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Abstract

Given a real matrix A ∈ Rm×n of rank r, and an integer k < r, the sum of the outer products of top k
singular vectors scaled by the corresponding singular values provide the best rank-k approximation Ak to
A. When the columns of A have specific meaning, it might be desirable to find good approximations to Ak

which use a small number of columns of A. This paper provides a simple greedy algorithm for this problem
in Frobenius norm, with guarantees on the performance and the number of columns chosen. The algorithm

selects c columns from A with c = Õ
(

k log k
ϵ2 η2(A)

)
such that

∥A−ΠCA∥F ≤ (1 + ϵ) ∥A−Ak∥F ,

where C is the matrix composed of the c columns, ΠC is the matrix projecting the columns of A onto the
space spanned by C and η(A) is a measure related to the coherence in the normalized columns of A. The
algorithm is quite intuitive and is obtained by combining a greedy solution to the generalization of the well
known sparse approximation problem and an existence result on the possibility of sparse approximation.
We provide empirical results on various specially constructed matrices comparing our algorithm with the
previous deterministic approaches based on QR factorizations and a recently proposed randomized algorithm.
The results indicate that in practice, the performance of the algorithm can be significantly better than the
bounds suggest.
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1. Introduction

The usual approach to find a “good” subspace that approximates the column span of a matrix A is to
take the best rank k approximation Ak =

∑k
i=1 σiuiv

T
i , which minimizes the residual error with respect to

any unitarily invariant norm. In some application areas such as statistical data analysis, this approach might
be undesirable since the singular vector representation is not suitable to make inferences about the actual
underlying data; because they are generally combinations of all the columns of A. An example of this is the
micro-array data where the combinations of the column vectors have no sensible interpretation [25]. Hence,
it is of practical importance to find an approximation to Ak which is composed of a small number of columns
of A. The problem also bears a theoretical importance in the sense that one might want to know how well
the column vectors of a matrix can represent its spectrum. This paper considers the problem of finding a
small number of columns of a matrix A such that the expression ∥A−ΠCA∥F is close to ∥A−Ak∥F , for a
given number k < r = rank(A) where ΠC = CC+ is the matrix projecting the columns of A onto the space
spanned by the columns of C.

We give a deterministic greedy algorithm for this problem which is based on the sparse approximation of
the SVD of A. We first generalize the problem of sparse approximation [11, 27] to one of approximating a
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subspace. This is conceptually the same problem with the one so-called simultaneous sparse approximation
in signal processing and approximation theory in Hilbert spaces (e.g. [26, 34]). We then propose and analyze
a greedy algorithm for this problem and derive our main result in the special case where the subspace to
be approximated is the space spanned by the first k left singular vectors of A. In words, the algorithm first
computes the top k left singular vectors of A, and then selects columns of A in a greedy fashion so as to
“fit” the space spanned by the singular vectors, appropriately scaled according to the singular values. The
performance characteristics of the algorithm depend on how well the greedy algorithm approximates the
optimal choice of such columns from A, and on how good the optimal columns themselves are. We combine
an existence result on the quality of the optimal columns with the analysis of the greedy algorithm to arrive
at the following result:

Theorem 1.1. Given a matrix A ∈ Rm×n, an integer k < r = rank(A) and ϵ <
∥Ak∥F

∥A−Ak∥F
, there exists a

polynomial-time algorithm which selects a column sub-matrix C ∈ Rm×c of A with c = O
(

k log k
ϵ2 η2(A) ln

(
∥Ak∥F

ϵ∥A−Ak∥F

))
columns such that

∥A−ΠCA∥F ≤ (1 + ϵ)∥A−Ak∥F ,

where η(A) is a measure related to the coherence in the normalized columns of A.

The requirement on ϵ is to make sure that the expression with the natural logarithm is meaningful. The
term η(A) arises from the analysis of the generalized sparse approximation problem. In our analysis, the
possibility of eliminating this parameter or replacing it with a low order polynomial in k and ϵ would yield a
much more desirable result. We would like to note that such input-dependent parameters naturally arise in
the analysis of sparse approximation problems [34, 35]. Yet, considering the special nature of the subspace
we wish to approximate, we think an improvement is possible.

1.1. Related Work

The theoretical computer science community has investigated the low-rank matrix approximation prob-
lem which asks for a k-dimensional subspace that approximates Ak in the spectral and Frobenius norm. The
solutions developed thus far have mostly focused on randomized algorithms, and the set of columns chosen
by these algorithms have more than k columns which is proven to contain an arbitrarily close approximation
to Ak. This approximation has the nice property of having the same dimensionality with that of Ak, but
cannot directly be interpreted in terms of the columns of A. The numerical linear algebra community on the
other hand, implicitly provides deterministic solutions for approximating Ak in the context of rank revealing
QR factorizations, which primarily aim to determine the numerical rank of A. The algorithms developed in
this framework usually focus on spectral norm and they select exactly k columns providing approximations
as a function of k and n. The algorithm we provide has hybrid features in the sense that it is deterministic,
and the error ratio drops with increasing number of selected columns.

The seminal paper by Frieze, Kannan and Vempala [19] gives a randomized algorithm that selects a
subset of columns C ∈ Rm×c of A such that ∥A−ΠCA∥F ≤ ∥A−Ak∥F + ϵ∥A∥F , where ΠC is a projection
matrix obtained by the truncated SVD of C and c is a polynomial in k, 1/ϵ and 1/δ), where δ is the failure
probability of the algorithm. Subsequent work [15, 16] introduced several improvements on the dependence
of c on k, 1/ϵ and 1/δ also extending the analysis to the spectral norm, while Rudelson and Vershynin
[29, 30], provided results of the form ∥A−ΠCA∥2 ≤ ∥A−Ak∥2 + ϵ

√
∥A∥2∥A∥F . Recently, the effort has

been towards eliminating the additive term in the inequality thereby yielding a relative approximation in
the form ∥A−ΠCA∥F ≤ (1+ ϵ)∥A−Ak∥F . Along these lines, Deshpande and Vempala [14] and Drineas et
al. [17] provided algorithms with different sampling schemes attaining the (1 + ϵ) approximation where the
number of columns is a function of k and ϵ. Other recent approaches for the problem we consider includes
random projections [31], and sampling which exploits geometric properties of high dimensional spaces [32].
[13] also considers the subspace approximation problem in general lp norms. Achlioptas and McSherry
approaches the problem by zero-ing out and quantizing the individual elements of the matrix randomly
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[1]. All of these algorithms exploit the power of randomization and they introduce a trade-off between the
number of columns chosen, the error parameter and the failure probability of the algorithm.

