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Abstract

We present a machine learning methodology (models, al-
gorithms, and experimental data) to discovering the agent
dynamics that drive the evolution of the social groups in a
community. We use a parameterized probabilistic agent-
based model integrating withmicro-laws to present the
agent dynamics. Themicro-laws with different parame-
ters present different actors’ behaviors. Our approach is to
identify the appropriate parameters in the model including
discrete parameters together with continues parameters. To
solve this mixed optimization problem, we develop heuris-
tic expectation-maximization style algorithms for determin-
ing the appropriatemicro-lawsof a community based on
either the observed social group evolution, or observed set
of communications between actors without considering the
semantics. Also, in order to avoid the resulting combina-
torial explosion, we appropriately approximate and opti-
mize the objective within a coordinate-wise gradient ascent
(search) setting for continuous (discrete) variables. Finally,
we present the learning performance from extensive experi-
ments.

1 Introduction

“What makes a society tick?” is an interesting question.
A society of any realm is constituted by agents oractors
(an actor is commonly referred to an individual entity in
the society). Very often, these actors or agents bear a di-
verse range of behaviors and patterns. Therefore, in a given
society, if we are able to understand its actors’ behaviors,
we should be able to trace the elements (constituents) that
make the society ticks. In this study, we uses the group
membership and the dynamics of social groups to present
the social evolution of a community. In [17], a social group
is defined as a collection of actors sharing some common
context. The dynamics of social groups is controlled by
actors’ actions – actors join new groups, leave groups and

change groups. An actor’s actions are governed bymicro-
laws1, such as personal attributes (e.g., some people like to
go out with a bunch of people, but some would prefer one
to one), the actions of other actors (e.g., the actor may join
a group because his/her friend is a member of that group),
and the influence of the community (e.g., some people take
an action from the expectation of the community, but some
are not). Sometimes, the same actors, but within different
communities, perform different behaviors or are governed
by differentmicro-laws. It is an interesting hunt as how the
micro-lawsgovern the actors behaviors and make a society
ticks.

Recently, the explosion of online communities rises the
weight on recognizing how communities evolve. Decision
making can be more efficient, accurate, and easier if people
can perceive how the community is going to change (e.g.,
the community is growing larger or smaller), or how the
consumers behave. Through this search, we bear a goal to
find that “If given a society’s history, can we deduce some-
thing about the ‘nature’ of the society or can we predict the
society’s future?” But, what is the “nature” of the society?
the “nature” of the society can be – “Do actors generally
have an inclination to join small groups or large groups?”,
“How long does an actor stay in a group?”, “How many
groups does an actor is in active at same time?”, “How do
communities influence actors’ behaviors?” or “How many
social groups are there and what is their average size after 3
months?” and ... etc.

The works on social network analysis have become more
popular in the last few years. There is significant literature
on modeling of social networks and social network analy-
sis. A lot of works focus on modeling of evolving social
networks,e.g., [2, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17]. Peo-
ple try to analyze the social networks from different per-
spectives using various approaches and different machine
learning techniques. In [16], the authors address very sim-
ple models fitting in a very limited setting to analyze the

1An actor’s behaviors have been referred to asmicro-lawsin [9].



evolution of a society. [14] proposes a model for relational
data and try to find the hidden structures responsible for the
observed autocorrelation among class labels. In [1], the au-
thors use decision-tree approach to determine some proper-
ties of the social network. [4] presents a framework to an-
alyze dynamic social networks and try to learn when social
interactions occur.

We propose a machine learning methodology (models,
algorithms, and experimental data) to discover the agent
dynamics that drive the evolution of the social groups in
a community. We use the same agent-based social group
model introduced in [7], and our presentation of this model
follows the one in [7]. The main contribution of the paper
is the presentation about the framework of the whole learn-
ing process. In the model, there are a lot of different pa-
rameters to control differentmicro-laws. We can categorize
those parameters into three basic kinds – independent dis-
crete parameters, independent continuous parameters, and
dependent discrete parameters. For each kind of parame-
ters, we develop an approach to learn the appropriate values
in themicro-laws.

Paper Organization.Next, we give an overview of the
agent-based probabilistic social group evolution model in
Section 2. Then, we present the framework of our approach
to learn the appropriatemicro-lawsin the model in Section
3. We discuss what we are going to predict in Section 4. We
then give experimental results in Section 5 and discussion in
Section 6.

2 Overview of Social Group Model

We give a brief overview of the agent-based probabilistic
evolving social group model, called ViSAGE (Virtual Sim-
ulation and Analysis of Group Evolution), and [7] presents
more details about the model. Figure 1 shows the general
framework for the process about the evolution in the social
group model at each time step. In the current model, there
are actors, groups, thestateof the society (defined by the
properties of actors and groups), and three kinds of actions
– join a group, leave a group, anddo nothing. According to
thestateof the society, actors decide and perform their ac-
tions, and depending on the feedbacks from actors’ actions,
the properties of actors and groups are updated accordingly.

