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Abstract

We study atomic routing congestion games in which each player chooses a path in the network
from its strategy set (a collection of paths) with the objective to minimize the maximum con-
gestion along any edge on its selected path. The social cost is the global maximum congestion
on any edge in the network. We show that for arbitrary routing games, the price of stability
is 1, and the price of anarchy, PoA, is bounded by κ − 1 ≤ PoA ≤ c(κ2 + log2 n), where κ is
the length of the longest cycle in the network, n is the size of the network and c is a constant.
Further, any best response dynamic converges to a Nash equilibrium. Our bounds show that
for maximum congestion games, the topology of the network, in particular the length of cycles,
plays an important role in determining the quality of the Nash equilibria.

Classification: Algorithms; Current Challenges: game theory (routing congestion games).



1 Introduction

A fundamental issue in the management of large scale communication networks is to route the
packet traffic so as to optimize the network performance. Our measure of network performance is
the worst bottleneck (most used link) in the system. The model we use for network traffic is that
of finite, unsplittable packets (atomic flow), and each packet’s path is controlled independently
by a selfish player. Ideally, when these players are left to their own devices, i.e., when they act
selfishly in selecting their paths so as to minimize the worst bottleneck from their point of view,
the resulting network performance should not be significantly worse than it would have been had
the players coordinated their actions to optimize the network performance.

The Nash equilibrium (NE) is a natural outcome for a game with selfish players – a stable
state in which no player can unilaterally improve her situation. In the recent literature, the price of
anarchy [19, 29] and the price of stability [1, 2] have become prevalent measures of the quality of the
equilibria of uncoordinated selfish behavior relative to coordinated optimal behavior. The former
quantifies the worst possible outcome with selfish agents, and the latter measures the minimum
penalty in performance required to ensure a stable equilibrium outcome.

We study atomic routing games (unsplittable traffic) [27, 32]. An atomic routing game is
specified by N players corresponding to N source-destination node pairs on a network G. The
strategy set available to each player is a set of edge-simple paths (typically all edge-simple paths
in G) from the player’s source to the destination. A strategy of a player is a selection of one of the
paths in the player’s strategy set.

The congestion on an edge in the network is the number of paths that use this edge; the
congestion of a path is the maximum congestion over all edges on the path; the congestion of
the network is the maximum congestion over all edges in the network. We will use the network
congestion as the measure of social cost. The congestion governs the delivery time of the packets
in the network which makes it a natural measure of the social cost for the outcome of the routing
game. In the literature this choice for the social cost is often referred to as the maximum social
cost [7, 8, 19, 33]. Similarly, we choose for the player cost function the congestion on her path,
i.e., the worst bottleneck along her chosen path, often referred to as the maximum player cost.
The network congestion is an important metric for formally analyzing the performance of packet
scheduling algorithms [9, 21, 22, 28, 30].

We only consider pure Nash equilibria. At the outset, we will show that there always exist
optimal pure equilibria, therefore, the price of stability is PoS = 1. We then study the worst
case equilibria, the price of anarchy (PoA). We give a characterization of the price of anarchy
(worst equilibria) in terms of the length of cycles in the network. Thus, the price of anarchy
depends only on the network topology. In order to obtain this result we introduce a new technique
called edge-expansion which bounds the social cost when path lengths are restricted. The edge-
expansion technique may be of independent interest. For example, edge-expansion immediately
gives bounds for the price of anarchy in networks where the path lengths are naturally short, such
as the Hypercube and Butterfly-like networks.

1.1 Definitions and Statement of Results

An instance R of a routing (congestion) game is a tuple (N, G, {Pi}i∈N), where N = {1, 2, . . . , N}
are the players, G = (V,E) is an undirected connected graph with |V | = n, and Pi is a collection
of edge-simple paths. Each path in Pi is a path in G that has the same source si ∈ V and
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destination ti ∈ V ; each path in Pi is a pure strategy available to player i. A pure strategy profile
p = [p1, p2, · · · , pN ] is a collection of pure strategies (paths), one for each player, where pi ∈ Pi.
We refer to a pure strategy profile as a routing. On a finite network, a routing game is necessarily
a finite game.

For any routing p and any edge e ∈ E, the edge-congestion Ce(p) is the number of paths in p
that use edge e. For any path p, the path-congestion Cp(p) is the maximum edge congestion over all
edges in p, Cp(p) = maxe∈p Ce(p). The network congestion is the maximum edge-congestion over
all edges in E, C(p) = maxe∈E Ce(p). The social or global cost SC(p) is the network congestion,
SC(p) = C(p). The player or local cost pci(p) for player i is her path-congestion, pci(p) = Cpi

(p).
When the context is clear, we will drop the dependence on p and use Ce, Cp, C,SC, pci.

We use the standard notation p−i to refer to the collection of paths {p1, · · · , pi−1, pi+1, · · · , pN},
and (pi;p−i) as an alternative notation for p which emphasizes the dependence on pi. Player i
is locally optimal in routing p if pci(p) ≤ pci(p

′
i;p−i) for all paths p′i ∈ Pi. A routing p is in a

Nash Equilibrium (p is a Nash-routing) if every player is locally optimal. Nash-routings quantify
the notion of a stable selfish outcome. A routing p∗ is an optimal pure strategy profile if it has
minimum attainable social cost: for any other pure strategy profile p, SC(p∗) ≤ SC(p).

We quantify the quality and diversity of the Nash-routings by the price of stability (PoS) and
the price of anarchy (PoA) (sometimes referred to as the coordination ratio). Let P denote the set
of distinct Nash-routings, and let SC∗ denote the social cost of an optimal routing p∗. Then,

PoS = inf
p∈ P

SC(p)

SC∗
, PoA = sup

p∈ P

SC(p)

SC∗
. (1)

Given a routing p, a best response move by player i is to change its path selection from pi (if it is
not locally optimal) to a path p′i which is locally optimal given p−i, thus, pci(p

′
i;p−i) < pci(pi;p−i).

A best response dynamic is an arbitrary sequence of best response moves. If there are no infinite
best response dynamics, then every best response strategy converges. The (worst case) convergence
time is the length of the longest best response dynamic. A best response dynamic is maximal if it
cannot be extended by any best response move. Any maximal best response dynamic must end at
a Nash-routing. Our first result is on the existence and quality of pure Nash-routings for arbitrary
routing game instances.

Theorem 1 An instance R of a routing game is specified by a tuple (N, G, {Pi}i∈N).
(i) Every instance of a routing game, has a pure Nash-routing which is optimal, hence PoS = 1.
(ii) For every routing game, there are no infinite best response dynamics.
(iii) For any routing game, the network congestion is non-increasing along a best response dynamic.