Very recently, a deterministic algorithm for matrix reconstruction was proposed by Guruswami and
Sinop [22] based on carefully implementing a scheme akin to volume sampling. Their algorithm uses optimal
number of columns, but the running time is O(mωnr logm) where ω is the exponent in matrix multiplication.
Compared to [22], the algorithm we present in this paper is less sophisticated and more intuitive.

The linear algebra community has developed deterministic algorithms in the framework of rank revealing
QR (RRQR) factorizations [7] which yield some approximation guarantees in spectral norm. Given a matrix
A ∈ Rn×n, consider the QR factorization of the form

AΠ = Q

(
R11 R12

0 R22

)
, (1)

where R11 ∈ Rk×k and Π ∈ Rn×n is a permutation matrix. By the interlacing property of singular values
(see [20]), σk(R11) ≤ σk(A) and σ1(R22) ≥ σk+1(A). If the numerical rank of A is k, i.e. σk(A)≫ σk+1(A),
then one would like to find a permutation Π for which σk(R11) is sufficiently large and σ1(R22) is sufficiently
small. A QR factorization is said to be a rank revealing QR (RRQR) factorization if σk(R11) ≥ σk(A)/p(k, n)
and σ1(R22) ≤ σk+1(A)p(k, n), where p(k, n) is a low degree polynomial in k and n.

Much research on finding RRQR factorizations has yielded improved results for p(k, n) [7, 8, 9, 12, 21,
23, 28]. Tight bounds for p(k, n) can be used to give deterministic low rank matrix reconstruction with
respect to the spectral norm, via the following simple fact.

Theorem 1.2. Let Πk be the matrix of first k columns of Π in (1). Then,

∥A− (AΠk)(AΠk)
+A∥2 ≤ p(k, n)∥A−Ak∥2.

It is important to note that the algorithm we provide can be regarded as an analogue to the algorithm of
Chan and Hansen [8] (Low-RRQR) which greedily selects the closest column to the first singular vector of
the residual space at each step, starting from the original matrix A. This algorithm approximates singular
vectors one by one providing a result in spectral norm, whereas we specifically aim at the Frobenius norm,
and compute the whole k-dimensional best subspace at the beginning and find a sparse approximation to it.

Very recently, Boutsidis et al. [4] introduced an algorithm for the problem of selecting exactly k columns
from a matrix A to approximate Ak, combining the random sampling schemes and the deterministic col-
umn pivoting strategies exploited by QR algorithms. Their algorithm provides a performance guarantee of
p(k, n) = O

(
k
√
log k

)
for the Frobenius norm, with high probability.

This work is inspired by the sparse approximation problem which is an extremely active research area
today (see [5] for a comprehensive survey). More specifically, we are trying to solve a simultaneous sparse
approximation problem [10, 26, 35] as there are k signals to be approximated simultaneously from the
dictionary implied by the matrix A. We essentially reformulate and attack this problem; but by trying
to optimize a measure of quality directly related to matrix approximation. The algorithm we analyze is
slightly different from the generalizations of Orthogonal Matching Pursuit for which several variants have
been proposed [10, 11, 26, 34]. In contrast, it is a generalization of the algorithm by Natarajan [27], which
was pronounced in pure linear algebraic terms.

1.2. Notation and Preliminaries

From now on A ∈ Rm×n is the matrix for which we wish to find a low-rank approximation. A(i) denotes

the ith row of A for 1 ≤ i ≤ m, and A(j), the jth column of A for 1 ≤ j ≤ n. Aij is the element at ith row and
the jth column. For a set of indices Λ, Λ(A) denotes the set of columns of A with indices in Λ. Typically,
we use C to denote a subset of columns of A, written C ⊂ A, i.e. C is a column sub-matrix of A. span(C)
denotes the subspace spanned by the column vectors in C. The Singular Value Decomposition of A ∈ Rm×n

of rank r is denoted by A = UΣV T where U ∈ Rm×m is the matrix of left singular vectors, Σ ∈ Rm×n is the
diagonal matrix containing the singular values of A in descending order, i.e. Σ = diag(σ1, . . . , σr, 0, . . . , 0)
where σ1 ≥ σ2 . . . ≥ σr > 0 are the singular values of A. V ∈ Rn×n is the matrix of right singular vectors.
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The best rank k approximation to A is Ak = UkΣkV
T
k where Uk and Vk are the first k columns of the

corresponding matrices in the full SVD of A, and Σk is the k × k diagonal matrix of the first k singular

values. The pseudo-inverse of A is denoted by A+ = V Σ+UT , where Σ+ = diag
(

1
σ1
, . . . 1

σr
, 0, . . . , 0

)
. The

Frobenius norm of A is ∥A∥F =
√∑m

i=1

∑n
j=1 A

2
ij , and the spectral norm of A is ∥A∥2 = σ1(A). We also

define the maximum column norm of a matrix A, ∥A∥col = maxni=1{∥A(i)∥2}. S⊥ is the space orthogonal to
the space spanned by the vectors in S.

2. Generalized Sparse Approximation

We first consider the problem of approximating an arbitrary subspace, which is an intuitive extension of
the sparse approximation problem [5, 11, 27]. It asks for a set of smallest number of vectors from a dictionary,
which defines a subspace “close enough” to a given vector. We propose the following generalization: given
matrices A ∈ Rm×n, a set of vectors B ∈ Rm×k, and δ > 0, find a matrix X ∈ Rn×k satisfying

∥AX −B∥F ≤ δ, (2)

such that
∑n

i=1 νi(X) is minimum over all possible choices of X, where νi(X) = 1 if the row X(i) contains

non-zero entries, νi(X) = 0 if X(i) =
−→
0 . Intuitively, the problem asks for a minimum number of column

vectors of A whose span is close to the span of B.

2.1. The Algorithm

A greedy strategy for solving this problem is to choose the column v from A at each iteration, for which
∥BT v∥2 is maximum, and project the column vectors of B and the other column vectors of A onto the space
orthogonal to the chosen column. The algorithm proceeds greedily on these residual matrices until the norm
of the residual B drops below the required threshold δ. Naturally, if the error δ cannot be attained, the
algorithm will fail after selecting a maximal independent set of columns.

Algorithm 1 A greedy algorithm for Generalized Sparse Approximation

1: procedure Greedy(A, B, δ)
2: normalize each column of A to get A0.
3: l← 0, Λ← ∅, B0 ← B.
4: while ∥Bl∥F > δ do

5: choose i ∈ {1, . . . , n} − Λ such that ∥BT
l A

(i)
l ∥2 is maximum

6: B
(j)
l+1 ← B

(j)
l −

(
B

(j)
l

T
A

(i)
l

)
A

(i)
l for j = 1, . . . , k

7: Λ← Λ ∪ {i}.

