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Abstract:

Covariance matrices capture correlations that are invaluable in

modeling real-life datasets. Using all d
2 elements of the covariance

(in d dimensions) is costly and could result in over-fitting; and the

simple diagonal approximation can be over-restrictive. In this work,

we present a new model, the Low-Rank Gaussian Mixture Model

(LRGMM), for modeling data which can be extended to identifying

partitions or overlapping clusters. The curse of dimensionality that

arises in calculating the covariance matrices of the GMM is countered

by using low-rank perturbed diagonal matrices. The efficiency is

comparable to the diagonal approximation, yet one can capture

correlations among the dimensions. Our experiments reveal the

LRGMM to be an efficient and highly applicable tool for working with

large high-dimensional datasets.
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1 Introduction

Fitting models to a dataset or clustering samples based on some metric are useful
tools in better understanding internal structures (e.g. communities) or identifying
the underlying distribution of the data, like Ramdane et al. (2010) and Wan et al.
(2009). With the rise of Internet-based social networking, there are increasingly
larger and larger datasets to process. Although the runtime of clustering and
modeling algorithms can be decreased by dimension reduction like Garg and Murty
(2009), the advantage may be outweighed by the loss of information. Since the
sample covariance matrices provide important information about the probability
distribution of the samples, we address the high statistical and computational
complexity of the covariance matrix introduced by the quadratic dependence on d,
the data dimension. An additional drawback of the full covariance matrix in high
dimension is that the additional O(d2) parameters can lead to heavy overfitting.
In order to address these difficulties, we propose a new matrix decomposition.

Due to the computational cost associated with the full covariance matrix,
an approximation of the covariance matrix is often used instead. The problem
then becomes one of balancing computational cost with accuracy. A simple
approximation is to use the diagonal of the covariance matrix or, in other
words, use only the dimension by dimension variances. As we explore further in
Section 3, there are several other proposed approximations which mostly utilize
decompositions of the covariance matrix, but which are not suitable for GMMs.

The LRGMM model preserves most of the structure of the full sample-based
covariance matrix while maintaining a training time that is linear in d. Thus, it
is computationally comparable to the diagonal approximation of the covariance
matrix while yielding a more accurate model. We also demonstrate that the
LRGMM does not succumb as much to over fitting the data. Our method is tested
against the diagonal approximation and the full covariance matrix for Gaussian
Mixture Models. The accuracy and runtime performances of the LRGMM are then
compared to using full covariance matrices and diagonal matrix approximations.
This comparison is performed on both synthetic and real-world data.

2 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is ubiquitous both in general and within
computer science. It has been applied to a variety of problems ranging across topics
such as clustering, image segmentation, computational finance, speech recognition,
and biometrics. It is also the foundation of our work presented in this paper, so
we briefly review this model. Formally, a mixture model is a linear combination of
component densities p(x|i) and is defined by

p(x) =

M
∑

i=1

p(x|i)πi. (1)

For the GMM, the component densities are Gaussian (Normal) densities, where
component i is specified by its center, µi, and variance, σ2

i .
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Given a set of N data samples, xn, n = 1 . . . N , the goal is to use them to
calculate the parameters of our GMM. The likelihood of a GMM is defined by
L =

∏N
n=1 p(xn). We can write this into an error function to be minimized,

E = − lnL = −
N
∑

n=1

ln p(xn) = −
N
∑

n=1

ln

{

M
∑

i=1

p(xn|i)πi

}

. (2)

In most cases, including this paper, this error function is minimized by the
Expectation-Maximization (EM) algorithm. The details for this algorithm are well
detailed by Bishop (1995). Also, extending these equations to multiple dimensions
is fairly straightforward and also well known.