Part (i) in Theorem 1 indicates the existence of an optimal Nash-routing. Part (ii) indicates that
one way to find a Nash-routing is to set the initial paths of each player arbitrarily from which any
greedy best response dynamic will converge to a Nash-routing. Part (iii) shows that if the initial
paths are chosen well (with near optimal network congestion), then the Nash-routing which results
after any best response dynamic will have near optimal congestion. There exist routing algorithms
for finding such a good initial set of paths, for arbitrary networks [3, 4, 17, 31], as well as special
classes of networks [5, 6, 25].

Our next result characterizes the worst case Nash-routing in terms of the topology of the
network. In particular, we show that cycles in the network play an important role in determining
whether or not there can exist bad Nash-routings. For a graph G, the edge-cycle number κe(G) is
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the length of the longest edge simple cycle in G (similarly one could define the node-cycle number
κn). We will drop the dependence on G when the context is clear.

Theorem 2 For any undirected graph G with edge-cycle number κe,
(i) there exists a routing game (N, G, {Pi}i∈N) for which PoA ≥ κe − 1;
(ii) for any routing game (N, G, {Pi}i∈N), PoA ≤ c(κe

2 + log2 n).

(We will use c to represent a generic constant, whose specific value may vary even from line to line
in the same set of equations.) Theorem 2 characterizes the Nash-routings in terms of the network
topology, the key parameter being the edge-cycle number. Thus, for networks with small cycles,
the price of anarchy is small. Let m denote the number of edges in the network. Since κe ≤ m, we
have that PoA ≤ c · m2. In graphs with Euler cycles, κe = m, thus, m − 1 ≤ PoA ≤ c · m2.

The lower bound in part (i) of Theorem 2 is obtained by constructing a game instance where
the players have their sources and destination in the largest cycle. A useful result needed to prove
the upper bound in part (ii) of Theorem 2 is the edge-expansion theorem, which bounds the price
of anarchy for arbitrary instances of routing games in terms of the maximum length of the paths in
the strategy sets. Specifically, for a routing game (N, G, {Pi}i∈N) in which the length of any path
in a strategy set is at most `, the edge-expansion theorem states that SC(p) < 2(` · SC∗ + log n),
where p is any Nash-routing, and SC∗ is the social cost of an optimal pure strategy profile. The
edge-expansion result implies that PoA < 2(` + log n).

To illustrate the main idea in the proof of Theorem 2 part (ii), first consider 2-connected
graphs. Using Menger’s theorem [38], we establish that ` ≤ c · κe

2, from which Theorem 2 follows
immediately by using the edge-expansion theorem. However, if the graph G is not 2-connected,
then the relation ` ≤ c · κe

2 will generally not hold, and ` could be much larger than c · κe
2. In

order to obtain the result, however, we will decompose an arbitrary graph G into a tree consisting
of 2-connected components. We show that if in G the Nash-routing has network congestion C, then
there is some 2-connected component H which has congestion C ′ ≈ C. If the subpaths in H of
the set of players contributing to this congestion C ′ were all locally optimal in H, then we would
have a Nash-routing in H, and we could apply the 2-connected result. However, not all the players
contributing to the congestion C ′ in H will be locally optimal in H, and so to convert this basic
idea into a proof, we generalize the edge-expansion theorem so that it applies to situations where
not all players are locally optimal (we refer to such situations as partial Nash-routings).

The edge-expansion result may also be of independent interest, as it can be used to give good
bounds on the price of anarchy for networks where it is natural to use paths with short length.
For example in the Hypercube and Butterfly [20], if we choose bit-fixing paths, then ` = O(log n),
which implies that PoA ≤ c log n.

1.2 Related Work

General congestion games were introduced and studied in [27, 32]. The application of game theory
in computer science, specifically the introduction of the price of anarchy was introduced in [19].
Since then, there has been significant activity. Briefly, the models studied can be categorized by
the topology of the network; the nature of the player and social costs; the nature of the traffic
(atomic or splittable); the nature of the strategy sets; the nature of the equilibria studied (pure or
mixed). A brief taxonomy of some relevant existing results, specifically in the context of congestion
games and routing is given in Table 1, where part (a) gives a breakdown according to the kind of
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Atomic Splittable

Pure [7], [23], [32] [37]∗

Our Work
[33], [34],
[35], [36]

Mixed [10]∗, [11]∗, [12]∗,
[15]∗, [14]∗, [16]∗,
[18]∗, [19]∗, [24]∗,
[26]∗, [29]∗

[8], [13]∗

Maximum SC Sum SC Other SC **

Max. pc Our Work – – [23]

Sum pc [7], [8], [10]∗,
[11]∗, [12]∗, [13]∗,
[14]∗, [18]∗, [19]∗,
[26]∗, [29]∗ [33]

[7], [16]∗,
[34], [35],
[36], [37]∗

[15]∗, [24]∗ [23], [32]

(a) (b)
∗ A specific network model is used (eg. parallel links) or specific player strategy sets (eg. singleton sets).

** Results on existence or convergence to equilibrium, as opposed to quality of equilibria.

Table 1: Existing work in routing congestion games.

flow (atomic or splittable) and equilibria (mixed or pure), and part (b) according to the social and
player cost (sum or maximum).

Typically, the research in the literature has focused on computing upper and lower bounds on
the price of anarchy. The vast majority of the work on maximum social cost has been for parallel
link networks, with only a few recent results on general topologies [7, 8, 33]. Essentially, all of the
work has focused on the sum player cost, which corresponds to the sum of the edge congestions on
a path (as opposed to the maximum edge congestion on the path, which we consider here).

Our results are for the maximum player cost, and the only result which has a brief discussion
of the maximum player cost is [23] where the authors focus on parallel link networks, but also give
some results for general topologies. In [23], the main content is to establish the existence of pure
Nash-routings. We present a systematic study of pure Nash-routings in atomic routing games with
maximum player cost. Pure equilibria with atomic players and maximum player cost introduces
essentially combinatoric conditions for the equilibria, in contrast to infinitelly splittable flow, or
mixed equilibria, which can be characterised by Wardrop-type equilibrium conditions.

We note that our results assume that the network latency function is the identity. Our results
can easily be extended to any monotonic latency function, as the combinatorial structure of the
maximum player and social cost are invariant to any monotonic transformation of the latency
function.

Outline of Paper. We start with the proof of Theorem 1 in Section 2. We then continue by
presenting the edge expansion theorem in Section 3. In section 4, we give the lower bound in
Theorem 2. In Section 5, we give the upper bound in Theorem 2 for 2-connected graphs, and in
Section 6 we give our general result for arbitrary networks. We conclude in Section 7. Most of the
technical proofs have been placed in a technical appendix.

