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Abstract. We provide a framework for learning to price complex op-
tions by learning risk-neutral measures (Martingale measures). In a sim-
ple geometric Brownian motion model, the price volatility, fixed interest
rate and a no-arbitrage condition suffice to determine a unique risk-
neutral measure. On the other hand, in our framework, we relax some of
these assumptions to obtain a class of allowable risk-neutral measures.
We then propose a framework for learning the appropriate risk-neural
measure. In particular, we provide an efficient algorithm for backpropa-
gating gradients through multinomial pricing trees. Since the risk-neutral
measure prices all options simultaneously, we can use all the option con-
tracts on a particular stock for learning. We demonstrate the performance
of these models on historical data. Finally, we illustrate the power of such
a framework by developing a real time trading system based upon these
pricing methods.

1 Introduction

In 1973, Black and Scholes published their pioneering paper [1] which introduced
the first option pricing formula and also developed a general framework for
derivative pricing. Since then, derivative pricing has become a popular research
topic. A modern, popular approach to pricing has been though the Martingale
measure (see, for example, [2]). The origin of the fundamental theorems on the
Martingale measure can be traced to Cox and Ross’ paper [3] describing the
method of risk neutral valuation. The Martingale measure was developed into a
more mature pricing technique in [4–7]. Other related topics can be found in [2,
8].

Option trading by directly predicting prices and then building trading sys-
tems based on the predictions have been considered in the neural network liter-
ature [9, 10]. An alternative to predicting prices and then trading is to use direct
reinforcement to trade directly (see for example [11]). Learning to trade directly
has the advantage of avoiding an additional price-prediction step. When multiple
instruments are available, for example multiple options on a single underlying
stock, then the state space of possible trading actions grows exponentially and
direct reinforcement for learning to trade becomes infeasible. In addition, price
prediction of each individual option leads to an excessive number parameters,
and it now makes sense to develop a unified price prediction mechanism for all



the options simultaneously. Once prices are predicted for all the options, trading
can be performed independently on each of these options based on their respec-
tive prices. This is the motivation for this work, namely to present a unified
framework for learning to price all the derivatives on a particular underlying
stock.

The tool we use for acomplishing this task is the Martingale measure, which
relates to the stock dynamics. If we can predict the stock dynamics in the risk
neutral world, then we can price all derivatives on a particular stock. We sum-
marize the advantages of predicting the risk neutral stock dynamics:

(i) Simultaneously prices all derivatives on a stock.
(ii) All derivative data can be used in learning.
(iii) No-arbitrage constraints exist for the risk neutral dynamics.

In contrast, learning to directly price each option suffers from two problems.
The first is that more parameters must be learned, one set for each option. The
second is that the data on a single option can be used only to learn to predict
that particular option’s price. On the other hand, only one set of prediction
parameters need be learned for predicting the risk neutral dynamics, and all
the option prices can be used to learn this single set of parameters – in effect,
more data to learn fewer parameters. Also mentioned above are no-arbitrage
constraints, which limit the possible risk neutral measures. The no-arbitrage re-
quirement thus provides an economic constraint to regularize the learning in the
right direction, further improving the generalization performance of the system.

The underlying theory for the pricing based on the risk neutral dynamics
is that the prices can be computed as expected values of cashflows over the
risk neutral stock price dynamics. Often the Martingale measure is not unique,
and this is where learning comes in. We develop a framework for learning the
Martingale measure. We assume that the stock dynamics can be represented on
a multinomial tree. Binomial trees have often been used to price options [12, 2,
13, 14]. In this work, we present the framework for general multinomial trees,
and illustrate with trinomial trees [15], which is more complicated, more flexible
and better illustrate the general principles – in the binomial model, there is no
learning because the Martingale measure is unique. For background on option
pricing and other financial topics, we suggest [15, 13, 14].

The outline of this paper is as follows: first, we give some basics of mul-
tiperiod, multinomial trees and option pricing, before presenting the NN-OPT
algorithm. We then give some experimental results (trianing and test) on high-
frequency paper trading of IBM stock options based on the learned price pre-
diction. Our results indicate that learning Martingale measures together with
no-arbitrage regularization constraints performs best.