Random initial parameters often lead to local optimum and require several runs
before finding an acceptable result. A more common solution for initial parameters
is to use K-means clustering. With K-means clustering we can quickly find initial
clusters and their centers. The covariance matrices and mixture weights can also
be calculated from each cluster. An additional measure is to use K-means with
M lnM random initial centers and ignore the lnM smallest clusters as in Dasgupta
and Schulman (2000). While these approaches will not eliminate the problem of
local minima, which is a byproduct of the error function, in practice they will
greatly reduce the chance that the local minima found will be far from the true
distribution of the data. We note that there are algorithms that can detect an
optimal number of clusters, such as Jing et al. (2009), but we have chosen our
method to maintain a linear runtime.

3 Covariance Matrix Approximation

3.1 Problem Definition

The covariance is the defining characteristic of the GMM. Typically the EM
algorithm is used for training a GMM on a given dataset. The expectation step
uses the inverse of the covariance matrix to calculate the probability of each sample
and the maximization step updates the covariance matrix using these probabilities.
The runtime of a single step of this EM algorithm is O(NMd2), where we have
N data samples and M mixtures in the model. This can be prohibitive for
high dimension problems, and thus one often uses an approximation to the full
covariance. The ideal approximation for the full covariance is one that is not only
accurate and calculated quickly, but also has an inverse that can be efficiently used
to calculate sample probabilities quickly.

Since we are focusing on the GMM, our metric is the log likelihood.

lnL = −
1

2

N
∑

i=1

(xi − µ)T Σ̂−1(xi − µ) +
N

2
ln |Σ̂−1| −

Nd

2
ln 2π , (3)

where N is the number of samples, d is the sample dimension, and Σ̂ is the
estimate of Σ. Our discussion will focus on a single component. All our arguments
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extend to mixtures with multiple components. After differentiating, the log
likelihood is maximized for

µ =
1

N

N
∑

i=1

xi Σ =
1

N

N
∑

i=1

(xi − µ)(xi − µ)T . (4)

This can be computed in O(Nd2). The basic analytic task we address is how to
efficiently choose Σ̂, under a sparsity constraint, so as to do so efficiently.

3.2 Previous Work

There are many methods of matrix approximation, each having their advantages
and drawbacks. One common approach to matrix approximation is by
decomposition. In Pourahmadi (2007), the author notes the difficulty of estimating
positive definite matrices and uses decompositions to address the problem. The
Cholesky decomposition is shown as a better decomposition than variance-
correlation or spectral decomposition. However, the time complexity of the
Cholesky decomposition is quadratic with respect to the dimension of the matrix.

There has been some work in covariance matrix approximations. These
involve a variety of approaches, mainly decomposition like El Karoui (2008)
and Pourahmadi (2007), statistical estimation like Haan and Levin (1997), and
using assumptions on the matrix such as Chaudhuri et al. (2007) and Astrand
et al. (2007). These previous approaches each suffer from one of two drawbacks: a
time complexity that grows quadratically with the data dimension or inability to
be efficiently inverted.

Our Contribution: We have proposed a new matrix decomposition to
approximate the covariance matrices of a Gaussian Mixture Model. We use
a low-rank perturbation of a diagonal matrix and approximate the inverse of
the covariance matrix. The conjugate gradient method is used to optimize the
parameters with respect to the log probability formula of a GMM. By exploiting
the structure of the covariance matrix and approximating its inverse, we develop
an algorithm that is bounded linearly with respect to sample dimension, making
it comparable to the diagonal approximation.

4 Approximating the Full Covariance

4.1 Diagonal Approximation

First we will cover the diagonal approximation. We rewrite our log likelihood
equation with the diagonal matrix D, where ∆xt = xn − µ and Σ̂ = D ≈ Σ =
1
N

∑N
n ∆xn∆xT

n

lnL = −
1

2

N
∑

n=1

(xn − µ)T D−1(xn − µ) +
N

2
ln |D−1| −

Nd

2
ln 2π (5)
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which is maximized when we minimize

ε =
1

N

N
∑

n=1

∆xT
nD−1∆xn − ln |D−1| (6)

=
1

N

N
∑

n=1

d
∑

i=1

∆xn(i)2

Dii

−

d
∑

i=1

ln
1

Dii

. (7)

We can now solve analytically for D by setting the derivative to zero

∂ε

∂Dii

=
1

N

N
∑

n=1

∆xn(i)2 −Dii = 0,Dii =
1

N

N
∑

n=1

∆xn(i)2.