8: A
(j)
l+1 ← A

(j)
l −

(
A

(j)
l

T
A

(i)
l

)
A

(i)
l for j ∈ {1, . . . , n} − Λ

9: normalize A
(j)
l+1 for j ∈ {1, . . . , n} − Λ.

10: l← l + 1.
11: end while
12: return C = Λ(A), the selected columns.
13: end procedure

2.2. Implementation Details and Running Time Analysis

Line 2,8 and 9 of Greedy takes O(mn) time. Line 5 takes O(mk) time since B ∈ Rm×k. The compu-
tationally intensive part of the algorithm in the while loop is the 6th step, which takes O(mnk) time with
a naive implementation, since there are n matrix-vector multiplications of cost O(mk). This makes a total
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of O(mnkc) running time complexity. We make note of a simple observation which is akin to the pivoted
QR algorithms and is called a norm update: Instead of performing matrix-vector multiplications at each
iteration, we remember the dot products of the chosen column with the columns of B and the other columns
in A. We also introduce a matrix D ∈ Rk×n, where (Dl)ij denotes the the dot product of the ith column

of B and the jth column of A in the lth iteration. At the end of each iteration, we update Dl to get Dl+1

where the update of each entry requires constant time. Hence, the 6th step takes O(nk) time complexity
for each iteration. Overall, the running time of the algorithm is O((2mn+mk + nk)c) = O(mnc).

The norm update is as follows: Suppose a column vector v is chosen at iteration l. Noting that vT v = 1,
Dl+1 satisfies

(Dl+1)ij = B
(i)
l+1

T
A

(j)
l+1 =

(
B

(i)
l −

(
B

(i)
l

T
v

)
v

)T (
A

(j)
l −

(
A

(j)
l

T
v

)
v

)
∥∥∥∥A(j)

l −
(
A

(j)
l

T
v

)
v

∥∥∥∥
2

=

B
(i)
l

T
A

(j)
l +

(
B

(i)
l

T
v

)(
A

(j)
l

T
v

)(
vT v − 2

)
∥∥∥∥A(j)

l −
(
A

(j)
l

T
v

)
v

∥∥∥∥
2

=

(Dl)ij −
(
B

(i)
l

T
v

)(
A

(j)
l

T
v

)
∥∥∥∥A(j)

l −
(
A

(j)
l

T
v

)
v

∥∥∥∥
2

.

The update per entry can be performed in constant time given the other values in the last expression, which
are already computed. For all the operations on norms, we followed the usual Gram-Schmidt method. In
practice, the exact procedure to perform such updates may require fast and numerically stable techniques
such as Householder transformations, which we do not discuss in this paper. Refinements of this type can
be deferred to another work specifically targeting numerical analysis and stability issues.

2.3. Performance Analysis

In this section, we provide a theorem establishing the performance characteristics of the algorithm in
the general setting, i.e. where B is an arbitrary set of columns. We will essentially bound the number of
columns chosen by the algorithm attaining the desired error δ. The analysis yields an approximation factor
which includes a term related to the smallest singular value of a certain sub-matrix. We begin with the
following definition, which provides a general upper bound for the spectral norm of the pseudo-inverse of any
sub-matrix of a matrix. We would like to note that similar definitions have appeared in [34] while analyzing
algorithms for the sparse approximation problem.

Definition 2.1. [Coherence] Given a matrix A ∈ Rm×n of rank r, let A0 be the matrix A with normalized
columns. Then, η(A) is the maximum of the inverses of the least singular value of m×r full-rank sub-matrices
of A0. Namely,

η(A) = max
C0⊆A0

C0∈Rm×r

rank(C0)=r

1

σr(C0)
. (3)

Theorem 2.2. Greedy chooses a sub-matrix C of no more than
⌈
18Opt(δ/2)η2(A) ln

(
∥B∥F

δ

)⌉
columns,

satisfying

∥CC+B −B∥F ≤ δ
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where C+ is the pseudo-inverse of C and Opt(δ/2) is the number of non-zero rows in an optimal solution
for the generalized sparse approximation problem with error δ/2.

We will prove the theorem in a sequence of lemmas. Most of these lemmas are generalizations of the
ones in [27] and follow a similar reasoning. We extensively use the Cauchy-Schwartz inequality to carry the
results in one dimensional case to the general case for which the Frobenius norm is utilized. We first provide
the following notation which will also be used in the next section: Let t be the total number of iterations of
Greedy. At the beginning of the lth iteration of the algorithm, for 0 ≤ l < t, let Γl be an optimal solution
to the generalized sparse approximation problem with error parameter δ/2, i.e. Γl minimizes

∑n
i=1 νi(X)

over X ∈ Rn×k such that ∥AlX −Bl∥F ≤ δ/2, where νi(X) = 1 if the row X(i) contains non-zero entries,

νi(X) = 0 if X(i) =
−→
0 . Let ν(Γl) =

∑n
i=1 νi(Γl) and Ql = AlΓl. Define

λ = max
0≤l<t

ν(Γl)∥Γl∥2F
∥Bl∥2F

. (4)

Assuming that the Greedy has not terminated, the following lemma states that the next step makes signifi-
cant progress.

Lemma 2.3. For the lth iteration of Greedy, ∥BT
l Al∥col ≥

∥Bl∥2
F

2
√

ν(Γl)∥Γl∥F

.

Proof. We can write B
(j)
l =

(∑n
i=1 A

(i)
l (Γl)ij

)
+ E(j) for j = 1, . . . , k, where E ∈ Rm×k is a matrix such

that ∥E∥F ≤ δ/2, and ∥E(j)∥2 = δj/2 for i = 1, . . . , k for which
∑k

i=1 δ
2
j ≤ δ2. Then,

∥Bl∥2F =
k∑

j=1

B
(j)
l

T
B

(j)
l =

k∑
j=1

n∑
i=1

(Γl)ijB
(j)
l

T
A

(i)
l +

k∑
j=1

B
(j)
l

T
E(j). (5)

We will first bound the double summation in the above expression.

k∑
j=1

n∑
i=1

(Γl)ijB
(j)
l

T
A

(i)
l ≤

n∑
i=1


 k∑

j=1

(Γl)
2
ij

1/2  k∑
j=1

(
B

(j)
l

T
A

(i)
l

)2
1/2


≤ max

1≤i≤n


 k∑

j=1

(
B

(j)
l

T
A

(i)
l

)2
1/2


n∑

i=1

 k∑
j=1

(Γl)
2
ij

1/2

≤ ∥BT
l Al∥col

√
ν(Γl)∥Γl∥F .