2.1 Properties of Actors and Groups

Each actor has its owntype, rank, qualification, andre-
source. An actor’stypecontrol the actor’s group size prefer-
ences (what size of group the actor most likely join or leave)
and the actor’s “ambition” (how quickly the actor’s rank in-
creases in a group). An actor’srank presents the actor’s
position in the group. The rank is directly proportional to
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Figure 1. Framework for the process about
the evolution in the social group model at
each time step.

the amount of time that an actor has been a member of that
group, and the rank also depends on the actor’s type. An ac-
tor’s qualificationpresents an actor’s prestige. The qualifi-
cation is determined as the average rank of the actor among
all the groups the actor has been a member. Each actor has
its availableresourcewhich depends on how many resource
an actor needs to maintain a membership in a group, and the
actor’s resource influence what kind of action an actor can
complete at next time step.

The properties of groups includequalificationandmem-
bership. Each group has its qualification, defined as the av-
erage qualification of actors currently participating in the
group, and it influences the acceptance of actors’ applica-
tion to join. Group’smembershipindicates which actors are
joining the group.

2.2 Actors’ Actions

Every actor needs to decide to leave one group, join one
group, or remain in the same groups at each time step. The
decision depends on an actor’s available resource. After an
actor has chosen which action it would like to perform, it
needs to decide which group to join or leave. Each actor has
a size preference and qualification; therefore, the actor takes
into account the size and qualification of the group during
decision making. The probability of which group the actor
decides to join or leave depends on the group’s membership
and qualification and also the actor’s ranks, size preference
and qualification.

2.3 State Update

At the end of each time step, the last step of the
process is to update the properties of actors and groups.
To update properties of actors and groups is based on
all actors’ actions and the society reward/penalty param-
etersθreward. The θreward determine how to update an
actor’s resource, and it is summarized heuristically by
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, whereθaction in-
dicates some parameters related to actors’ action.

2.4 Example

Figure 2 illustrates an example of an evolving commu-
nity from time t to t + 1, and it is easily extends to an ar-
bitrary number of actors and groups. In this example, there
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Figure 2. An example of the agent-based
probabilistic social group evolution model

are five actors,a1, a2, a3, a4 anda5, and three social groups
G1, G2 and G3 at time t and t + 1. Focus on actora1

at timet. Somea1’s properties have been indicated: type
(type1), ranks (r1), resource (R1

E). As indicated,r1
1 de-

pends ontype1 and other actors’ ranks (r1
2 andr1

4) in the
group; thusr1

1 indirectly depends ontype2 andtype4. Ac-
cording to the actor’s properties,a1 decides to join a new

group through the stochastic process denoted byAction()
in Fig. 2, which depends on a set of parametersθaction; two
other possible actions are to leave a group or to do nothing.

In this example,a1 decides to join a group and must now
decide which specific group to join. This is accomplished
by a stochastic hand-shaking process in whicha1 decides
which group to “apply” to,G2 in this case, andG2 decides
whether or not to accepta1 into the group. This process
is indicated byGroup() in Fig. 2 and is governed by its
own set of parametersθgroup, together with the properties
of some of the other actors and the group structure. Actora1

learns from itsneighborsa2, a4 about which other groups
are out there to join; the potential joining groups areG2

andG3 in this case. In the example,a1 applied toG2 and
in this particular case was accepted.

The resource ofa1 now get updated through a stochastic
process denoted byReward(), which additionally depends
on the actual action and some parametersθreward. This
process is analogous to society encouragement or penalty
for doing expected versus unexpected things.

After all actors go through a similar process in batch
mode and independently of each other, the entire state of
the society is updated in a feedback loop as indicated in
Fig. 1 to obtain the state at timet + 1.

3 Learning Process

Our approach is to identify the appropriate parameters
in the model from either the social group evolution, or the
communication data between actors without considering the
content of the messages. If we have the communication
data, we need to discover the group evolution from the com-
munications, and then learn from the group evolution. From
the group evolution, we are able to determine the actor dy-
namics and learn the appropriate parameters in the model.

3.1 Learning From Communications

The challenge with real data is that the groups and their
evolution are not known, especially in online communities;
instead, one observes the communication dynamics. We as-
sume that a pair of actors in many groups together are more
likely to communicate with each other often; therefore, the
communication dynamics are able to indicate the group dy-
namics. The first step in learning is to use the communica-
tion dynamics to construct the set of groups and convert the
problem to one of learning from groups as in Section 3.2.