2 Multi-Period Economy with Multinomial Tree

Before introducing NN-OPT, an algorithm to price options, we need set up the
notation to describe the economy. Describe the price of an instrument by C



and consider, for example, a 2-period economy (see Fig.1.(a)). Consider time
steps m and m + 1 (corresponding to times mT and (m + 1)T ). At time step
m, the instrument could be in one of many states, indexed by α, with price
Cm

α . From state α at time step m, assume that the instrument can transition to
one of L states, with prices

{
Cm+1

α1 , . . . , Cm+1
αL ,

}
. Thus we use Cm+1

αβ to denote
the possible prices which the instrument can transition into at time step m + 1
from state α at time step m. When L = 2, we have a binomial model, L = 3
is a trinomial model and for L > 3 a multi-nomial model. Let Pj denote the
probability to transition to state j, j = 1, . . . , L, and

∑
Pj = 1. When Pj is

independent of m and α, we have a standard multi-nomial tree dynamics for the
instrument price. We can represent Cm+1

αβ and Pj in vector notation,

Cm+1
α =


Cm+1

α1

Cm+1
α2
...

Cm+1
αL

 and P =


P1

P2

...
PL

 .

When m = 0 (time 0), there is only one state C0
0 , and after each time period T ,

each state can transition to L possible states, which creates a multinomial tree
in a multi-period economy (shown in Fig.1.(b)).
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(a) 2-period economy (b) M-period economy

Fig. 1. The dynamics of economy

3 Option Pricing

NN-OPT is based on Martingale methods for options pricing and we briefly
discuss some background on Martingale pricing. The basic theorem is that the



discounted price is a Martingale with respect to some measure P .

Cm
α = D(T )× EP

[
Cm+1

αβ

]
= D(T )×

∑L
j=1 PjC

m+1
αj

= D(T )× P T Cm+1
α ,

(1)

where D(T ) is the risk free discount factor, which depends on the interest rate
and T . Intuitively, this formula means that the current prices are the present
value of the expected future prices, where the expectation is with respect to the
so called risk neutral probabilities P . In this paper, we consider C to be the
price of an American option, whose value can be realized by either exercising
now or holding and optimally exercising later. Let G (Sm,K) be the value of
exercising at time m with strike K and stock price Sm. Then

Cm
α = max

{
G (Sm,K) , D(T )× P T Cm+1

α

}
. (2)

Thus, we can use backward propagation to compute the current prices of options.
To initiate the backward propagation, note that at last time step (M − 1), the
options don’t have any future value, and the option prices become

CM−1
α = max

{
G

(
SM−1,K

)
, 0

}
. (3)

Therefore, if we know the appropriate values1 for SM−1 (i.e. the stock dynamics),
we are able to determine CM−1

α for all states at the last time step, and then we
use the recursive algorithm to compute the current price C0

0 of the option. The
details of pricing options using multinomial trees can be found in numerous
techniques of option pricing, for example [17].

4 The NN-OPT Learning Algorithm

The NN-OPT learning algorithm includes two parts, a standard neural network2

probability predictor and a multinomial pricing tree. Figure 2 shows the structure
of neural networks, where wθ

ηδ denote the weights from node η to node δ in layer θ,
and the set of weights are denoted by vector w. The neural networks will predict
and learn the probabilities P for pricing, used in the multinomial pricing tree.
The input of the neural networks can be anything, such like short term interest
rates, long term interest rates, technical indexes or previous historical data. The
output of the neural networks is a set of amplitudes, {g1, g2, . . . , gL−1}, where
gi ∈ [0, 1]. There is also a set of transfer functions {H1,H2, . . . ,HL}, denoted by
a vector H, to transfer {g1, g2, . . . , gL−1} into probabilities P , where,

Pi = Hi(g1, g2, . . . , gL−1) i = 1, . . . , L . (4)

1 There are many techniques to determine appropriate values for SM−1, such as his-
torical volatility and GARCH volatility predictors, [12, 16].