The first line is due to Cauchy-Schwartz inequality. The last inequality bounds the double summation in

the second line as follows. Define n dimensional vectors a and b such that ai =
(∑k

j=1 (Γl)
2
ij

)1/2

and bi = 1

if there exists a non-zero entry in the ith row of Γl, bi = 0 if all the elements in the ith row of Γl are zero, for

i = 1, . . . , n. Then, applying Cauchy-Schwartz inequality to a and b, we obtain
∑n

i=1

(∑k
j=1 (Γl)

2
ij

)1/2

=∑n
i=1 aibi ≤

(∑n
i=1 a

2
i

)1/2 (∑n
i=1 b

2
i

)1/2
. Since

∑n
i=1 a

2
i =

∑n
i=1

∑k
j=1 (Γl)

2
ij = ∥Γl∥F

2
, and

∑n
i=1 b

2
i = ν(Γl),

we have that
∑n

i=1

(∑k
j=1 (Γl)

2
ij

) 1
2 ≤

√
ν(Γl)∥Γl∥F .

We will now bound the second term in (5).
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k∑
j=1

B
(j)
l

T
E(j) ≤

k∑
j=1

∥B(j)
l

T
∥
2
∥E(j)∥2 (Cauchy − Schwartz)

=
1

2

k∑
j=1

δj∥B(j)
l

T
∥
2

≤ 1

2

 k∑
j=1

δ2j

1/2  k∑
j=1

∥B(j)
l

T
∥
2

2

1/2

(Cauchy − Scwartz)

≤ 1

2
δ∥Bl∥F

≤ 1

2
∥Bl∥2F ,

where the last inequality is due to the fact that ∥Bl∥F > δ, i.e. the algorithm is still running. Com-

bining these bounds in (5), we have ∥Bl∥2F ≤ ∥BT
l Al∥col

√
ν(Γl)∥Γl∥F + 1/2∥Bl∥2F , which gives ∥Bl∥2F ≤

2∥BT
l Al∥col

√
ν(Γl)∥Γl∥F . The lemma then immediately follows.

Thus, there exists a column in the residual Al which will reduce the residual Bl significantly, because Bl

has a large projection onto this column. Therefore, since every step of Greedy makes significant progress,
there cannot be too many steps, which is the content of the next lemma.

Lemma 2.4. t ≤
⌈
8λ ln

(
∥B∥F

δ

)⌉
, where t is the number of Greedy iterations.

Proof. Let i be the index of the chosen column at step l and let j be a column index of B. Then, by

the execution of the algorithm, B
(j)
l+1 = B

(j)
l −

(
B

(j)
l

T
A

(i)
l

)
A

(i)
l . Since B

(j)
l+1 is orthogonal to A

(i)
l and

∥A(i)
l ∥2 = 1, we can write ∥B(j)

l+1∥
2

2
= ∥B(j)

l ∥
2

2
− |B(j)

l

T
A

(i)
l |

2

. Summing over all column indices of Bl+1, we
obtain

∥Bl+1∥2F =
k∑

j=1

∥B(j)
l+1∥

2

2
=

k∑
j=1

∥B(j)
l ∥

2

2
−

k∑
j=1

|B(j)
l

T
A

(i)
l |

2

= ∥Bl∥2F − ∥B
T
l A

(i)
l ∥

2

2

= ∥Bl∥2F − ∥B
T
l Al∥

2

col

≤ ∥Bl∥2F −
∥Bl∥4F

4ν(Γl)∥Γl∥2F
(Lemma 2.3)

= ∥Bl∥2F

(
1− 1

4λ

)
(Equation (4)),

where the third line follows since the algorithm chooses i to maximize ∥BT
l A

(i)
l ∥2. Hence, ∥Bl∥2F ≤ (1 −

1/4λ)t∥B0∥2F . Since the algorithm stops when ∥Bt∥2F ≤ δ2, it suffices for t to satisfy (1−1/4λ)t∥B0∥2F ≤ δ2.

Rearranging, and taking logarithms we obtain t ln(1− 1/4λ) ≤ ln(δ2/∥B0∥2F ). Since ln(1− 1/4λ) ≤ −1/4λ
from Taylor series expansion, we get that t ≥ 4λ ln(∥B∥2F /δ2) = 8λ ln(∥B∥F /δ) iterations are enough for
Greedy to terminate.
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What remains is to bound λ. First, we will bound ∥Γl∥F in terms of ∥Bl∥F both of which appear in the

expression for λ. Let πl = {i|(Γl)(i) ̸=
−→
0 } be the indices of rows of Γl which are not all zero. Recall that

these indices denote which columns are chosen by the optimal solution for Al. Let τl = {i1, i2, . . . , il} be the
indices of the first l columns picked by the algorithm. Given an index set γ, let the set of column vectors
{A(i)|i ∈ γ} be denoted by γ(A).

Lemma 2.5. πl(A0) ∪ τl(A0) is a linearly independent set for all l ≥ 0.

Proof. Note that for l = 0, we only have π0(A0) and by the definition of the optimality of U0, this set
should be linearly independent. For l ≥ 1, we will argue by contradiction. Assume that the given set,
πl(A0) ∪ τl(A0) is not a linearly independent set. Hence, some linear combination of some vectors from the
set sum to 0. Since, by the execution of the algorithm, τl(A0) is a linearly independent set, at least one of
these vectors should be from πl(A0), and this vector u can be written as a linear combination of some other
vectors in πl(A0) ∪ τl(A0). To this end, recall that πl denotes the indices of columns of Al chosen by the
optimal solution Γl, and πl(A0) is the set of columns of A0 with these indices. Consider a column vector
v in πl(A0). According to the algorithm, at the end of the lth iteration, the residual vector vl (which is in
πl(Al)) is precisely the projection of v onto the space orthogonal to the vectors chosen by the algorithm,
namely τl(A0). Since this is the case for all possible v’s, we have that πl(Al) is the projection of πl(A0)
onto the space orthogonal to τl(A0). Hence, according to our last assumption, ul which is the projection
of u onto the space orthogonal to τl(A0) can be expressed as a linear combination of some other vectors in
πl(Al) since no vector from τl(A0) can contribute in the expansion of ul. This contradicts the optimality of
Γl, i.e. that the number of columns it “selects” from Al is the smallest among all possible choices.

Lemma 2.6. For 0 ≤ l < t, ∥Γl∥F ≤
3
2η(A)∥Bl∥F .