2 Existence of Optimal Nash-routings

The goal in this section is to establish main Theorem 1. First, we establish the existence of pure
Nash-routings and compute the price of stability and anarchy; we also show that every best response
strategy converges, and the social cost is non-increasing along a best response strategy. Note that
the strategy set for any player may be any collection of edge simple paths from her source to
destination, typically all the possible paths.
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For any routing p, define the congestion vector C(p) = [m0(p),m1(p),m2(p), . . .], where each
component mk(p) is the number of edges with congestion k. Note that

∑

k mk(p) = m, where m is
the number of edges in the network. The social cost (network congestion) SC(p) is the maximum
k for which mk > 0. We define a lexicographic total order on routings as follows. Let p and p′ be
two routings, with C(p) = [m0,m1,m2, . . .], and C(p′) = [m′

0,m
′
1,m

′
2 . . .]. Two routings are equal,

written p=c p
′, if and only if mk = m′

k for all k ≥ 0; p<c p
′ if and only if there is some k∗ such

that mk∗ < m′
k∗ and ∀k > k∗, mk ≤ m′

k.
Let (N, G, {Pi}i∈N) be an instance of a routing game. Since there are only finitely many routings

(as a player’s path may use any edge at most once), there exists at least one minimum routing.
There may be many distinct routings all of which are minimum (and equal to each other) in our
total order. Let p∗ be a minimum routing in this total order (which we know exists); then, for all
routings p, p∗≤c p. Any minimum routing is an optimal routing; indeed, if SC(p) < SC(p∗) for
some other routing p, then the maximum k for which mk(p) > 0 is smaller than the corresponding
k for p∗, contradicting the fact that p∗≤c p.

Lemma 2.1 At least one minimum routing p∗ exists. All minimum routings are optimal routings.

We now show that greedy moves can only decrease a routing according to <c . A greedy move is
available to player i if she can obtain a lower path congestion by changing her current path from pi

to a new path p′i. We say that a greedy move takes the original routing (pi;p−i) to a new routing
(p′i;p

′
−i) in which pi is replaced by p′i. A greedy move decreases the number of high congestion

edges, by transferring the congestion to lower congestion edges. Thus, we can show:

Lemma 2.2 If a greedy move by any player takes p to p′, then p′<c p.

Since there is a finite number of routings, by Lemma 2.2, all best response dynamics are finite.

Corollary 2.3 Starting from an arbitrary initial routing, every best response dynamic is finite.

A consequence of Lemma 2.2 is that every minimum routing is a Nash-routing. Indeed, suppose
that, in a minimum routing p∗, some player has an available greedy move which takes p∗ to p′.
Then, by Lemma 2.2, p′<c p

∗ which contradicts the minimality of p∗, therefore every player must be
locally optimal in a minimum routing. Since at least one minimum routing exists and all minimum
routings are optimal (Lemma 2.1), we have

Lemma 2.4 Every minimum routing p∗ (at least one exists) is an optimal Nash-routing.

Corollary 2.5 The price of stability is PoS = 1.

Our main Theorem 1 follows from Lemmas 2.2, 2.4 and Corollaries 2.3, 2.5.

3 The Edge-Expansion Theorem

The edge-expansion result will be essential to proving the the second part of Theorem 2, and is
also of independent interested in path-constrained routing games where the paths have bounded
length. The edge-expansion theorem can be used to bound the price of anarchy for an arbitrary
routing game in terms of the maximum path length in the strategy set of the players. In fact, we
will prove a more general result which bounds the quality of partial Nash-routings, in which only
some of the players are locally optimal.
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Let R = (N, G, {Pi}i∈N) be an instance of a routing game. Let P =
⋃

i∈N Pi. The path-length
of R is ` = maxp∈P |p|. A path-cut for player i is a set of edges Ei such that every path in Pi must
use at least one of the edges in Ei. The congestion of a path-cut C(Ei) is the minimum congestion
of any edge in Ei, C(Ei) = mine∈Ei

Ce. If player i is locally optimal with congestion pci, then every
alternative path for that player must have congestion at least pci − 1.

Lemma 3.1 Consider an arbitrary routing p = [p1, p2, · · · , pN ] for game R. If player i is locally
optimal, then there is a path-cut Ei for player i with congestion C(Ei) ≥ pci − 1.

3.1 Edge-Expansion Process

In general, an arbitrary routing p with social cost (network congestion) C will be a partial Nash-
routing with some players locally optimal and some not. If all players are locally optimal, then p
is a Nash-routing, but this is not a requirement for the following discussion.

In order to initiate the edge-expansion process, assume that at least one player is locally optimal
and has player cost C. Let E0 be the set of edges with congestion C0 = C that are used by at least
one locally optimal player. Let Π0 be set of locally optimal players that use at least one edge in
E0. By Lemma 3.1, each player in Π0 has a path-cut with congestion at least C0 − 1. Let E1 denote
the union of E0 with all these path-cuts of every player in Π0. Thus, E0 ⊆ E1 and each edge in E1

has congestion at least C1 = C0 − 1. Let Π1 denote the set of locally optimal players whose paths
in p use at least one edge in E1. Note that Π0 ⊆ Π1. Each player in Π1 has player cost at least C1,
since every edge in E1 has congestion at least C1.

We continue this process inductively as follows. Suppose that for i ≥ 1, edge set Ei has been
constructed as the union of Ei−1 with path cuts for the players in Πi−1, thus every edge in Ei has
congestion at least Ci = Ci−1 − 1 = C − i. We now construct Πi, the set of locally optimal players
whose paths use at least one edge in Ei; every player in Πi has player cost at least Ci. By Lemma
3.1, each player in Πi has a path-cut with congestion Ci − 1, and we construct Ei+1 to be the union
of Ei with all these path-cuts of the players in Πi. Using this inductive construction, we obtain a
sequence of edge sets, E0 ⊆ E1 ⊆ E2, · · · , with C(Ej) ≥ Cj = C − j, and corresponding to each edge
set, a set of locally optimal players Π0 ⊆ Π1 ⊆ Π2 · · · . We continue this inductive construction up
to edge set Es which is the first set for which |Es| ≤ 2|Es−1|. We will refer to this inductive process
as the edge-expansion process, since by construction Ei−1 ⊆ Ei, for 1 ≤ i ≤ s, and the edge set size
doubles from step i − 1 to step i, for i < s.

3.2 Edge-Expansion Properties

Since the edge sets double in size at each expansion step, and there are at most 1
2
n2 edges,

Lemma 3.2 |Es| ≥ 2s−1 and 1 ≤ s < 2 log n.

In routing p, let F (C ′) ⊆ N denote the set of non-locally optimal players with player cost at
least C ′, i.e. pci ≥ C ′ ∀i ∈ F (C ′). We now give a bound for C in terms of C∗, establishing a
relationship between the congestion of a routing and the optimal routing.