2 The details of the structure and the procedures of a standard neural network, please
refer to [18, 19].



The outputs gi, i = 1, . . . , L− 1, are independent of each other. This property
makes the process of backward propagation easier (in Sect.4.3). In a trinomial
model, one choice for the transfer functions is

P1 = g1 (5)
P2 = (1− g1)× g2 (6)
P3 = 1− g1 − (1− g1)× g2 , (7)

which satisfy
∑

Pi = 1 and 0 ≤ Pi ≤ 1, for i = 1, . . . , 3.

INPUTS

INPUTS

Transfer

Functions

H

INPUTS

wθ
ηκ

gi

g1

g2

gL−1

P1

P2

PL

Fig. 2. The structure of the neural network

The second part of the NN-OPT learning algorithm is the multinomial pricing
tree which uses the probabilities in P to price all options and compute the
feedback to the neural networks for learning (updating of the weights).

4.1 Forward Propagation: Computation of Current Price C0
0

Figure 3 shows the framework for forward propagation. Assume that we are given
a data set, D = {xi, yi}N

i=1, where xi is the input vector, and yi is the expected
output. The standard neural networks just apply the regular forward propagation
to obtain {g1, g2, . . . , gL−1}, see for examples [18, 19]. Then using the transfer
functions H, we calculate pricing probabilities P . The pricing algorithm for the
multinomial tree is as follows:

1. Use (3) to compute CM−1
α for all states at last time step (M − 1).

2. Loop from i = (M − 2) to 0,
– Use (2) and Ci+1

α to compute Ci
α for all states at time period i .

3. Output C0
0 .

4.2 Computation of error function Error(w)

We define the error function as

Error(w) =
1
N

N∑
i=1

(
C0

0 − yi

)2
. (8)
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Fig. 3. The framework for forward propagation

The goal is to find a set of weights w that minimizes Error(w). To do this,
using a gradient descent algorithm, we will need to backpropagate gradients
through a multinomial tree and then through the neural network. Backpropaga-
tion of gradients through neural networks is standard (see for example [18, 19]).
We now develop an efficient algorithm for backpropagating gradients through a
multinomial tree pricing framework.

4.3 Backward propagation: Computation of the Gradients

The framework for backward propagation is shown in Fig.4. In order to imple-
ment the gradient descent algorithm, we need

∂Error(w)
∂wθ

ηδ

=
2
N

N∑
i=1

(
C0

0 − yi

) ∂C0
0

∂wθ
ηδ

. (9)

There are L− 1 neural networks, and we need to compute (9) for each one. We
will focus on a particular neural network j ∈ {1, 2, . . . , L − 1}. In (9), C0

0 and
yi are known after forward propagation, and we have

∂C0
0

∂wθ
ηδ

=
∂C0

0

∂gj
× ∂gj

∂wθ
ηδ

, (10)

thus, we need ∂C0
0/∂gj and ∂gj/∂wθ

ηδ to compute derivatives, (9). For the second
term, ∂gj/∂wθ

ηδ, we just apply the regular backward propagation on a standard
neural network, so we won’t discuss it further. In the following, we will focus on
the process of backward propagation in the multinomial pricing tree to determine
∂C0

0/∂gj .
From (2) and (3), we know

Cm
α =

{
max {G (Sm,K) , 0} when m = M − 1
max

{
G (Sm,K) , D(T )P T Cm+1

α

}
when m = 0, . . . , M − 2 ,

(11)
then

∂Cm
α

∂gj
=

{
∂ max {G (Sm,K) , 0} /∂gj when m = M − 1
∂ max{G(Sm,K),D(T )P T Cm+1

α }
∂gj

when m = 0, . . . , M − 2 .
(12)
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Fig. 4. The framework for backward propagation

Let τm
α = ∂Cm

α /∂gj ,

– Case 1: Cm
α = G (Sm,K). We know Sm and K are not related to gj , then

τm
α =

∂G (Sm,K)
∂gj

= 0 . (13)

– Case 2: Cm
α = D(T )P T Cm+1

α . Then,

τm
α =

∂
(
D(T )P T Cm+1

α

)
∂gj

= D(T )
L∑

i=1

∂PiC
m+1
αi

∂gj

= D(T )
L∑

i=1

(
∂Pi

∂gj
Cm+1

αi + Pi
∂Cm+1

αi

∂gj

)

= D(T )
L∑

i=1

(
∂Pi

∂gj
Cm+1

αi + Piτ
m+1
αi

)
. (14)

We have discussed the value of D(T ) (in Sect.3), and from (4), we know Pi is
the output of Hi (g1, g2, . . . , gL−1). Then, in (14), we need to determine the rest
of three terms, Cm+1

αi , ∂Pi/∂gj , and τm+1
αi .