The derivation is given in Section (5). With the diagonal constraint, the maximizer
of lnL is the diagonal of Σ. This can be computed in O(Nd), but loses all off-
diagonal correlations. This loss can be seen in Figure 1, where we compare models
resulting from a full covariance matrix with those using a diagonal matrix

4.2 Optimal Rank-k Decomposition

Another popular decomposition is the eigenvalue decomposition Σ =
∑k

i=1 λiuiu
T
i ,

where λi and ui are the ith eigenvalue and eigenvector of Σ. This is the optimal
rank-k decomposition under any unitarily invariant norm. However, this is not an
invertible decomposition and so it is not appropriate for GMMs which use Σ−1.

5 Low-Rank Perturbed Diagonal Decomposition (LRPDD)

Our approximation to Σ is using a low-rank perturbation of a diagonal matrix

Σ−1 ≈ D2 + aaT (8)

where D is our diagonal matrix and a is a d-dimensional vector that defines the
low-rank perturbation. We use D2 to ensure the approximation is positive semi-
definite without having to add constraints

The log-likelihood of a GMM, using this approximation is

lnL = −
1

2

N
∑

n=1

(xn − µ)T (D2 + aaT )(xn − µ)

+
N

2
ln |(D2 + aaT )| −

Nd

2
ln 2π (9)

where N is the number of samples and d is the sample dimension. Our goal is to
maximize Eqn. (9). Thus, our optimization problem is to minimize

ε =
1

N

N
∑

n=1

(xn − µ)T (D2 + aaT )(xn − µ)− ln |(D2 + aaT )| (10)
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Figure 1 Alphabet data fitted by GMMs with Full and Diagonal Matrix

where D is a diagonal matrix with diagonal elements Dii, and a is a vector
[a1, . . . , ad]

T . We may also formulate ε as

ε = ||Σ−1 − (D2 + aaT )||2F (11)

for a given Σ, where ||x||F is the Frobenius norm. These two problems define a
new matrix decomposition which preserves rank.

Intuitively, it may seem that using the diagonal of Σ for D is sufficient.
However, this requires fitting aaT to a Σ with zeros along the diagonal. This pulls
a away from its optimal value and towards a saddle-point at a = 0d. In finding
the optimal values for our parameters, D and a, we search for the point where the
gradient of our optimization equation reaches zero. First, we find the gradient with
respect to the α element of D, denoted Dα:

∂ε

∂Dα

=

N
∑

n=1

xT
nαDxnα − 2D−1

α +
trace(2DαD−2aaT D−2)

1 + aT D−2a
(12)
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where the derivative of the ln |(D2 + aaT )| term is derived using Jacobi’s formula
for the differential of a matrix determinant, d det(A) = trace(adj(A)dA); Dα is
the matrix D with all elements set to zero except Dαα; and trace() is the trace
function. This formula can be written in vector form as:

∂ε

∂D
= 2diag(Σ)D − 2D−1 +

2D(D−2a)2

1 + aT D−2a
(13)

The gradient for a can be derived in a similar manner

∂ε

∂aα

=
2

N

N
∑

n=1

(

d
∑

i=1

xn(i)a(i)

)2

xnα − trace

(

(D2 + aaT )−1 ∂(D2 + aaT )

∂aα

)

(14)

=
2

N

N
∑

n=1

(

d
∑

i=1

xn(d)a(d)

)2

xnα −
2aα

Dα

+
2aα

Dα

d
∑

i=1

a(d)2

Dii

(15)

which can be put into vector form as

∂ε

∂a
= 2Σa− 2D−2a +

2(D−2a)(D−2a)T a

1 + aT D−2a
(16)

The solution of these equations is non-trivial. We first looked at setting to zero
the gradient with respect to a. Through some simplification we obtain from Eqn.
(16) the following three equivalent conditions for a:

