NN-OPT: Neural Network for Option Pricing
Using Multinomial Tree

Hung-Ching (Justin) Chen and Malik Magdon-Ismail

Rensselaer Polytechnic Institute, Dept. of Computer Science, Troy, NY 12180, USA
{chenh3, magdon}@cs.rpi.edu

Abstract. We provide a framework for learning to price complex op-
tions by learning risk-neutral measures (Martingale measures). In a sim-
ple geometric Brownian motion model, the price volatility, fixed interest
rate and a no-arbitrage condition suffice to determine a unique risk-
neutral measure. On the other hand, in our framework, we relax some of
these assumptions to obtain a class of allowable risk-neutral measures.
We then propose a framework for learning the appropriate risk-neural
measure. In particular, we provide an efficient algorithm for backpropa-
gating gradients through multinomial pricing trees. Since the risk-neutral
measure prices all options simultaneously, we can use all the option con-
tracts on a particular stock for learning. We demonstrate the performance
of these models on historical data. Finally, we illustrate the power of such
a framework by developing a real time trading system based upon these
pricing methods.

1 Introduction

In 1973, Black and Scholes published their pioneering paper [1] which introduced
the first option pricing formula and also developed a general framework for
derivative pricing. Since then, derivative pricing has become a popular research
topic. A modern, popular approach to pricing has been though the Martingale
measure (see, for example, [2]). The origin of the fundamental theorems on the
Martingale measure can be traced to Cox and Ross’ paper [3] describing the
method of risk neutral valuation. The Martingale measure was developed into a
more mature pricing technique in [4-7]. Other related topics can be found in [2,
8].

Option trading by directly predicting prices and then building trading sys-
tems based on the predictions have been considered in the neural network liter-
ature [9, 10]. An alternative to predicting prices and then trading is to use direct
reinforcement to trade directly (see for example [11]). Learning to trade directly
has the advantage of avoiding an additional price-prediction step. When multiple
instruments are available, for example multiple options on a single underlying
stock, then the state space of possible trading actions grows exponentially and
direct reinforcement for learning to trade becomes infeasible. In addition, price
prediction of each individual option leads to an excessive number parameters,
and it now makes sense to develop a unified price prediction mechanism for all

the options simultaneously. Once prices are predicted for all the options, trading
can be performed independently on each of these options based on their respec-
tive prices. This is the motivation for this work, namely to present a unified
framework for learning to price all the derivatives on a particular underlying
stock.

The tool we use for acomplishing this task is the Martingale measure, which
relates to the stock dynamics. If we can predict the stock dynamics in the risk
neutral world, then we can price all derivatives on a particular stock. We sum-
marize the advantages of predicting the risk neutral stock dynamics:

(i) Simultaneously prices all derivatives on a stock.
(ii) All derivative data can be used in learning.
(iii) No-arbitrage constraints exist for the risk neutral dynamics.

In contrast, learning to directly price each option suffers from two problems.
The first is that more parameters must be learned, one set for each option. The
second is that the data on a single option can be used only to learn to predict
that particular option’s price. On the other hand, only one set of prediction
parameters need be learned for predicting the risk neutral dynamics, and all
the option prices can be used to learn this single set of parameters — in effect,
more data to learn fewer parameters. Also mentioned above are no-arbitrage
constraints, which limit the possible risk neutral measures. The no-arbitrage re-
quirement thus provides an economic constraint to regularize the learning in the
right direction, further improving the generalization performance of the system.

The underlying theory for the pricing based on the risk neutral dynamics
is that the prices can be computed as expected values of cashflows over the
risk neutral stock price dynamics. Often the Martingale measure is not unique,
and this is where learning comes in. We develop a framework for learning the
Martingale measure. We assume that the stock dynamics can be represented on
a multinomial tree. Binomial trees have often been used to price options [12, 2,
13,14]. In this work, we present the framework for general multinomial trees,
and illustrate with trinomial trees [15], which is more complicated, more flexible
and better illustrate the general principles — in the binomial model, there is no
learning because the Martingale measure is unique. For background on option
pricing and other financial topics, we suggest [15, 13, 14].

The outline of this paper is as follows: first, we give some basics of mul-
tiperiod, multinomial trees and option pricing, before presenting the NN-OPT
algorithm. We then give some experimental results (trianing and test) on high-
frequency paper trading of IBM stock options based on the learned price pre-
diction. Our results indicate that learning Martingale measures together with
no-arbitrage regularization constraints performs best.