Theorem 3.3 (Edge-expansion) C < 2` · (C∗ + F (C − 2 log n)) + 2 log n.
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Proof: From the edge-expansion process and Lemma 3.2, each edge in set Es−1 has congestion
at least Cs−1. Let M be the number of times edges in Es−1 are used by the paths in p. Then,
M > Cs−1 · |Es−1|, since each edge has congestion at least Cs−1. By construction, in p, the
congestion in each of the edges of Es−1 is caused only by the players in A = Πs−1 ∪ B, where
B ⊆ F (Cs−1) contains the non locally optimal players that use edges in Es−1. Each packet in A
uses paths of length at most `. Therefore, each player in A can use at most ` edges in Es−1, hence,
M ≤ ` · |A|. Thus, ` · |A| > Cs−1 · |Es−1|. Since, |A| ≤ |Πs−1| + |F (Cs−1)|, we obtain,

Cs−1 <
`

|Es−1|
· (|Πs−1| + |F (Cs−1)|).

We now give an upper bound on |Πs−1|. Es contains a path-cut for every player in Πs−1, every such
player must use at least one edge in Es in any routing, including the optimal routing p∗. Thus,
edges in Es are used at least |Πs−1| times, hence some edge is used at least |Πs−1|/|Es| times, by
the pigeonhole principle. Hence C∗ ≥ |Πs−1|/|Es| (note that |Es| > 0). By the definition of s,
|Es| ≤ 2|Es−1|, hence |Πs−1| ≤ 2|Es−1|C∗. Using this upper bound for |Πs−1|, we obtain

Cs−1 < 2` ·
(

C∗ +
|F (Cs−1)|
2|Es−1|

)

.

Since Cs−1 = C − (s − 1) and 2|Es−1| ≥ 2s (Lemma 3.2), we obtain

C < 2` ·
(

C∗ +
|F (C − s + 1)|

2s

)

+ s − 1.

For C ′′ < C ′, F (C ′) ⊆ F (C ′′) which means that |F (C ′)| is non-increasing in C ′. Thus |F (C − s +
1)| ≤ |F (C − 2 log n)|. Since 2s ≥ 2, the claim follows.

Theorem 3.3 depends on the number of players which are not locally optimal in the partial
Nash-routing. We can obtain a tighter result for Nash-routings. In a Nash-routing, F (C ′) = 0, for
any C ′ > 0, so Theorem 3.3 gives

Theorem 3.4 (Edge-expansion for Nash-routings) If p is a Nash-routing, then C < 2` ·C∗+
2 log n, and PoA < 2(` + log n).

4 Lower Bound on Price of Anarchy

In this section, we give a lower bound on the price of anarchy with respect to the cycle number of
a graph, establishing part (i) of Theorem 2. We consider an arbitrary connected graph G = (V,E).
We will construct a routing game instance on the longest cycle. For each player, the source and
destination are adjacent pairs in the cycle. In the optimal solution each player follows the edge
connecting the source and destination, resulting to network congestion 1. However, there is a Nash-
routing where each player uses the long path in the cycle, giving congestion proportional to the
size of the cycle. The details are in the following result.

Theorem 4.1 (PoA lower bound) Let G be a graph with edge cycle number κe. Then, there is
an instance of a routing game (N, G, {Pi}i∈N) on G with PoA = κe − 1.
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Proof: Let Q = e1, . . . , eκe
be an edge simple cycle with length κe. We construct a routing game

with κe players, N = {1, 2, . . . , κe}. There is a player i corresponding to every edge ei = (ui, vi) in
Q. We set the source si = ui and the destination ti = vi. The strategy set Pi is the collection of
edge simple paths from si to ti. The forward path fi is composed solely of the edge (ui, vi). The
backward path bi is obtained by traversing the edges of cycle Q in reverse until edge ei is reached
(ei is not used in the backward path). {fi, bi} ⊆ Pi.

Since Q is edge simple, if every player uses his forward path (the forward routing, p =
[f1, . . . , fκe

]), C = 1. Thus, the optimal social cost is 1. If on the other hand, all the players
use their backward paths (the backward routing p̄ = [b1, . . . , bκe

]), then player i uses every edge in
Q except ei exactly once. Thus, the congestion on every edge in Q is N − 1 = κe − 1.

We will show that p̄ is a Nash-routing. Suppose for contradiction that some player k is not
locally optimal in p̄. So for some other path p, player k has lower path congestion, pck(p; p̄−k) <
pck(bk; p̄−k) = κe−1. Since every edge on Q has congestion κe−1 in routing p̄, at least κe−2 players
other than player k use every edge on Q. Thus, if p uses any edge on Q, then pck(p; p̄−k) = κe − 1,
which does not improve its cost, so we conclude that p does not use any edge on Q. Therefore, p
has length at least 2 (since p 6= ek). Thus, replacing ek ∈ Q by p results in a new edge simple cycle
Q′ that is strictly longer than Q, a contradiction. Thus, p̄ is a Nash-routing.

5 Upper Bound on Price of Anarchy for 2-Connected Graphs

We will show that the price of anarchy is upper bounded by the square of the edge-cycle number.
First, however, we prove this result for the special case of 2-connected graphs. The purpose of
this section is to demonstrate how the edge-expansion theorem can be used to bound the price of
anarchy using topological properties of the graph. This section will develop the intuition behind
the result, before we consider the general result in Section 6.

A graph G is k-connected if the minimum edge-cut of G′ has size at least k. By Menger’s
theorem [38], G′ is k-connected if and only if for every pair of nodes u, v in G′ there are at least k
edge-disjoint (u, v)-paths.

For 2-connected subgraphs, using Menger’s theorem, we can show that the maximum path
length in the graph, `, is bounded by c · κe

2. The proof relies on the observation that the longest
path p must have at least

√
` edges in common with the largest cycle q, since otherwise, we would

be able to construct a larger cycle by combing pieces of p and q. We have:

Lemma 5.1 If G is 2-connected, then κe(G) ≥
√

2` − 3
2
, where ` is the longest path length in G.

Lemma 5.1 bounds the longest path length in G with respect to the edge-cycle number in the
graph. The edge-expansion Theorem 3.4 bounds the price of anarchy in terms of the longest path
in the players’ strategy sets. By combining these two results, we obtain:

Theorem 5.2 (PoA upper bound for 2-connected graphs) For an arbitrary routing game
(N, G, {Pi}i∈N) on an arbitrary 2-connected graph G, PoA ≤ c(κe

2 + log n).

6 Upper Bound on Price of Anarchy for Arbitrary Graphs

We now give the more general version of Theorem 5.2, establishing part (ii) of Theorem 2, which
states that the price of anarchy of any routing game on an arbitrary graph G is upper bounded by
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the square of the edge-cycle number. The main idea behind the result is that any Nash-routing in G
can be mapped to a partial Nash-routing on some 2-connected subgraph of G. In this partial Nash-
routing, many players are locally optimal, and so we can then apply the general edge-expansion
theorem (Theorem 3.3) to this partial Nash-routing to obtain the upper bound.