Proof. Consider the column indices {i1, i2, . . . , il} of the first l vectors chosen by the algorithm. Specifically,

let τl(Al) = {A(i1)
l , A

(i2)
l , . . . , A

(il)
l } be the columns in Al chosen by the algorithm in the order selected. Note

that these vectors are orthogonal due to the algorithm. At the end of the lth iteration of the algorithm, for
i ∈ πl, we can write

A
(i)
l =

A
(i)
l−1 − v

(i)
l√

1− ∥v(i)l ∥
2

2

, (6)

where v
(i)
l is in the span of A

(il)
l and

√
1− ∥v(i)l ∥

2

2
is the normalization factor implied by the algorithm.

Similarly, we can express A
(i)
l−1 in terms of A

(i)
l−2, i.e.

A
(i)
l−1 =

A
(i)
l−2 − v

(i)
l−1√

1− ∥v(i)l−1∥
2

2

,

where v
(i)
l−1 is in the span of A

(il−1)
l . Note that, since the vectors in τl(Al) are orthogonal, we have

∥v(i)l + v
(i)
l−1∥

2

2
= ∥v(i)l ∥

2

2
+ ∥v(i)l−1∥

2

2
. Using this, we can recursively express A

(i)
l in (6) as

A
(i)
l =

A0
(i) − v(i)√

1− ∥v(i)∥22
, (7)

for some v(i) ∈ span(τl(A0)). (Note that span(τl(Al) = span(τl(A0))). Thus, noting thatQ
(j)
l =

∑
i∈πl

A
(i)
l (Γl)ij ,

and v(i) can be expressed as a linear combination of the column vectors of τl(A0), we have

Q
(j)
l =

∑
i∈πl

(Γl)ij
A0

(i) − v(i)√
1− ∥v(i)∥22

=
∑
i∈πl

(Γl)ij√
1− ∥v(i)∥22

A0
(i) +

∑
i∈τl

δiA0
(i), (8)
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where δi’s are appropriate coefficients in the expansion of v(i). Now, let Sl be the matrix of the columns from
πl(A0) ∪ τl(A0). Note that, Sl is a column sub-matrix of A0 which has full rank by Lemma 2.5. Since Sl is
a linearly independent set, Ql has a unique expansion in the basis Sl given by Wl = S+

l Ql. Specifically, for

i ∈ πl, (Wl)ij = (Γl)ij/

√
1− ∥v(i)∥22, and for i ∈ τl, (Wl)ij = δi. Since

√
1− ∥v(i)∥22 < 1, |(Γl)ij | ≤ |(Wl)ij |

for i ∈ πl. For i ∈ τl, we have (Γl)ij = 0 and hence trivially |(Γl)ij | ≤ |(Wl)ij |. Applying this inequality

to the jth column of Γl, we obtain ∥Γ(j)
l ∥2 ≤ ∥Wl

(j)∥2 ≤ ∥S
+
l ∥2∥Q

(j)
l ∥2. The last inequality is due to sub-

multiplicativity of the spectral norm. Since ∥AlΓl −Bl∥F = ∥Ql −Bl∥F ≤ δ/2, we have Q
(j)
l = B

(j)
l +E(j),

where E is a matrix with ∥E∥F ≤ δ/2. We then obtain

∥Γl∥2F =
k∑

j=1

∥Γ(j)
l ∥

2

2

≤ ∥S+
l ∥

2

2

k∑
j=1

∥Q(j)
l ∥

2

2

≤ ∥S+
l ∥

2

2

k∑
j=1

(
∥B(j)

l + E(j)∥
2

2

)

≤ ∥S+
l ∥

2

2

k∑
j=1

(
∥B(j)

l ∥2 + ∥E
(j)∥2

)2

,

where the last step is due to the triangle inequality. We continue by expanding the last expression and note

that ∥E∥F ≤ δ/2, which implies
∑k

j=1 ∥E(j)∥22 ≤ δ2/4:

∥Γl∥2F ≤ ∥S
+
l ∥

2

2

k∑
j=1

(
∥B(j)

l ∥2 + ∥E
(j)∥2

)2

= ∥S+
l ∥

2

2

 k∑
j=1

∥B(j)
l ∥

2

2
+

k∑
j=1

∥E(j)∥
2

2 + 2
k∑

j=1

∥B(j)
l ∥2∥E

(j)∥2


≤ ∥S+

l ∥
2

2

∥Bl∥2F +
δ2

4
+ 2

k∑
j=1

∥B(j)
l ∥2∥E

(j)∥2


≤ ∥S+

l ∥
2

2

5

4
∥Bl∥2F + 2

k∑
j=1

∥B(j)
l ∥2∥E

(j)∥2

 (∥Bl∥F > δ).

Applying the Cauchy-Schwartz inequality to the second term in the parentheses, we obtain
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∥Γl∥2F ≤ ∥S
+
l ∥

2

2

5

4
∥Bl∥2F + 2

 k∑
j=1

∥B(j)
l ∥

2

2

1/2  k∑
j=1

∥E(j)∥
2

2

1/2


= ∥S+
l ∥

2

2

(
5

4
∥Bl∥2F + 2∥Bl∥F ∥E∥F

)
≤ ∥S+

l ∥
2

2

(
5

4
∥Bl∥2F + δ∥Bl∥F

)
(∥E∥F ≤ δ/2)

≤ ∥S+
l ∥

2

2

(
5

4
∥Bl∥2F + ∥Bl∥2F

)
(∥Bl∥F > δ)

=
9

4
∥S+

l ∥
2

2
∥Bl∥2F .

Hence, we have ∥Γl∥F ≤
3
2∥S

+
l ∥2∥Bl∥F . Now, note that the rank of Sl is less than or equal to r, the rank of

A0. Sl can be obtained by deleting columns of a full-rank sub-matrix C0 of A0, which has exactly r columns.
∥S+

l ∥2, which is the inverse of the least singular value of Sl is smaller than that of such a matrix C0 (see

[20], Thm 8.1.7). Then, by the definition of η(A), we clearly have ∥S+
l ∥2 ≤ ∥C0

+∥2 ≤ η(A) and the lemma
follows.

We can now prove the main theorem. Recall that Opt(δ/2) is the number of non-zero rows in an optimal
solution for the generalized sparse approximation problem with error δ/2.

Proof of Theorem 2.2:. We first note that the number of non-zero rows in an optimal solution is non-
increasing as the algorithm proceeds, that is ν(Γl) ≥ ν(Γl+1) for l > 0. Let Γ be an optimal solution to
∥AX −B∥F ≤ δ/2. Then, since A0 = AD for some diagonal scaling matrix D, we have that the matrix
Γ0 = D−1Γ is an optimal solution to ∥A0X −B∥F ≤ δ/2. Clearly, the number of non-zero rows in Γ0 is the
same as that of Γ. Thus, Opt(δ/2) = ν(Γ0) and we get

λ = max
0≤l<t

ν(Γ0)∥Γl∥2F
∥Bl∥2F

≤ 18Opt(δ/2)η2(A),

where the inequality is due to Lemma 2.6. Combining this with Lemma 2.4, we have that the number of
iterations of the algorithm is bounded by

t ≤
⌈
18Opt(δ/2)η2(A) ln

(
∥B∥F
δ

)⌉
.