2 Multi-Period Economy with Multinomial Tree

Before introducing NN-OPT, an algorithm to price options, we need set up the
notation to describe the economy. Describe the price of an instrument by C

and consider, for example, a 2-period economy (see Fig.1.(a)). Consider time
steps m and m + 1 (corresponding to times mT and (m + 1)T). At time step
m, the instrument could be in one of many states, indexed by «, with price
C?P. From state a at time step m, assume that the instrument can transition to
one of L states, with prices {CZLIH, R CZTLH, } Thus we use Cg:’;l to denote
the possible prices which the instrument can transition into at time step m + 1
from state « at time step m. When L = 2, we have a binomial model, L = 3
is a trinomial model and for L > 3 a multi-nomial model. Let P; denote the
probability to transition to state j, j =1, ..., L, and) P; = 1. When P; is
independent of m and «, we have a standard multi-nomial tree dynamics for the

instrument price. We can represent C’;",@H and P; in vector notation,

C’g’iJrl Pl

Cgl;-l P2
Czﬂ = ; and P =

C’&nLJrl PL

When m = 0 (time 0), there is only one state C{, and after each time period T,
each state can transition to L possible states, which creates a multinomial tree
in a multi-period economy (shown in Fig.1.(b)).

0 C(Tl+1 Py
cmtt Py

> . .:
cu P <

———————— time
mT (m+1)T 0 T 2T (M —1)T

o

(a) 2-period economy (b) M-period economy

Fig. 1. The dynamics of economy

3 Option Pricing

NN-OPT is based on Martingale methods for options pricing and we briefly
discuss some background on Martingale pricing. The basic theorem is that the

discounted price is a Martingale with respect to some measure P.

Cm = D(T) x Ep [c;";l}
= D(T) x b, P;Ct! (1)
_ D(T) x Plem+t "

where D(T) is the risk free discount factor, which depends on the interest rate
and T'. Intuitively, this formula means that the current prices are the present
value of the expected future prices, where the expectation is with respect to the
so called risk neutral probabilities P. In this paper, we consider C to be the
price of an American option, whose value can be realized by either exercising
now or holding and optimally exercising later. Let G (S™, K) be the value of
exercising at time m with strike K and stock price S™. Then

CI' =max {G (S™,K),D(T) x P'Ct'} . 2)

Thus, we can use backward propagation to compute the current prices of options.
To initiate the backward propagation, note that at last time step (M — 1), the
options don’t have any future value, and the option prices become

CM ' =max {G (SM 1 K),0} . (3)

Therefore, if we know the appropriate values! for S ! (i.e. the stock dynamics),
we are able to determine C2 =1 for all states at the last time step, and then we
use the recursive algorithm to compute the current price C{ of the option. The
details of pricing options using multinomial trees can be found in numerous
techniques of option pricing, for example [17].

4 The NN-OPT Learning Algorithm

The NN-OPT learning algorithm includes two parts, a standard neural network?
probability predictor and a multinomial pricing tree. Figure 2 shows the structure
of neural networks, where wz s denote the weights from node 7 to node ¢ in layer 6,
and the set of weights are denoted by vector w. The neural networks will predict
and learn the probabilities P for pricing, used in the multinomial pricing tree.
The input of the neural networks can be anything, such like short term interest
rates, long term interest rates, technical indexes or previous historical data. The
output of the neural networks is a set of amplitudes, {g1,g2,...,9r-1}, where
gi € [0,1]. There is also a set of transfer functions {Hy, Hs, ..., Hy}, denoted by
a vector H, to transfer {g1,92,...,95—1} into probabilities P, where,

Pi=Hi(91,92,.--,9.-1) i=1,...,L. (4)

! There are many techniques to determine appropriate values for S !, such as his-
torical volatility and GARCH volatility predictors, [12, 16].

2 The details of the structure and the procedures of a standard neural network, please
refer to [18, 19].

The outputs g;, ¢ =1, ..., L — 1, are independent of each other. This property
makes the process of backward propagation easier (in Sect.4.3). In a trinomial
model, one choice for the transfer functions is

Pr=gq (5)
P,=(1-g1) x g2 (6)
Pa=1-g—(1-g1) xg2 , (7)

which satisfy > P, =1and 0< P, <1,fori=1,..., 3.

g1 —» P
g2 —» P
Transfer H
Functions
INPUTS ,
gr—1
> Pr,

Fig. 2. The structure of the neural network

The second part of the NN-OPT learning algorithm is the multinomial pricing
tree which uses the probabilities in P to price all options and compute the
feedback to the neural networks for learning (updating of the weights).

4.1 Forward Propagation: Computation of Current Price Cg

Figure 3 shows the framework for forward propagation. Assume that we are given
a data set, D = {x;,y;}I¥|, where x; is the input vector, and y; is the expected
output. The standard neural networks just apply the regular forward propagation
to obtain {g1,92,...,9r-1}, see for examples [18,19]. Then using the transfer
functions H, we calculate pricing probabilities P. The pricing algorithm for the
multinomial tree is as follows:

1. Use (3) to compute CM~1 for all states at last time step (M — 1).
2. Loop from i = (M — 2) to 0,

— Use (2) and C% to compute C?, for all states at time period i .
3. Output Cf.