Σa = 2
D−2a

1 + aT D−2a
(17)

2(1 + aT D−2a)D2Σa = a (18)

a =
(D2Σ)−1a

1 + aT D−2a
. (19)

Each of these equations give us some information. Eqn. (17) shows that this
is a generalized eigenvalue problem. Despite the symmetric positive semi-definite
nature of the covariance matrix, there does not seem to be a linear-time solution
to this problem. Eqn. (18) is a potential candidate for updating a in an iterative
manner (where the left-hand side values are from initial values or the previous
iteration). Unfortunately, multiplying by Σ makes this an expanding equation and
divergent from the optimal value of a. Eqn. (19) gives us a contracting version of
Eqn. (18), but requires multiplying by the inverse of Σ. Multiplying by Σ can be
done in O(Nd), but multiplying by Σ−1 cannot.

We also looked at setting to zero the gradient with respect to D. From Eqn.
(13), we can simplify down to the following equations:

D−2

1 + aT D−2a
= diag(Σ) (20)

D−2 = diag(Σ)(1 + aT D−2a) (21)

D−2 = diag(Σ) +
(D−2a)2

1 + aT D−2a
. (22)



8 M. Magdon-Ismail and J. Purnell

200 250 300 350 400 450 500 550 600
−1600

−1400

−1200

−1000

−800

−600

−400
Letter A − Perturbed Matrix

300 400 500 600 700 800
−1300

−1200

−1100

−1000

−900

−800

−700

−600

−500
Letter B − Perturbed Matrix

200 300 400 500 600 700 800
−1300

−1200

−1100

−1000

−900

−800

−700

−600

−500
Letter C − Perturbed Matrix

300 400 500 600 700 800 900
−1400

−1300

−1200

−1100

−1000

−900

−800

−700

−600
Letter D − Perturbed Matrix

300 350 400 450 500 550 600 650 700 750
−1300

−1200

−1100

−1000

−900

−800

−700

−600
Letter E − Perturbed Matrix

350 400 450 500 550 600 650 700 750 800
−1400

−1300

−1200

−1100

−1000

−900

−800

−700
Letter F − Perturbed Matrix

LRPDD Matrix
Figure 2 Alphabet data fitted by GMMs with LRPDD

Again, although these equations are coupled with the value of a, they provide some
insight into D. First, Eqn. (20) supports the intuition that the optimal value of D
involves a contribution from a. Second, as with the gradient for a, Eqn. (21) and
Eqn. (22) give us two possible equations to compliment Eqn. (18) and Eqn. (19)
in an iterative update approach. However, since the problems of multiplying by Σ
and Σ−1 still remain for a, the efficiency of these equations for D do not lead to
an overall efficient approach to maximizing the parameters.

By using an approximation based on a low-rank perturbation of a diagonal
matrix, our intention is to obtain an improved accuracy over the diagonal
approximation but maintain a linear bound with respect to the sample dimension.
The low-rank perturbation adds another d parameters over the diagonal
approximations d parameters. Therefore we expect the computational cost to
be higher than the diagonal approximation, but still well below that of the
full-rank approximation which has d(d + 1)/2 parameters. Further, by directly
approximating the inverse of the covariance matrix, the cost of inversion is avoided.
Note that this low rank perturbation implies a similar low rank perturbation
expression for Σ itself. The difference between the LRPDD and the diagonal matrix
approximation can be seen in Figure 2, comparing to Figure 1.