We finally note that due to the algorithm, each column of AX is a linear combination of the selected columns
C. Thus, there exists a c× k coefficient matrix Ω such that AX = CΩ. Since

min
Y ∈Rc×k

∥CY −B∥F = ∥CC+B −B∥F ,

we have that the selected columns satisfy ∥CC+B −B∥F ≤ ∥CΩ−B∥F = ∥AX −B∥F ≤ δ. This completes
the proof.

. In the next section, we show that if B is chosen to span the subspace defined by the first k singular vectors
of the matrix A, Opt(δ/2) has some desired properties. We also show how Theorem 2.2 can be used to
bound ∥A− CC+A∥F , yielding the main result.
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Algorithm 2 The SVD Approximation Algorithm

1: procedure ApproximateSVD(A, k)
2: compute Uk and Σk of A
3: return Greedy(A, UkΣk, ϵ∥A−Ak∥)
4: end procedure

2.4. Greedy Approximation of SVD

The algorithm for approximating the truncated SVD of A is based on the greedy approach that we have
introduced for the generalized sparse approximation problem.

The algorithm first computes Uk, the top k left singular vectors of A and Σk the first k singular values
of A, which can be performed by standard Lanczos-type methods. The columns of A are then selected in a
greedy fashion so as to “fit” them to the subspace spanned by the columns of UkΣk. Intuitively, we select
columns of A which are close to the columns of UkΣk and the analysis shows that the sub-matrix C of A
we obtain is provably close to the “best” rank-k approximation to A. The error parameter δ which is given
as an input to Greedy is ϵ∥A−Ak∥F . The choice of this parameter determines the additive error in the
result and is crucial for the analysis. Recall from previous section that the number of columns chosen by the
greedy algorithm for generalized sparse approximation problem depends on Opt(δ/2) which is the number
of columns in an optimal solution at error δ/2. A major part of this section is devoted to show the existence
of an optimal solution satisfying certain criteria, given the parameters for the algorithm in this section. The
following lemma will establish this.

Lemma 2.7. Given a matrix A ∈ Rm×n, there exists a matrix Γ ∈ Rn×k which satisfies

1. ν(Γ) = O(k log k/ϵ2) (the number of non-zero rows)

2. ∥UkΣk −AΓ∥F ≤ ϵ∥A−Ak∥F .

Proof. We will make use of a result which is originally provided in [17]. The authors give a randomized
algorithm which constructs, with non-zero probability, a set of columns with a particular approximation
property which immediately translates to an existence result by the probabilistic method. For a set of
columns C ⊂ A, denote the sampling matrix which selects the columns by S ∈ Rn×c so that C = AS.
Consider also a diagonal matrix D ∈ Rc×c which scales the selected columns C. Let Vk be the matrix of the
first k right singular vectors of A. Let Vr−k be the matrix containing the last r− k right singular vectors of
A, and let Σk and Σr−k be the diagonal matrices containing the first k and the last r− k singular values of
A. The full proof of this result appears in [18] (Sections 6.3.1 and 6.3.5) by the same authors, in a slightly
different context.

Lemma 2.8 ([18]). There exists a randomized algorithm which selects a set of c = O(k log k/ϵ2) columns
from A, with the corresponding sampling matrix S ∈ Rn×c satisfying C = AS, and a diagonal scaling matrix
D ∈ Rc×c such that rank(V T

k SD) = rank(Vk) and

∥Σr−kV
T
r−kSD(V T

k SD)+∥
F
≤ ϵ∥A−Ak∥F ,

where Σr−k is the diagonal matrix containing the smallest r−k singular values of A, and Vr−k is the matrix
containing the last r − k right singular vectors of A.

We will show that the matrix Γ = S(AS)+UkΣk ∈ Rn×k satisfies the claims given in Lemma 2.7, where
S is the matrix mentioned in Lemma 2.8. First, note that S ∈ Rn×c is a sampling matrix which has a
single entry of 1 in each column. Then, the resulting matrix Γ has at most c non-zero rows, which means
ν(Γ) ≤ c = O(k log k/ϵ2). This establishes the first claim.

We establish the second claim as follows: Let C = AS be the column sub-matrix whose existence is
guaranteed by Lemma 2.8. We have
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ϵ2∥A−Ak∥2F ≥ ∥Σr−kV
T
r−kSD(V T

k SD)+∥2
F

= ∥Σk − ΣkV
T
k SD(V T

k SD)+∥2F + ∥Σr−kV
T
r−kSD(V T

k SD)+∥2
F
,

where the first term in the last expression is just 0 as V T
k SD(V T

k SD)+ = Ik. Combining the last two terms
into one expression, we have

ϵ2∥A−Ak∥2F ≥
∥∥∥∥( Σk

0

)
−
(

ΣkV
T
k

Σr−kV
T
r−k

)
SD(V T

k SD)+
∥∥∥∥2
F

=

∥∥∥∥( Σk

0

)
−
(

Σk 0
0 Σr−k

)(
V T
k

V T
r−k

)
SD(V T

k SD)+
∥∥∥∥2
F

=

∥∥∥∥( Σk

0

)
− (ΣV TSD)(ΣkV

T
k SD)+Σk

∥∥∥∥2
F

=

∥∥∥∥( Σk

0

)
− (ΣV TSD)Y

∥∥∥∥2
F

,

where Y = (ΣkV
T
k SD)+Σk. Let A,B be arbitrary matrices. Then, minX ∥A−BX∥F

2
= ∥A−BB+A∥F

2

(see [20]). We continue as follows:

∥∥∥∥( Σk

0

)
− (ΣV TS)Y

∥∥∥∥2
F

≥ min
X∈Rc×k

∥∥∥∥( Σk

0

)
− (ΣV TSD)X

∥∥∥∥2
F

=

∥∥∥∥( Σk

0

)
− (ΣV TSD)(ΣV TSD)+

(
Σk

0

)∥∥∥∥2
F

=

∥∥∥∥( Ik
0

)
Σk − (ΣV TSD)(ΣV TSD)+

(
Ik
0

)
Σk

∥∥∥∥2
F

=

∥∥∥∥U (
Ik
0

)
Σk − (UΣV TSD)(ΣV TSD)+UTUkΣk

∥∥∥∥2
F

=
∥∥UkΣk − (UΣV TSD)(UΣV TSD)+UkΣk

∥∥2
F

=
∥∥UkΣk −ASD(ASD)+UkΣk

∥∥2
F

=
∥∥UkΣk −AS(AS)+UkΣk

∥∥2
F

= ∥UkΣk −AΓ∥2F

where we have used UΣV T = A and (ASD)+ = D+(AS)+. This establishes the second claim and the
lemma.