4.2 Computation of error function Error(w)

We define the error function as

1 & 2
Error(w) = ~ Z (Co —wi)” . (8)
i=1

—P Py
94 »
_’ -
Inputs i | Neural Networks / Transfer Multinomial 0
A ,
E H Function i | Pricing Tree »Co
! H i
\A
gL-‘] »
PL

Fig. 3. The framework for forward propagation

The goal is to find a set of weights w that minimizes Error(w). To do this,
using a gradient descent algorithm, we will need to backpropagate gradients
through a multinomial tree and then through the neural network. Backpropaga-
tion of gradients through neural networks is standard (see for example [18,19]).
We now develop an efficient algorithm for backpropagating gradients through a
multinomial tree pricing framework.

4.3 Backward propagation: Computation of the Gradients

The framework for backward propagation is shown in Fig.4. In order to imple-
ment the gradient descent algorithm, we need

N

OError(w) 2 o acy
—_— C —Yi) —5 - 9
3w25 N ;(0~ i) 8wf75 ©

There are L — 1 neural networks, and we need to compute (9) for each one. We
will focus on a particular neural network j € {1, 2, ..., L — 1}. In (9), C§ and
y; are known after forward propagation, and we have
ocy oCy o dg;
8w797 5 Jg; ng 5

(10)

thus, we need dCJ /dg; and g,/ 6wz 5 to compute derivatives, (9). For the second
term, Og;/ awg s» we just apply the regular backward propagation on a standard
neural network, so we won’t discuss it further. In the following, we will focus on
the process of backward propagation in the multinomial pricing tree to determine

9Cy [dg;.

From (2) and (3), we know

omo_ max {G (S™, K),0} when m =M — 1

@ maX{G(Sm,K)7D(T)PTCZL+1} whenm =0, ..., M —2 |
(11)

then

ocm Omax {G (5™, K), Oi /8g+j1 whenm=M —1 12)

Jg; = | 2ma{G(s ’I(é));f(T)P ca'} when m=0,..., M -2 .

0
ch/ Error Function [€ Co

Multinomial
Pricing Tree

Neural Network j

Fig. 4. The framework for backward propagation

Let 77" = 0C%' /0y,
— Case 1: O = G (8™, K). We know S™ and K are not related to g;, then
_0G(S™, K)
0g;
— Case 2: C = D(T)PTC™*!. Then,

m
TO(

~0 . (13)

0 (D(T)PTCm+)

3gj
L
opP,c™mtL
=D(T)) —-oi—

L
oP;
— D(T)Z (ag»cﬁﬂ + P,
i=1 J

30m+1
")

9j

L (0P,

=D(T Ltomtl 4 prmtl) 14

Y (Gocm + P (19
=1

We have discussed the value of D(T') (in Sect.3), and from (4), we know P; is

the output of H; (¢1,92,---,95—1)- Then, in (14), we need to determine the rest

of three terms, CZ;H, OP;/0g;, and rmHL

(e %2

Computation of C$+1. In the forward propagation, Sect.4.1, when calculat-
ing CY), we also compute C?, for all states at all of the time steps, where t = 0,
.., (M —1), and we just save those values for backward propagation.

Computation of P;/dg;. From (4), we obtain

aP’L _ aH’L (917927 e 79[171)
99, g,

In the beginning of Sect.4, we discuss H which are known because we construct
the neural networks and decide those transfer functions, and we also know g; is
independent of {g1,...,9j—1,9;+1,-..,90—1}. Then, (15) is solvable. From the
same trinomial example, see (5)(6), and (7), and then (15) can be computed

easily; for instance,
oP; _ 1—g1—(1—-g1)Xg2
991 991 ’

Computation of T$+1. From (14), we know 72" at time step m can be com-

puted from TZJ’]-H, j=1,..., L, at next time step m+1, and from (12) and (13),
we know 7M1 for any state at last time step are 0. Then, we can use backward
propagation for the multinomial tree to compute 7' for any state at any time

step. The algorithm is as follows:

1. Set all 7M1 0 0.
2. Loop from i = (M — 2) to 0,
— Use (14) to compute 7. for all states at time step i from the value of
T,ijfl?j:l, ..., L.
3. Output 79.

Now, we have determine the derivative of error function Error(w), (9) and
then apply the regular process to update the set of weights w in standard neural
networks. Then repeat the all process for each iteration of learning.