Computation of Cm+1
αi . In the forward propagation, Sect.4.1, when calculat-

ing C0
0 , we also compute Ct

αi for all states at all of the time steps, where t = 0,
. . . , (M − 1), and we just save those values for backward propagation.

Computation of ∂Pi/∂gj. From (4), we obtain

∂Pi

∂gj
=

∂Hi (g1, g2, . . . , gL−1)
∂gj

. (15)



In the beginning of Sect.4, we discuss H which are known because we construct
the neural networks and decide those transfer functions, and we also know gj is
independent of {g1, . . . , gj−1, gj+1, . . . , gL−1}. Then, (15) is solvable. From the
same trinomial example, see (5)(6), and (7), and then (15) can be computed
easily; for instance,

∂P3
∂g1

= 1−g1−(1−g1)×g2
∂g1

.

Computation of τm+1
αi . From (14), we know τm

α at time step m can be com-
puted from τm+1

αj , j = 1, . . . , L, at next time step m+1, and from (12) and (13),
we know τM−1

α for any state at last time step are 0. Then, we can use backward
propagation for the multinomial tree to compute τm

α for any state at any time
step. The algorithm is as follows:

1. Set all τM−1
α to 0.

2. Loop from i = (M − 2) to 0,
– Use (14) to compute τ i

α for all states at time step i from the value of
τ i+1
αj

, j = 1, . . . , L.
3. Output τ0

0 .

Now, we have determine the derivative of error function Error(w), (9) and
then apply the regular process to update the set of weights w in standard neural
networks. Then repeat the all process for each iteration of learning.

5 Results

We developed a simple trading system to evaluate the NN-OPT, which we tested
using intraday real market data (5 minutes time period) for IBM (stock and
option data) and interest rate data, from July 20, 2004 to April 29, 2005. We
used the first 80 days, from July 20, 2004 to November 9, 2004, as the training
data set, and used the remaining 118 days as test data set (see Fig.5). We
compared the trading performance between different algorithms and different
trading costs. Some algorithms, using NN-OPT with no-arbitrage constraint to
learn risk-neutral probabilities, [2, 6]. Intuitively, arbitrage is the possibility to
make money out of nothing.

1. Enforcing No-arbitrage, with learning: This is based on a no-arbitrage
condition and also uses NN-OPT learning algorithm to predict the risk-
neutral probabilities for pricing.

2. Not Enforcing No-arbitrage, with learning: This approach is only
based on NN-OPT learning algorithm without no-arbitrage constraints.

3. Enforcing No-arbitrage, no learning: This approach is to demonstrate
that a no-arbitrage constraint alone, without learning the Martingale mea-
sures is worse than our framework.

4. Not Enforcing No-arbitrage, no learning (random strategy): This
approach is to develop a benchmark performance using a random strategy.



0 20 40 60 80 100 120 140 160 180 20070

75

80

85

90

95

100

Trading Day

St
oc

k 
Pr

ic
e

The Stock Price of IBM

Training Data Set Test Data Set

Fig. 5. The intraday market price of IBM

The results of trading using these approaches are shown in Fig.6, and the
figure on right hand side has higher trading cost. Using both no-arbitrage con-
straint and NN-OPT clearly has the best performance. Note that the system still
makes money even when the market crashes. As we move further from the train-
ing window, the performance degrades, though it remains positive. The results
of the other algorithms are also reasonable because any random trading strategy
will systematically lose the transaction cost on each trade which means that the
total profit will drop linearly; the results also show that it is useful to use a
no-arbitrage condition because it narrows the range of Martingale measures to
obtain a set of plausible prices, rather than pure random.
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