6.1 Canonical Subgraphs

Consider an arbitrary connected graph G = (V,E). A subgraph G′ = (V ′, E′) of G contains a subset
of the nodes, V ′ ⊆ V , and a subset of the edges E′ ⊆ E, where each edge in E′ is incident with
two nodes in V ′. We say that G′ is an induced subgraph by the node set V ′ if E′ contains all the
edges in E that are incident with a pair of vertices in V ′. We say that two subgraphs are adjacent
if the intersection of their node sets is non-empty. The union of two subgraphs G′ = (V ′, E′) and
G′′ = (V ′′, E′′) is G = (V ′ ∪ V ′′, E′ ∪ E′′). We will focus on 2-connected subgraphs. The following
result can be easily verified:

Lemma 6.1 G contains a 2-connected subgraph if and only if it is not a tree.

If G is not a tree, then G contains at least one 2-connected subgraph (Lemma 6.1). A 2-
connected subgraph G′ is maximal if there is no larger 2-connected subgraph G′′ = (V ′′, E′′) that
contains G′, so if G′′ is 2-connected, then E′ 6⊂ E′′. Let A1, . . . , Aα be all the maximal 2-connected
subgraphs of G, where α ≥ 1, and Ai = (VAi

, EAi
). Any two subgraphs Ai and Aj , i 6= j, are

node-disjoint since otherwise their union would be 2-connected, which contradicts their maximality.
From G we can construct two subgraphs A and B, where A consists of A1, . . . , Aα, while B

consists of the remaining edges in G: A = (VA, EA) and B = (VB , EB), where EA =
⋃α

i=1 EAi
,

EB = E − EA, and VA and VB are the nodes adjacent to the edges in EA and EB , respectively.
Note that graphs A and B are edge-disjoint, however, they may have common nodes. Subgraph
B consists of one or more disjoint maximal connected components (each containing at least two
nodes), which we will denote B1, . . . , Bβ . (Graph A consists of connected components A1, . . . , Aα.)
We refer to the Ai as the type-a canonical subgraphs of G and the Bi as the type-b canonical
subgraphs of G. We now give some useful results relating to canonical subgraphs.

Lemma 6.2 Every type-b canonical subgraph is a tree and can have at most one node in common
with any type-a canonical subgraph.

We now define a simple bipartite graph H = (VH , EH) that represents the structure of G. We
define VH = {a1, . . . , aα, b1, . . . , bβ}, where node ai corresponds to the type-a canonical subgraph Ai,
and node bj corresponds to the type-b canonical subgraph Bj . The edge (ai, bj) is in EH if and only
if the canonical subgraphs Ai and Bj are adjacent (have a common node). A natural bipartition
for H is (A,B), where A = {a1, . . . , aα} and B = {b1, . . . , bβ}. This is a valid bipartition because
only canonical subgraphs of different types can be adjacent. The nodes in H inherit the same type
as their corresponding canonical subgraph in G. Since G is connected, it follows immediately that
H is connected. Further, we have:

Lemma 6.3 Graph H is a tree.
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6.2 Canonical Subpaths

A node in G can belong to at most one type-a subgraph and one type-b subgraph, since no two
canonical subgraphs of the same type are adjacent. If a node is a member of one canonical subgraph,
then its type is the type of the subgraph. If the node belongs to two canonical subgraphs then it
is of type-a (we assign it to the type-a canonical subgraph).

Let p = v1, v2, . . . , vk, k > 1, be an edge-simple path in G. We can write p as a concatenation of
subpaths p = q1q2 · · · qk, where |qi| > 0, ∀i, with the following properties: (i) the subpaths are edge
disjoint; (ii) all the nodes of a subpath qi are in the same subgraph and have the same type, which
will also be the type and subgraph of qi; (iii) the types of the subpaths alternate, i.e. the types of qi

and qi+1 are different; (iv) There is no type-a subpath with one node (any type-a subpath with one
node can be merged with two adjacent type-b subpaths in the same type-b subgraph). We refer to
the qi as the canonical subpaths of p. Note that there is a unique canonical subpath decomposition
for path p.

Since type-b subgraphs are trees and graph H is a tree, an arbitrary path in G can form
cycles only inside type-a canonical subgraphs (in the respective type-a canonical subpaths). As a
consequence, a path from a source node to a destination node follows a unique sequence of type-b
edges (the union of all the edges in the type-b subpaths). Thus, we can obtain the following crucial
result on paths that connect the same endpoints in G.

Lemma 6.4 Any two edge-simple paths from nodes s to t in G use the same sequence of type-b
edges.

6.3 Subgames in Canonical Subgraphs

Consider a routing game R = (N, G, {Pi}i∈N) in G. Let p be a routing with network congestion
C. Let p∗ denote an optimal routing for R with congestion C∗. An immediate consequence of
Lemma 6.4 is that every path in p uses the same edges as its corresponding path in p∗, hence

Lemma 6.5 Any type-b edge e has the same congestion in p and p∗, i.e. Ce(p) = Ce(p
∗) ≤ C∗.

As a consequence of Lemma 6.5, all the high congestion edges in p must occur in type-a subpaths.

Lemma 6.6 For path p, if Cp(p) > C∗, then p must have a type-a subpath q with Cq(p) = Cp(p).

Suppose now that p is an arbitrary Nash-routing which has network congestion C. For a
type-a subgraph A, let pA = {p1, . . . , pγ} denote the paths in p that use edges in A, and denote
the respective users as NA, where |NA| = γ. Let QA = {q1, . . . , qγ} denote the type-a canonical
subpaths of the paths in pA that are in A (qi is a subpath of pi). Each subpath qi has a first node
sA
i in A and a last node tAi in A.

In subgraph A, we define a new routing game RA = (NA, A, {PA
i }i∈NA

), where PA
i contains

all the type-a subpaths of Pi that are in A and have the same source and destination as qi. We
refer to RA as the subgame of R for subgraph A. QA is a possible routing for RA. If qi is locally
optimal for player i in A, we say that its corresponding path pi in G is satisfied in subgame RA.
In other words, if path pi is satisfied in RA, player i does not wish to change the choice qi in A.
Every player with high player cost (higher than C∗) must be satisfied in a type-a subgraph, since
otherwise it would violate Lemma 6.6. Thus, we have:

Lemma 6.7 If player i has path pi and pci > C∗, then player i is satisfied in some subgame RA

in a type-a subgraph A, and player i has congestion pci in A.
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6.4 Main Result

Consider routing game R = (N, G, {Pi}i∈N) in G and a Nash-routing p with congestion C(p) = C.
Lemma 6.7, implies that each user is satisfied in some type-a subgraph (not necessarily the same).
In any type-a subgraph, the resulting routing in the subgame may be a partial Nash-routing, since
some users may not be satisfied in it. We first show that there is a subgraph with high congestion
where the number of unsatisfied players is bounded. For a canonical type-a subgraph A, let FA(C ′)
denote the set of non-locally optimal players in the subgame RA whose congestion in R is at least
C ′. We will use CA to denote the congestion in a subgraph A. We have:

Lemma 6.8 Suppose that C(p) > C∗ + x(1 + log n) for some x > 0. Then, there is a type-a
canonical subgraph A with congestion CA ≥ C − x log n and |FA(CA − x)| ≤ 2C∗.