Imagine that communications between the actors are ag-
gregated over some time periodτ to obtain a weighted com-
munication graphGτ . The actors are nodes inGτ and the
edge weightwij between two actors is the communication
intensity (number of communications) betweeni andj. The



sub-task we would like to solve is to infer the group struc-
ture from the communication graphGτ . Any reasonable
formulation of this problem is NP-hard, and so we need
some efficient heuristic for finding the clusters in a graph
that correspond to the social groups. In particular, the clus-
ters should be allowed to overlap, as is natural for social
groups. This excludes most of the traditional clustering al-
gorithms, which partition the graph. We use the algorithms
developed by Baumes et al. [3], which efficiently find over-
lapping communities in a communication graph.

We consider time periodsτ1, τ2, . . . , τT+1 and the cor-
responding communication graphsGτ1

, Gτ2
, . . . , GτT+1

.
Given a single graphGτt

, the algorithms in [3] output a
set of overlapping clusters, which we then use as the data
Dt (the social group structure at time stept). However, in
order to use the learning prescription as in Section 3.2, one
needs to construct the paths of each actor. This means we
need the correspondence between groups of time stept and
t + 1. Formally, we need a matching between the groups
in Dt andDt+1 for t = 1, 2, . . . , T − 1: for each group in
Dt, we must identify the corresponding group inDt+1 to
which it evolved. If there are more groups inDt+1, then
some new groups arose. If there are fewer groups inDt+1,
then some of the existing groups disappeared. In order to
find this matching, we use a standard greedy algorithm.

Finding Matchings Let X = {X1, . . . , Xn} and Y =
{Y1, . . . , Yn} be two collections of sets, and we allow
some of the sets inX or Y to be empty. We use the
symmetric set differenced(x, y) = 1− |x∩ y|/|x∪ y|
as a measure of error between two sets. Then, we
consider the complete bipartite graph on(X ,Y) and
would like to construct a matching of minimum to-
tal weight, where the weight on the edge(Xi, Yj) is
d(Xi, Yj).

3.2 Learning From Group Evolution

We first introduce some notation. The set of actors isA;
we usei, j, k to refer to actors. The dataD = {Dt}

T+1
t=1

is the set of social groups at each time step, where eachDt

is a setof groups,Dt = {Gt
l}l, Gt

l ⊆ A; we usel, m, n
to refer to groups. Collect all the parameters which specify
the model asΘM , which includes all the parameters spe-
cific to an actor (e.g. type) and all the global parameters in
the model (e.g. θaction, θreward, θgroup). We would like to
maximize the likelihood

L(ΘM ) = Prob(D|ΘM ). (1)

We are able to determine all actors’ actions based on the
group evolution; then, We define the path of actori, pT

i =
(pi(1), . . . , pi(T )), as the set of actions it took over the time
stepst = 1, . . . , T . The actions at timet, pi(t), constitute

deciding to join, leave or stay in groups, as well as which
groups were left or joined. GivenD, we can constructpT

i

for every actori, and conversely, given{pT
i }

|A|
i=1, we can

reconstructD. Therefore, we can alternatively maximize

L(ΘM ) = Prob(pT
1 , . . . ,pT

|A|‖ΘM ). (2)

It is this form of the likelihood that we manipulate. Typical
ways to break up this optimization is to iteratively first im-
prove the continuous parameters and then the combinatorial
(discrete) parameters.

The main problem we face is an algorithmic one, namely
that typically, the number of actors,|A|, is very large (thou-
sands or tens of thousands), as is the number of time steps,
T , (hundreds). Another problem is that in our model, some
actor’s properties are independent to others’ properties,but
also some actor’s properties are dependent to others’ prop-
erties, causing dimensionality curse.

For independent parameters, the maximization over a
single actor’s parameters only involves that actor’s path and
is a factor of|A| more efficient to compute than if we looked
at all the actor paths. Therefore, the entire learning pro-
cess can be summarized by maximizing over each param-
eter successively, where to maximize over the parameters
specific to an actor, we use only that actor’s path. We de-
velop an greedy search algorithm2 to learn the discrete pa-
rameters, and use a gradient based approach to optimize the
independent continuous parameters, which involves taking
derivatives of equation (2).

For dependent parameters, there is only dependent dis-
crete parameters in our model. The values of an actor’s pa-
rameters depend on all other actors’ parameters; in other
words, the maximization involves all actors’ paths. If there
areN possible values for a certain parameter, the complex-
ity to find the globe maximum isΩ(NT |A|). We know
|A| and T are very large, and the computation is really
time consuming. we develop an approximate expectation-
maximization (EM) style algorithm to learn the appropriate
values. The first step, we learn what are the probabilities
of all possible values for each actor. Then, based on those
probabilities, we randomly generate all actors’ paths and it-
eratively find the approximate values.

4 Prediction

Unlike in a traditional supervised learning task, where
the quality of the learner can be measured by its perfor-
mance on a test set, in our setting, the learned function is a
stochastic process, and the test data are a realization of the
stochastic process. Specifically, assume we have training
dataDtrain = {Dt}

T+1
t=1 and test dataDtest = {Dt}

T+K
t=T+2.