We now, give the proof of Theorem 1.1.

Proof of Theorem 1.1:. First, note that AΓ = AS(AS)+UkΣk = CC+UkΣk. By Theorem 2.2, we have

UkΣk = CC+UkΣk + E

for some matrix E satisfying ∥E∥F ≤ ϵ∥A−Ak∥F . Multiplying both sides by V T
k , we get

UkΣkV
T
k = CC+UkΣkV

T
k + EV T

k ,
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which is clearly

Ak = CC+Ak + EV T
k .

Rearranging and adding A to the both sides of the equation, we obtain A − CC+Ak = A − Ak + EV T
k .

Taking norms of both sides, and noting that C+A is the minimizer of ∥A− CX∥F over X, we obtain

∥A− CC+A∥F ≤ ∥A− CC+Ak∥F
= ∥A−Ak + EV T

k ∥F ,
≤ ∥A−Ak∥F + ∥E∥F ∥V T

k ∥2
≤ ∥A−Ak∥F + ϵ∥A−Ak∥F
= (1 + ϵ)∥A−Ak∥F .

Third line follows due to the triangle inequality and sub-multiplicativity of the Frobenius norm. The fourth
line is due to the fact that ∥E∥F ≤ ϵ∥A−Ak∥F and ∥V T

k ∥2 = 1. Combining Theorem 2.2 and Lemma 2.7
gives the desired result.

3. Numerical Results

In this section, we present numerical experiments using the algorithm ApproximateSVD, comparing it to
a few other significant algorithms providing bounds for the performance metric we have analyzed, in the case
of exactly k columns are chosen. We report the error ratios ∥A− CC+A∥2/∥A−Ak∥2, ∥A− CC+A∥F /∥A−Ak∥F
for various matrices and different values of k along with the running times on one of the matrices. We make
use of 3 different types of n×n matrices for n = 400 and n = 1000, a total of 6 different matrices. Running
times are only reported for n = 1000. Below are the matrices that are used in our experiments:

• Log: a random matrix A with singular values equally spaced between 1 and 10− logn. More specifically,
A = UΣV T , where Σ is the diagonal matrix with entries of the logarithmic distribution, and U and
V are random orthogonal matrices.

• Scaled Random: a random matrix A created by assigning each entry a number between −1 and 1 from
uniform distribution, and then scaling the ith row of that matrix by (20ϵ)i/n where ϵ is the machine
precision. In our case, ϵ = 2.22 · 10−16. This matrix was utilized in [21].

• Kahan: a matrix

A =


1 0 . . . 0
0 ζ . . . 0
...

...
. . .

...
0 0 . . . ζn−1

 ·

1 −ϕ . . . −ϕ
0 1 . . . −ϕ
...

...
. . .

...
0 0 . . . 1


with ζ, ϕ > 0, and ϕ2 + ζ2 = 1. Kahan matrices are first mentioned in [24]. These matrices have low
numerical rank and they provably yield bad results for the commonly used pivoted QR algorithm [6].
Along the same lines in [21], we set ϕ = 0.285 for our experiments.

The variation in the results were negligible with respect to the random choices in the construction of the
first two classes of matrices, hence we report results of one randomly generated matrix in each class. We have
implemented the following 3 algorithms in C++ along with ApproximateSVD and performed experiments
on an Intel Core 2 Duo T4200 at 2.16 Ghz, 4 GB machine:
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• Pivoted-QR: The algorithm of Golub and Businger [6]. [21] shows that it chooses a sub-matrix C
satisfying ∥A− CC+A∥2 ≤ 2k

√
n− k∥A−Ak∥2. We report the running times of choosing exactly k

columns, not of a complete decomposition.

• Low-RRQR: The algorithm introduced by Chan and Hansen in [8], which provides ∥A− CC+A∥2 ≤
2k+1

√
(k + 1)n∥A−Ak∥2. This algorithm also involves computation of a singular vector at each

iteration, and requires a full QR decomposition as a preliminary step. We report the running times
including this preliminary step for which we used pivoted-QR, followed by k iterations of the algorithm.

• Hybrid: The algorithm by Boutsidis et al. [4], which combines random sampling techniques and

deterministic approaches. It guarantees ∥A− CC+A∥F = Θ
(
k log1/2 k

)
∥A−Ak∥F . We report the

error ratios of the algorithm run using the specific sampling distribution tailored to the norm. This
algorithm first chooses (on average) c columns randomly of the matrix A. These columns are related
to the right singular vectors of A. It then makes use of a deterministic procedure to cut down the
number of columns to k. The number c is theoretically of order O(k log k), but in practice the authors
suggest to use a value between 2k and 10k [3]. We have chosen c = 6k and used Pivoted-QR algorithm
as the deterministic step. We run the algorithm 40 times to boost the success probability and get the
best error ratio, as suggested in [4].

For the computation of a partial SVD (top k singular values and singular vectors), which are required
for Hybrid and ApproximateSVD, we have used a C version of the SVDPACK library [2], which utilizes
Lanczos-type methods.

k
∥A− CC+A∥2/∥A−Ak∥2 ∥A− CC+A∥F /∥A−Ak∥F

P-QR L-RRQR Hybrid AprxSVD P-QR L-RRQR Hybrid AprxSVD
1 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035
2 1.042 1.058 1.007 1.003 1.030 1.029 1.039 1.020
3 1.069 1.093 1.019 1.005 1.042 1.045 1.049 1.034
4 1.105 1.101 1.060 1.045 1.055 1.062 1.068 1.042
5 1.137 1.116 1.117 1.035 1.072 1.074 1.072 1.051
6 1.130 1.144 1.079 1.042 1.089 1.092 1.089 1.064
7 1.153 1.160 1.114 1.093 1.098 1.104 1.109 1.075
8 1.192 1.195 1.125 1.094 1.111 1.120 1.114 1.083
9 1.233 1.213 1.189 1.110 1.128 1.136 1.145 1.097
10 1.275 1.220 1.202 1.130 1.145 1.147 1.151 1.107
20 1.500 1.404 1.409 1.256 1.274 1.266 1.296 1.222
30 1.508 1.678 1.533 1.406 1.372 1.395 1.404 1.327
40 1.813 1.678 1.668 1.536 1.483 1.509 1.522 1.432
50 1.935 1.896 1.851 1.612 1.596 1.621 1.582 1.539

Table 1: Error ratios of Low-Rank Approximation Algorithms for Log 400× 400. In bold for each k is the best method.