Lemma 6.8 will allow us to apply the edge-expansion theorem for partial Nash-routing, to obtain
our upper bound on the price of anarchy, completing the proof of Theorem 2.

Theorem 6.9 (PoA upper bound for arbitrary graphs) PoA ≤ c · (κe
2(G) + log2 n).

Proof: Let x = 2 log n. If C ≤ C∗ + x(1 + log n), then there is nothing to prove because
C/C∗ ≤ 1 + 2 log n(1 + log n)/C∗ ≤ c log2 n, for some generic constant c. So, suppose that C >
C∗ + x(1 + log n). By Lemma 6.8, there exists a type-a subgraph A such that CA ≥ C − 2 log2 n
and |FA(CA − 2 log n)| ≤ 2C∗. By applying Theorem 3.3 to the subgame RA we obtain,

CA < 2` ·
(

C∗
A + FA(CA − 2 log n′)

)

+ 2 log n′,

where ` is the length of the longest edge-simple path in the player’s strategies in RA, n′ is the
number of nodes in A and C∗

A is the optimal congestion for the subgame RA. Note that n′ ≤ n,
and the subgame RA cannot have a higher optimal congestion than the full game R, hence C∗ ≥ C∗

A.
Since |FA| is monotonically non-increasing (FA(C ′) ⊆ FA(C ′′) for C ′′ < C ′), we have that

C − 2 log2 n < 2` · (C∗ + F (CA − 2 log n)) + 2 log n,

≤ 2` · (C∗ + 2C∗) + 2 log n.

From Lemma 5.1, we have that ` ≤ cκe
2(A) ≤ cκe

2(G), therefore,

C ≤ c · (κe
2(G)C∗ + log2 n).

After dividing by C∗, we obtain the desired result.

7 Discussion

In Theorem 2, we believe that the result in (i) is tight, i.e. that the bound in (ii) can be considerably
improved. Specifically, we leave open the following conjecture:

Conjecture 1. For any routing game (N, G, {Pi}i∈N), PoA ≤ κe − 1.
An interesting future direction is to obtain similar results when the latency functions at each

link are more general and not necessarily the same. We conclude by noting that all our results have
been stated for paths that are edge-simple. Analogous results could be obtained for node-simple
paths, with social and player costs defined with respect to node-congestion.
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[31] H. Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd Annual Symposium
on the Foundations of Computer Science, pages 43–52, Nov. 2002.

[32] R. W. Rosenthal. A class of games possesing pure-strategy Nash equilibria. International Journal of
Game Theory, 1973.

[33] T. Roughgarden. The maximum latency of selfish routing. In Proc. SODA, 2004.

[34] T. Roughgarden. Selfish routing with atomic players. In Proc. SODA, 2005.
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A Proofs of Section 2

Proof of Lemma 2.2. Suppose that a greedy move by player i takes p to p′, and so Cp′
i
(p′) <

Cpi
(p). Let k = Cpi

(p). Since only player i has changed his path, the only edges with higher
congestion in p′ than in p are edges on the path p′i. Some edges on pi decreased in congestion by
1 as a result of the greedy move. In particular, all edges of congestion k on pi have decreased in
congestion by 1, since all edges on p′i have final congestion less than k. Thus, mk(p

′) ≤ mk(p)− 1,
since at least one edge of congestion k dropped in congestion and no new edges reached congestion
k. To conclude that p′<c p, we note that no edge with congestion greater than k has been affected
by the greedy move, hence mj(p

′) = mj(p) for all j > k.

B Proofs of Section 3

Proof of Lemma 3.1. Since player i is locally optimal, every path in Pi must have path-
congestion at least pci − 1. Indeed, if not, then there is a path p′i ∈ Pi with path-congestion at
most pci − 2. If player i switches from pi to p′i, his cost is at most pci − 1, which contradicts pi

being locally optimal for i. For every path p ∈ Pi, let edge e(p) ∈ p be an edge with maximum
congestion on p (C(e) ≥ pci − 1). Let Ei = ∪p∈Pi

e(p). Since Ei contains at least one edge from
every path in Pi, it is a path-cut for player i and every edge in Ei has congestion at least pci − 1.
Thus, C(Ei) ≥ pci − 1.

Proof of Lemma 3.2. If s = 1 there is nothing to prove, so assume that s > 1. Since |Ek| >
2|Ek−1| for k = 1, . . . , s − 1, |Ek| > 2k|E0|. Since |E0| ≥ 1, we have |Ek| > 2k. By construction,
Ei−1 ⊆ Ei, for 1 ≤ i ≤ s; thus, |Es| ≥ |Es−1| ≥ 2s−1. Since |Es| ≤ |E| < 1

2
n2, 2s−1 < 1

2
n2 implying

s < 2 log n.

C Proofs of Section 5

Proof of Lemma 5.1. Let u and v be the respective starting and ending nodes in the longest
path in G. Since the min (u, v)-cut has size at least two, by Menger’s theorem [38], there is a pair
of edge-disjoint paths p1, p2 from u to v; let l1 ≤ l2 be the lengths of these paths respectively. Let
p be an edge-simple (u, v)-path with length `. Path p can be decomposed into 2k path segments
as follows,

p = λ0κ1λ1κ2λ2 · · ·κkλk,

where each κi has length at least one and consists only of edges on p1, and each “excursion” λi does
not contain any edges on p1. Since each excursion λi connects two (not necessarily distinct) nodes
on p1, it follows that there is an edge simple cycle composed of λi together with the segment of p1

between these two nodes. The length of this cycle is at least |λi|, so we have that κe(G) ≥ |λi| for
all i ∈ [0, k]. Since path p is edge simple, there can be at most l1 + 1 excursions (as each of the κi
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must contain distinct edges), i.e. k ≤ l1. We now compute the length of p as follows,

` =
k

∑

i=0

|λi| +
k

∑

i=1

|κi|,

≤
k

∑

i=0

κe(G) +
k

∑

i=1

|κi|,

≤ κe(G) · (l1 + 1) + l1.

Solving for κe(G), we have that κe(G) ≥ (` + 1)/(l1 + 1) − 1. Since p1 and p2 form an edge-simple
cycle, κe(G) ≥ l1 + l2 ≥ 2l1. Combining these inequalities, we have

κe(G) ≥ max

{

2l1,
` + 1

l1 + 1
− 1

}

.

Suppose that κe(G) <
√

2` − 3
2
. Since κe(G) ≥ 2l1, we have l1 <

√

`/2 − 3
4
. Therefore,

κe(G) ≥ ` + 1

l1 + 1
− 1,

>
` + 1

√

`/2 + 1
4

− 1,

=
√

2l − 3
2

+ ε,

where ε = 9/(
√

32` + 2) > 0. This contradiction concludes the proof.