2The detail of the greedy search algorithm learning independent dis-
crete parameters can be found in [7]



We learn the parameters governing the micro-laws using
Dtrain, and use multi-step prediction to test on the test data.
Specifically, starting from the social group structureDT+1

at timeT + 1, we predict the actions of the actors, i.e. the
actor paths into the future. Based on these paths, we can
construct the evolving social group structure and compare
these predicted groups with the observed groups on the test
data using some metric. Here, we use the distribution of
group sizes to measure our performance. Specifically, let
Npred

k (t) andN true
k (t) be the number of groups of sizek at

time t for the predicted and true societies respectively. We
report our results using the squared error measure between
the frequencies as well as the squared error difference be-
tween the probabilities,

Ef (t) =

√

√

√

√

√

∑

k

(

Npred
k (t) − N true

k (t)
)2

∑

k (N true
k (t))

2 . (3)

5 Experiments

In our model, the parameters can be learned using the
approach described in Section 3. Here we focus on three
parameters, the actor’s type, the initial resource allocation,
and the society reward/penalty parametersθreward.

5.1 Learning Actors’ Types

Here, we present the results from learning actors’ types,
an independent discrete parameter. In our model, there are
three kinds of actor type –Leader prefers small group size
and is most ambitious,Socialite prefers medium group and
is medium ambitious, andFollower prefers large group and
is less ambitious. To evaluate performance, we use the
model to generate simulation data for training and testing.
Since we know the values of the parameters in the model,
we can compare the true values with the learned values to
compute the accuracy. We evaluate the results from the fol-
lowing 6 different algorithms:

• Cluster: For each actori, let sizei be the average size
of groups actori joined. We cluster{sizei}

|A|
i=1 into 3

groups using the standard 3-means algorithm. Lead-
ers are the smallest, followers the largest and socialites
the middle. This is a simple heuristic based on the ob-
servation that leaders join small groups and followers
large groups.

• Learn: The learning algorithm described in Sect. 3.2.

• Optimal: The ground truth model. (For comparison
and only available on simulated data.)

• Leader, Socialite, Follower: benchmarks which as-
sign all actors to leader, socialite or follower types re-
spectively.

Table 1 shows the accuracy ofCluster and Learn using
100 time steps of training data (averaged over 20 data sets).
Each data set was created by randomly assigning about 1/3
of the actors to each class and simulating for 100 time steps.
All others parameters except types were held fixed.

Accuracy Learned Actors’ Types
52.83% L S F

True L 38.3 93.85 5.25
Actors’ S 0.65 75.45 132.4
Class F 0.0 3.7 150.4

(a) Cluster algorithm

Accuracy Learned Actors’ Types
83.75% L S F

True L 132.85 4.55 0.0
Actors’ S 28.3 166.25 13.95
Class F 6.15 28.3 119.65

(b) Learn algorithm

Table 1. Confusion matrix in learning types
for Cluster and Learn. For comparision, the
accuracy of randomly assigning type is 33%,
where accuracy is the % of correctly classi-
fied actors. ( L = Leader, S = Socialite, F =
Follower).

It is clear thatLearn algorithm has better performance than
Cluster algorithm becauseCluster only considers actors’
group size preference, butLearn also considers actors’ am-
bition and influences from their friends and the community.

5.2 Impact of Learning on Prediction

Based on the predictive performance, we use the model
to determine which parameters are worth learning and
which are not. Figure 3 shows the impact of the optimal pre-
dictor (all parameters set to their true values) vs. choosing
a random society reward/penalty parametersθreward, and
for various choices of actors’ initial resource allocation{Ei}
(every actor assigned some fixed initial resource according
to max{Ei}, min{Ei} or average{Ei}). As can be seen,
using the wrong{Ei} does not significantly affect perfor-
mance but the wrongθreward does - which might be ex-
pected as the effects of initial conditions should equilibrate
out.
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6 Discussion

There are a lot of stories can be discovered from a com-
munity. Our work addresses the problem using a very gen-
eral setting. While we present our methodology in the con-
text of a specific model, it can be appropriately applied and
extended to any parameterized model. The model can be
integrated with differentmicro-laws in a society that one
wishes to find. Furthermore, by applying the same tech-
niques, one will be able to find the appropriate parameters
within the micro-lawsthat make a society ticks.

The results also show some interesting findings. Peo-
ple sometimes change their behavior because the influence
from the outside environment, and what they act is differ-
ent from what they really want to behave. If only based
on the observed behavior, such asCluser algorithm, people
can only capture the explicit behaviors. However, through
Learn, people not only can capture actors’ observable be-
haviors, but also the influence from the society (e.g., friend-
ship) which enable them to discover actors’ implicit behav-
iors.
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