average, median and the PageRank
algorithm and their respective results under local optimiza-
tion for the partial lists. In the case of the top-10, the counts
returned by the first three rank aggregation methods are the
same as the ones shown in Figure 2. The local optimization
method increases the precision slightly in all three meth-
ods. The counts for the top-10 and top-15 are also very
close to each other indicating that the best ranking is lo-
cated regardless of the initial start ranking of the objects.
The Kendall-tau error measure reveals a larger discrepancy
amongst the counts of the three aggregation methods. In
general, the median has the worse performance in which the
local optimization is able to discover a better ranking and
improve its count by several perturbations.

We implement bipartisan input rankers such that we mod-
ified the weights assigned to the factors. Three rankers have
roughly the same interpretations whereas two rankers have a
different perspective but are dissimilar from the other three
rankers. Three of the rankers make weights for each factor
to be 1
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and the last two rankers have weights
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. The numerator is the range from 1 to g,
the number of factors, so that each factor has a different
significance. The denominator is the number of possible
perturbations or bubble sort of 5 factors. In Figure 4, we
display the results of the aggregation methods in which the
input ranker represent different opinions of the same objects.
The opinions of both the left and right of the bipartisan are
accurate but the combination these opinions make the av-
erage and PageRank more noisy. The precision associated
with median is clearly superior to the other methods. Even
with the local optimization, the median achieves the best
ranking while the other two methods have an initial start
ranking that can not reach the local minima of median. We
observe this trend as well for the Kendall-tau error mea-
sure. The local optimization improves the ranking for all
three aggregation methods by about 1 count unit.

As a special case of bipartisan, there is one opinion which
the majority of input rankers have a consensus and the other
input rankers are manipulated that produce a very different
order of the objects. In Figure 5, we display the results of
this case. It simulates the situation where three rankers are
mostly correct in their rankings while the other two rankers
are mostly incorrect. The meta search considers information
from all input rankers in order to determine the best order-
ing. We add additional noise to the factors of two rankers



Aggregation Method top-10 top-25 top-50 top-100
Average 8.359 22.233 46.652 100.000
Median 8.158 21.986 46.451 100.000

PageRank 8.388 22.29 46.748 100.000

Aggregation Method top-10 top-25 top-50 top-100
Average 16.355 35.060 61.200 100.000
Median 16.530 35.065 61.190 100.000

PageRank 16.375 35.025 61.155 100.000

(a) (b)

Aggregation Method top-10 top-25 top-50 top-100
Average 14.846 61.669 160.649 285.086
Median 17.529 71.966 187.480 343.806

PageRank 14.893 62.117 160.286 284.830

Aggregation Method top-10 top-25 top-50 top-100
Average 20.006 82.872 224.880 433.180
Median 22.806 94.944 260.188 515.758

PageRank 20.396 83.948 225.148 432.766

(c) (d)

Figure 2: Baseline Comparison of Aggregation Methods under (a) precision error measure, (b) recall error
measure, (c) Kendall-tau error measure, (d) footrule error measure

Aggregation Method top-10 top-15
Average 8.359 12.918
Median 8.158 12.625

PageRank 8.300 12.956
Average-opt 8.407 12.977
Median-opt 8.416 12.930

PageRank-opt 8.419 12.967

Aggregation Method top-10 top-15
Average 14.846 28.072
Median 17.592 33.576

PageRank 14.893 28.338
Average-opt 14.336 27.453
Median-opt 14.492 28.482

PageRank-opt 14.170 27.386

(a) (b)

Figure 3: Baseline Comparison with Local Optimization under (a) precision error measure, (b) Kendall-tau
error measure

while maintaining equal weights. The manipulated rankers
produce more outlying ranks for all objects. Hence, these
rankers provide more noise to the aggregate ranker making
the order of objects not as valuable to the user. We notice
for the precision and Kendall-tau the effectiveness of the
median rank aggregation method is higher than the other
two methods. Once again we see similar improvement of
the counts using the local optimization.

We have conducted other tests by varying a number of
other conditions. In general, we found that whenever there
is no specific difference among the rankers, average seems
to outperform median. This is due to the fact that median
throws away some of the actual rank information that is
uniformly useful in obtaining the aggregate ranking. When
the errors are not correlated, average outperforms median
with a larger margin since the amount of information pro-
vided by each ranker increases. When each ranker is miss-
ing the same percentage of objects in their ranks, average
still outperforms median. However, as one ranker has sig-
nificantly more missing objects, then the ranks of objects
for that ranker becomes more noisy and the performance
of median rank starts to improve. The relationship between
average and median rank remains the same even if the scores
are distributed according to a Zipf distribution. This only
changes the number of objects that have high or low scores,
but the resulting effect remains the same. The local opti-
mization allows the aggregate ranker to reconsider the im-
pact of the input rankers through several iterations. Hence,
the aggregate ranker is improved by exploiting the relevant
information contained in the input rankers.

7. CONCLUSION

In this paper, we introduce a realistic statistical model
that captures the interdependencies between the ground truth
and input rankers. The ground truth ranker comprises of full
and accurate knowledge of the factors and weights used in
the linear combination formula. The input rankers are vari-
ations of the ground truth ranker with some additional noise
to produce a different ordering of objects. We perform a de-
tailed study of how input ranker characteristics affect the
performance of the rank aggregation methods including av-

erage, median and a Markovian chain method (PageRank).
We also present a novel local optimization aggregation al-
gorithm to produce a better aggregation starting from an
initial ranking, which could be randomly chosen or it could
be the output of some other aggregator. We discover under
certain contexts when one aggregation method gives a better
ordering of objects than the other methods. We implement
two cases in which the median rank outperforms the aver-
age rank. With bipartisan rankers, the majority of the input
rankers are designed with one opinion while the remaining
input rankers represent another opinion. In a special case
of bipartisan, only one correct opinion exists observed in a
majority of input rankers while the remaining rankers are
manipulated and inconsistent.

As part of future work, we plan on examining different
correlation of errors. We are investigating how to deter-
mine members of the left and right bipartisan points of view.
We also would like to consider a statistical model that does
not use factors, errors and weights to determine the input
rankers since intimate knowledge of all these components
may not be available.
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Aggregation Method top-10 top-15
Average 7.123 11.124
Median 7.687 12.088

PageRank 7.225 11.308
Average-opt 7.162 11.160
Median-opt 7.789 12.165

PageRank-opt 7.223 11.306

Aggregation Method top-10 top-15
Average 29.272 59.103
Median 22.770 42.549

PageRank 28.936 57.794
Average-opt 28.534 58.153
Median-opt 21.564 41.408

PageRank-opt 27.773 55.761

(a) (b)

Figure 4: Bi-partisan Local Optimization under (a) precision error measure, (b) Kendall-tau error measure

Aggregation Method top-10 top-15
Average 7.356 11.401
Median 7.718 12.023

PageRank 7.654 11.799
Average-opt 7.369 11.433
Median-opt 7.863 12.152

PageRank-opt 7.641 11.776

Aggregation Method top-10 top-15
Average 25.519 51.811
Median 22.383 42.784

PageRank 24.682 50.298
Average-opt 25.211 50.985
Median-opt 20.644 40.675

PageRank-opt 23.389 47.649

(a) (b)

Figure 5: Local Optimization with 2 manipulated rankers under (a) precision error measure, (b) Kendall-tau
error measure
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