We show the error ratios of the algorithms on matrices of size 400×400 in Tables 1, 2 and 3. The behavior
of the algorithms on the matrices of size 1000×1000 are quite similar, and for convenience we give the results
for these matrices in Figures 1(a) to 3(b). In Frobenius norm, ApproximateSVD consistently outperforms
the other algorithms tested, especially when k is small. This is due to the rationale of the algorithm, that it is
trying to choose column vectors whose span is as close as possible to Ak. It is intuitively reasonable to expect
that the distance between any column vector to the subspace chosen by ApproximateSVD should be close
to the distance between that vector to the optimal subspace, which is quantitatively expressed via the ratio
of the Frobenius norm errors. The only exception is the matrix Scaled Random for large values of k. Note
that, even the Pivoted-QR algorithm works very well for this type of matrix. ApproximateSVD also presents
very good results in spectral norm except small values of k on Kahan. Low-RRQR gives the best results

14



k
∥A− CC+A∥2/∥A−Ak∥2 ∥A− CC+A∥F /∥A−Ak∥F

P-QR L-RRQR Hybrid AprxSVD P-QR L-RRQR Hybrid AprxSVD
1 1.015 1.015 1.015 1.015 1.080 1.080 1.080 1.080
2 1.119 1.042 1.067 1.016 1.067 1.048 1.073 1.040
3 1.118 1.060 1.115 1.024 1.085 1.080 1.097 1.069
4 1.231 1.185 1.108 1.042 1.119 1.121 1.129 1.095
5 1.101 1.164 1.120 1.078 1.135 1.136 1.160 1.111
6 1.183 1.213 1.192 1.079 1.154 1.158 1.218 1.142
7 1.225 1.173 1.213 1.132 1.191 1.167 1.223 1.168
8 1.276 1.234 1.161 1.090 1.219 1.192 1.215 1.190
9 1.339 1.257 1.305 1.158 1.249 1.210 1.258 1.231
10 1.317 1.328 1.307 1.307 1.265 1.233 1.282 1.241
20 1.577 1.597 1.676 1.417 1.450 1.435 1.451 1.456
30 1.673 2.137 1.527 1.723 1.621 1.705 1.695 1.708
40 2.067 2.171 1.997 1.912 1.753 1.833 1.845 1.905
50 2.222 1.939 1.936 2.244 1.936 1.935 1.929 2.085

Table 2: Error ratios of Low-Rank Approximation Algorithms for Scaled Random 400 × 400. In bold for each k is the best
method.

k
∥A− CC+A∥2/∥A−Ak∥2 ∥A− CC+A∥F /∥A−Ak∥F

P-QR L-RRQR Hybrid AprxSVD P-QR L-RRQR Hybrid AprxSVD
1 10.343 10.343 10.343 10.343 4.383 4.383 4.383 4.383
2 8.539 1.342 1.314 1.308 2.759 1.064 1.103 1.063
3 9.401 1.308 1.387 1.381 2.879 1.084 1.069 1.068
4 9.806 1.320 1.388 1.381 2.989 1.083 1.068 1.068
5 10.218 1.343 1.394 1.381 3.102 1.083 1.068 1.068
6 10.638 1.264 1.383 1.381 3.216 1.103 1.069 1.068
7 11.063 1.273 1.594 1.381 3.332 1.101 1.123 1.068
8 11.496 1.296 1.619 1.381 3.450 1.099 1.121 1.068
9 11.988 1.248 1.622 1.381 3.579 1.122 1.141 1.068
10 12.449 1.250 1.642 1.381 3.705 1.119 1.113 1.068
20 17.340 1.321 1.612 1.381 5.055 1.136 1.114 1.068
30 18.477 1.406 1.612 1.382 5.373 1.183 1.117 1.068
40 18.215 1.589 1.612 1.382 5.300 1.181 1.133 1.068
50 15.633 1.437 1.612 1.382 4.580 1.141 1.114 1.068

Table 3: Error ratios of Low-Rank Approximation Algorithms for Kahan 400× 400. In bold for each k is the best method.

Table 4: Running times of Low-Rank Approximation Algorithms for Scaled Random 1000× 1000

k P-QR L-RRQR Hybrid AprxSVD
5 0.047 2.359 2.235 0.375
10 0.078 2.625 3.235 0.501
20 0.140 3.047 4.875 0.891
30 0.203 3.468 7.001 1.079
40 0.265 4.234 8.985 1.468
50 0.359 4.313 12.359 1.922
75 0.453 5.109 19.078 2.798
100 0.578 6.063 25.546 3.687
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for small k on this matrix. We would like to note that, Low-RRQR is an algorithm that greedily selects a
column which is close to the singular vector associated with the largest singular value of the “uncovered”
space at each step, whereas our algorithm computes the k dimensional space to be approximated at the
beginning. Hence, Low-RRQR gives better results in spectral norm for low-rank matrices with rapidly
decreasing singular values, like Kahan. We would also like to note that the error ratios of the algorithms
which make use of the k-dimensional subspace spanned by Ak, namely Hybrid and ApproximateSVD stay
constant for large values of k, as the column subspace is pretty much determined by the leading first few
singular vectors of the matrix. Pivoted-QR performs poorly on Kahan as expected.

Table 4 gives the running times of the algorithms on the 1000×1000 Scaled Random matrix. Pivoted-QR
is the fastest algorithm, and ApproximateSVD is faster than Low-RRQR. If the time-consuming preliminary
decomposition in Low-RRQR is disregarded, these two algorithms have quite similar behavior in terms of
running time. Hybrid is the slowest of all due to the large number of repetitions.

4. Discussion

This work is a modest attempt to bridge the gap between sparse approximation and low-rank matrix
approximation. We have presented an algorithm that approximates the space spanned by the top k left
singular vectors of a matrix A by solving a generalization of the sparse approximation problem. The bulk
of the analysis is based on the generalized case of approximating an arbitrary space. Hence, the term η(A)
that appears in the analysis is in fact a general bound. We believe that a more refined analysis focusing on
the specific problem of approximating Uk will yield much better theoretical guarantees. As an example, a
direct existence result in the special case eliminating η(A) is likely in Lemma 2.6. In practice, the algorithm
gives superior results than the theoretical guarantees suggest. A smoothed analysis [33] might give further
insight into the performance of the algorithm.

Acknowledgments: We would like to thank the anonymous referees for their helpful comments.
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