D Proofs of Section 6.1

The following result follows from the definition of a 2-connected graph.

Lemma D.1 G is 2-connected if and only if every pair of nodes are on some edge-simple cycle.

Note that only canonical subgraphs of different types can be adjacent (since both the type-a
and type-b subgraphs have a maximality property). We obtain the following basic result.

Lemma D.2 Any edge-simple path p that leaves a type-a subgraph does not re-enter it.

Proof: To the contrary, suppose that such a path p exists which leaves a type-a subgraph A at
node v and re-enters it for the first time at node u (u may be the same node as v). Let p′ be the
edge-simple subpath of p from v to u. By construction, none of the edges in p′ are in A, and the
same is true for all nodes in p′ except v, u. We will show that the union of A with p′ is 2-connected,
contradicting the maximality of A. Let A′ = A ∪ p, and let z,w be any two nodes in A′. If both z
and w are in A, then they lie on an edge-simple cycle (from Lemma D.1, as A is 2-connected). Let
q be an edge-simple (v, u)-path in A, possibly of length zero. The cycle r = q∪ p′ is an edge-simple
cycle in A′ that contains any two nodes on r so if z,w ∈ p′, then they are on an edge-simple cycle.
Suppose that z ∈ A and w 6∈ A. There is edge-simple cycle s containing z and u (since z, u ∈ A).
Starting at z, this cycle must therefore enter cycle r, leave r and return to z. We can splice r onto
s at the first node at which s enters r and the last node at which s leaves r, choosing the splice of
r that contains w. In this way, we construct an edge-simple cycle containing z,w. Thus every pair
of nodes in A′ lies on an edge simple cycle, so A′ is 2-connected (Lemma D.1).
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Proof of Lemma 6.2. Suppose some Bi is not a tree. Then it contains a 2-connected subgraph
(Lemma 6.1), a contradiction since every 2-connected subgraph is a subgraph of some Ai which
must be edge disjoint from Bi by construction.

If some Bi has at least two distinct nodes u, v in common with some Ai, then an edge-simple
path exists in Bi from u to v as Bi is connected. This path leaves Ai and re-enters it, which
contradicts Lemma D.2.

Proof of Lemma 6.3. Since H is connected, it suffices to show that H is acyclic. To the contrary,
suppose that H contains a node-simple cycle cH = h0, h1, . . . , hk, hk+1, where hk+1 = h0. Note
that since H is bipartite, cH is an even cycle. Any pair of adjacent canonical subgraphs identifies
a unique (by Lemma 6.2) node of intersection. Thus corresponding to cH is a unique sequence of
nodes v0, v1, . . . , vk in G, where vi is the node that corresponds to the adjacent canonical subgraphs
hi, hi+1. The nodes vi are not necessarily all different, however every consecutive pair is in a
single canonical component, including the pair (vk, v0). Thus, in G, there is an edge-simple path
pi, i = 0, . . . , k, from vi to vi+1 (where vk+1 = v0) which is contained in the canonical subgraph
hk+1, since the h’s are connected. Since the canonical subgraphs form an edge partition of E, the
concatenation of these paths, q = p0p1 . . . pk is an edge-simple cycle in G. At least one of the hi is
of type-a, hence q must leave a type-a canonical subgraph and re-enter it, which contradicts Lemma
D.2.

E Proofs of Section 6.2

Here we prove Lemma 6.4 after first giving some elementary properties of canonical subgraph
decompositions. Consider the canonical subpath decomposition of a path p = q1 · · · qk. Let S(p) =
G1, . . . , Gk denote the subgraph sequence of the respective canonical subgraphs that contain the
canonical subpaths. We have,

Lemma E.1 For an edge-simple path p, no type-a canonical subgraph repeats in S(p).

Proof: Let A be a type-a repeated canonical subgraph. Some other canonical subgraph separates
two occurrences of A in S(p). Thus, p must leave and re-enter A, contradicting Lemma D.2.

For any edge-simple path p let r(p) denote the reduced node-simple path that we obtain from p
after removing any cycles. Note that cycles in p exist only in type-a canonical subpaths. Thus,
r(p) is similar to p with the difference that some type-a subpaths are removed (and the adjacent
type-b subpaths are merged). Therefore, we have,

Lemma E.2 Let p be an edge-simple path with reduced node-simple path r(p), then: (i) no canon-
ical subgraph (type-a or type-b) repeats in S(r(p)), and (ii) paths p and r(p) visit the same sequence
of type-b edges.

Proof: (ii) follows immediately because none of the cycles removed contain type-b edges. For (i),
we need only consider repeated type-b canonical subgraphs. let B be the first such subgraph that
is repeated for the first time. If there is more than one subgraph between these two occurrences
of B, then there is an edge-simple cycle in H, which contradicts H being a tree (Lemma 6.3).
Therefore the only possibility is that a single type-a canonical subgraph A occurs between the two
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occurrences of B in the decomposition, i.e. S(r(p)) = · · ·BAB · · · . Since A and B have exactly
one common node (Lemma 6.2), this means the subpath in A has the same first and last node, and
hence A should have been removed, a contradiction.

For subgraph sequence S(p) = G1, . . . , Gk, let h1, . . . , hk be the nodes in H corresponding to
G1, . . . , Gk. The projection H(p) of p into H is the walk in H given by H(p) = h1, . . . , hk. Note
that H(p) may not be a path, since p may visit the same type-b subgraph more than once. However,
from Lemma E.2 the projection H(r(p)) is a node-simple path. Using projections on H, and the
fact that H is a tree (Lemma 6.3), we can obtain an equivalence result between reduced paths.

Lemma E.3 For any two edge-simple paths p and q from node s to t in G, S(r(p)) = S(r(q)).

Proof: Suppose that S(r(p)) 6= S(r(q)), then H(r(p)) 6= H(r(q)). Let H(r(p)) = u1, . . . , uk

and H(r(q)) = w1, . . . , wl, and assume that k ≤ l. If l = 1, then u1 6= w1, and s, t are both in
u1, w1, which means that two nodes are common to two different canonical subgraphs, contradicting
Lemma 6.2. Therefore l ≥ 2. Since s is a node common to the subgraphs corresponding to u1 and
w1, either u1 = w1 or u1 and w1 are adjacent in H. Similarly, uk = wl or uk and wk are adjacent
in H, as t is a common node.

Let j be the first index for which uj 6= wj . First suppose that 1 < j ≤ k, so
u1 · · · uj−1 = w1 · · ·wj−1, and uj−1 is adjacent to both uj , wj . Now consider the sequence of
nodes wj−1wjwj+1 · · ·wlukuk−1 · · · ujuj−1. This is a valid walk (with possibly repeated nodes),
since either uk = wl or uk is adjacent to wl. Further, this is a cycle, since wj−1 = uj−1. This cycle
contains at least 3 different nodes, because wj−1 6= wj and uj−1 6= uj (Lemma E.2), and uj 6= wj .
This cycle can be reduced to a node simple cycle with at least 3 different nodes, contradicting the
fact that H is a tree (Lemma 6.3).