5 Results

We developed a simple trading system to evaluate the NN-OPT, which we tested
using intraday real market data (5 minutes time period) for IBM (stock and
option data) and interest rate data, from July 20, 2004 to April 29, 2005. We
used the first 80 days, from July 20, 2004 to November 9, 2004, as the training
data set, and used the remaining 118 days as test data set (see Fig.5). We
compared the trading performance between different algorithms and different
trading costs. Some algorithms, using NN-OPT with no-arbitrage constraint to
learn risk-neutral probabilities, [2,6]. Intuitively, arbitrage is the possibility to
make money out of nothing.

1. Enforcing No-arbitrage, with learning: This is based on a no-arbitrage
condition and also uses NN-OPT learning algorithm to predict the risk-
neutral probabilities for pricing.

2. Not Enforcing No-arbitrage, with learning: This approach is only
based on NN-OPT learning algorithm without no-arbitrage constraints.

3. Enforcing No-arbitrage, no learning: This approach is to demonstrate
that a no-arbitrage constraint alone, without learning the Martingale mea-
sures is worse than our framework.

4. Not Enforcing No-arbitrage, no learning (random strategy): This
approach is to develop a benchmark performance using a random strategy.

The Stock Price of IBM
100 T T T T T T T T T

Stock Price

Training Data Set

Test Data Set

751

70 1 I 1 I I I I I
0 20 40 60 80 100 120 140 160 180 200

Trading Day

Fig. 5. The intraday market price of IBM

The results of trading using these approaches are shown in Fig.6, and the
figure on right hand side has higher trading cost. Using both no-arbitrage con-
straint and NN-OPT clearly has the best performance. Note that the system still
makes money even when the market crashes. As we move further from the train-
ing window, the performance degrades, though it remains positive. The results
of the other algorithms are also reasonable because any random trading strategy
will systematically lose the transaction cost on each trade which means that the
total profit will drop linearly; the results also show that it is useful to use a
no-arbitrage condition because it narrows the range of Martingale measures to
obtain a set of plausible prices, rather than pure random.

The profit made by different algorithms The profit made by different algorithms
T T T T . 7000

6000 4

10000} 5000 4

4000 9

5000 3000 4

Profit
Profit

2000 4

0 1000 1
No-arbitrage w/ NN-OPT
= NN-OPT Only

No-arbitrage w/o NN-OPT| 0 No-arbitrage w/ NN-OPT] |
Random = NN-OPT Only

. 1000 . . . n
80 100 120 140 160 180 200 80 100 120 140 160 180 200
Trading day Trading day

Fig. 6. Comparison of the trading results of stock IBM using different algorithms

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. Journal

of Political Economy 3 (1973) 637654

Magdon-Ismail, M.: The Equivalent Martingale Measure: An Introduction to Pric-
ing Using Expectations. IEEE Transactions on Neural Netork 12(4) (2001) 684-693
Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes.
Journal of Financial Economics (1976) 145-166

Back, K., Pliska, S.R.: On the fundamental theorem of asset pricing with an infinite
state space. Journal of Mathematical Economics (1991) 1-18

Harrison, J.M., Kreps, D.: Martingales and arbitrage in multiperiod securities
markets. J. Economic Theory 20 (1979) 381-408

Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of
continuous trading. Stochastic Processes and their Applications 11 (1981) 215-260
Harrison, J.M., Pliska, S.R.: A stochastic calculus model of continuous trading;:
Complete markets. Stochastic Processes and their Applications (1983) 313-316
Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modeling (Appli-
cations of Mathematics, 36). New York: Springer-Verlag (1977)

Paul R. Lajbcygier, J.T.C.: Improve option pricing using artificial neural networks
and bootstrap methods. International Journal of Neural System 8(4) (1997) 457
471

Amari SI, Xu L, C.L.: Option pricing with neural networks. In Progress in Neural
Information Processing 2 (1996) 760-765

Moody, J. Saffell, M.: Learning to trade via direct reinforcement. IEEE Transac-
tions on Neural Networks 12(4) (2001) 875-889

Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: A simplified approach.
Journal of Financial Economics (1979) 229-263

Ross, S.M.: An Elementary Introduction to Mathematical Finance. Second edn.
Cambridge University Press (2003)

Wilmott, P., Howison, S., Dewynne, J.: The Mathematics of Financial Derivatives.
Cambridge University Press (1995)

Baxter, M., Prnnie, A.: Financial Calculus: An Introduction to Derivative Pricing.
Cambridge University Press (1996)

Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics 31 (1986) 307-327

Kargin, V.: Lattice option pricing by multidimensional interpolation. Mathemat-
ical Finance 15(4) (2005) 635-647

Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press
(1995)

Haykin, S.: Neural Networks: A Comprehensive Foundation. 2nd edn. Prentice
Hall (1998)