If j = 1, then we construct a cycle w1 · · ·wluk · · · u1w1, which we know is valid since u1 is
adjacent to w1. This cycle contains at least 3 different nodes since u1 6= w2. If j = k + 1 (it must
be that l > k), then we construct a cycle wk · · ·wluk, which is valid since uk = wk. This cycle
also contains at least 3 different nodes because since r(q) is node simple, it cannot use t to get into
wk+1. Hence, wk+1 6= wl because this would imply that wk+1 and uk have at least two nodes in
common. Therefore either l > k + 1 or wl 6= uk.

We are now ready to give the proof of Lemma 6.4.

Proof of Lemma 6.4. Let p and q be two edge-simple paths from s to t. By Lemma E.2, we
only need to show that r(p) and r(q) use the same set of type-b edges. The result follows essentially
because each type-b subgraph is a tree (Lemma 6.2).

From Lemma E.3, S(r(p)) = S(r(q)). Type-b edges are used only in the type-b subgraphs
which appear in the same order in S(r(p)) and S(r(q)). Consider a type-b subgraph occurring in
this subgraph decomposition. Either it is the first, or the last, or type-a subgraphs occur before and
after. In all cases the subpath in this type-b subgraph is from the same node u to the same node v
in both of the subgraph decompositions. This is because these nodes are either the unique nodes of
intersection between the same type-a and type-b subgraph, or they are the source or destination,
which are the same for both paths. Since each type-b subgraph is a tree, there is a unique path
from u to v, which must be the same in both subpath decompositions.
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F Proofs of Section 6.3

Proof of Lemma 6.7. We show that if the claim is false, then path pi is not locally optimal for
player i in R, contradicting the fact that p is a Nash-routing. Indeed, we know from Lemma 6.6
that pi uses type-a canonical subgraphs. If none of these type-a canonical subpaths are not locally
optimal for their respective subgames, then they can all be switched in favor of paths with strictly
lower congestion than C. This will give a valid path for player i with strictly lower congestion than
C, hence pi is not locally optimal for player i.

G Proofs of Section 6.4

Proof of Lemma 6.8. Let fA = |FA(CA−x)|, and suppose that C > C∗+x(1+ log n). Assume,
that every type-a subgraph A with congestion C(A) ≥ C − x log n has fA > 2C∗. we will obtain
a contradiction by showing that H has a cycle. Since p is a Nash-routing, every player with
congestion C > C∗ is locally optimal in at least one type-a subgame of R (Lemma 6.7). Thus,
there is at least one type-a canonical subgraph A1 with CA1

= C. We will now root H at the its
type-a node a1 which corresponds to A1 and define a type-a tree Ha composed only of the type-a
nodes in H. The root of Ha is also A1. By assumption, fA1

> 2C∗. Since C − x > C∗ + x log n,
these fA1

players which are not locally optimal in subgame RA1
have congestion at least C −x and

are locally optimal in some other subgame. Therefore, their paths leave A1 and enter some other
type-a canonical subgraph.

Claim G.1 If K paths leave a type-a canonical subgraph A, they must use at least dK/C∗ e distinct
edges out of A

Proof: If not, then one of the exit edges (which is a type-b edge) will have congestion greater than
C∗, contradicting Lemma 6.5. 2

We now build the rooted tree Ha inductively as follows. The root node is a1. Suppose that α is a
node in Ha corresponding to type-a subgraph A, with the following two properties:

(i) CA − x > C∗;

(ii) fA = |FA(CA − x)| > 2C∗.

Then, we define three potential children for α as follows. Since there are fA > 2C∗ players with
congestion at least CA − x > C∗ which are not locally optimal in subgame RA, these fA players
must be locally optimal in some other subgame. Therefore all these fA paths leave A and proceed
to their respective subgames where they are locally optimal with congestion at least CA − x. By
Claim G.1, they use at least three distinct type-b edges e1, e2, e3 in leaving A (note that these
three edges may be in the same type-b canonical subgraph, but this will not affect the argument).
Let p1, p2, p3 be three paths with congestion at least CA − x that exit A on the edges e1, e2, e3

respectively and continue on to their respective canonical subgraphs A1, A2, A3 in which they are
locally optimal. At least two of these subgraphs correspond to nodes that are not the parent (if it
exists) of α in Ha; these two nodes are two children c1(α) and c2(α) of α in Ha (if more than two
of these children are different from the parent, we arbitrarily pick two). The depth of a child is one
greater than the depth of its parent (the depth of the root is 0). The next few lemmas give some
properties of Ha that will be needed to complete the proof of the theorem.
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Claim G.2 Ha is a tree.

Proof: Ha is connected, by construction. Suppose that Ha contains a node simple cycle. By
construction, an edge between nodes α1, α2 in Ha implies the existence of an edge simple path
leaves one type-a subgraph and enters the second. Hence, there is a path that leaves a type-a node
and re-enters it. This path can be made edge simple by removing all cycles, which contradicts
Lemma D.2. 2

The nodes in Ha can be viewed as constructed level by level. Each node in Ha that satisfies the two
conditions above has exactly two children. Note that a1 satisfies these two conditions, initiating
the construction of Ha. The nodes in Ha which do not satisfy the conditions (i) and (ii) are leaves.
Thus all nodes in Ha are either leaves or have two children.

Claim G.3 A node at depth d ≤ log n cannot be a leaf.

Proof: Let α be a node at depth d, corresponding to type-a canonical subgraph A. We show
that CA ≥ C − d · x by induction on d. Certainly when d = 0, the claim holds since CA1

= C.
Consider d > 0. The parent of A, ParA, has depth d−1, so CParA

≥ C− (d−1)x, by the induction
hypothesis. Since d− 1 ≤ log n, by assumption fParA

> 2C∗ and by construction of the children in
Ha, A is a subgraph in which some player is locally optimal in the subgame RA and has congestion
at least CParA

− x ≥ C − (d − 1) · x + x. Therefore, CA ≥ C − d · x.
Since d ≤ log n, we conclude that CA−x ≥ C−x(1+log n) > C∗ by assumption in the statement

of the theorem. Thus, condition (i) is satisfied for α to have children. Since CA ≥ C − x log n, by
assumption fA > 2C∗, hence condition (ii) is satisfied for α to have children. Since both conditions
are satisfied, α cannot be a leaf node. 2

We are now ready to conclude the proof of the theorem by obtaining a contradiction. Since Ha

must have a leaf node, we conclude that the depth of Ha is at least 1 + log n. Since every node
at depth at most log n has 2 children, we conclude that Ha has

∑log n
i=1 2i nodes. Evaluating this

sum, we have that Ha contains 2n − 1 nodes, and since n > 1, we have our contradiction since Ha

cannot possibly contain more nodes than G.
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