5.1 Iterative Solution Via Conjugate Gradient Optimization

Instead of an analytical solution, we use the conjugate gradient descent
from Hestenes and Stiefel (1952) to reach an optimum (See Algorithm 1 for a
summary of the conjugate gradient algorithm). We initialize a to be a random
vector, whose elements are random samples from the uniform distribution in [0, 1];
D is initialized as the inverse of the diagonal of Σ, which can be easily calculated in
linear time. The gradient referred to as g in the algorithm is just the concatenation
of the gradient for a and the gradient for D. The search direction is referred to as
v. The threshold, τg, is set to 0.001, our stopping criterion. Although one generally
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Algorithm 1 Conjugate Gradient

1: Input: data x, diagonal matrix D0, perturbation a0, threshold τg

2: g0 ← [ ∂ε
∂a0

, ∂ε
∂D0

] ; v0 ← −g0.
3: while |gi| > τg do
4: Perform a line search along vi to find optimal step size, s.
5: ai+1 ← ai + s · vi(1 . . . d).
6: Di+1 ← Di + s · vi(d + 1 . . . 2d).
7: gi+1 ← [ ∂ε

∂ai+1
, ∂ε

∂Di+1
]

8: β ←
gi+1(g

T

i+1gi)

gT

i
gi

9: Calculate new direction, vi ← −gi+1 + βvi.
10: Update gradient, gi ← gi+1

11: end while

expects to use d steps of the conjugate gradient method, practice shows that only
a few steps are needed.

With these formulas and algorithms, we can perform the EM algorithm for
the LRGMM efficiently in O(Nd) time. For the expectation step, we calculate the
log likelihoods of each data point for each component, using Eqn. (9). First, we
calculate the log-determinant of the covariance matrix

ln |(D2 + aaT )| = ln(aT D−1a + 1) + ln |D|. (23)

Calculating |D| and aT D−1a is straightforward and only requires one pass over
the parameters. We add to this term the log of the prior term, lnπ. Finally, we
compute the remainder of Eqn. (9)

1

N

N
∑

n=1

∆xn(D2 + aaT )∆xn

=
1

N

N
∑

n=1

d
∑

i=1

∆x2
n(i)D2

i +
1

N

N
∑

n=1

(

d
∑

i=1

∆x2
n(i)ai)

2. (24)

Computing this term of Eqn. (9) only requires O(Nd) time and, thus, computing
the log-likelihood only takes O(MNd) time.

The equations for the maximization step, Eqn. (13) and Eqn. (16), have been
derived. Since D is a diagonal matrix, multiplying D or D−1 by a vector takes
only O(d) time. For Eqn. (13), we need to multiply by the diagonal of Σ. This can
be done in efficiently, since

Σii =

N
∑

n=1

(xn(i)− µn(i))2. (25)

A difficult problem arises when we compute Eqn. (16). We notice the need to solve
Σa efficiently. Again, by using the definition of Σ, we can solve this efficiently;

Σa = (

N
∑

n=1

(xn − µ)(xn − µ)T )a =

N
∑

n=1

(xn − µ)(xT
na− µT a) (26)
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=

N
∑

n=1

(xn − µ)βn =

N
∑

n=1

xT
nβn − µ

N
∑

n=1

βn, (27)

where βn = xT
na− µT a. This can be solved in four steps, each only requiring

O(Nd) time. First, we compute µT a. Second, we compute βn for n = 1, . . . , N .
Each value of βn only needs to compute xT

na, so computing all of them can be done

in O(Nd) time. Thirdly, given βn, we compute
∑N

n=1 xT
nβn and C =

∑

n = 1Nβn

simultaneously, which again can be done in O(Nd) time. Finally, we finish the
equation by subtracting µC from the result of previous step. Thus, having an
efficient solution for Σa, we have an efficient solution for computing the gradients
for both D and a. Further, this means that the conjugate gradient approach can
be efficiently executed. As we stated earlier, in practice the number of conjugate
gradient iterations needed for accurate approximations is much less than the data
dimension or number of data samples. So, it can be expected that the LRGMM
can be accurately trained in nearly linear time.

So far, we have discussed LRPDD for a single mixture. In order to extend
to multiple mixtures, we need to introduce mixture weights, πk. These values
determine the contribution of each mixture to the entire model. Mixture weights
can also be viewed as prior probabilities that determine the chance a data point
was generated by a particular mixture. Many of the details of these parameters
were reviewed in the discussion on the Gaussian Mixture Model in Section 2. The
main concern of training multiple mixtures is calculating the posterior probabilities
of the data samples with respect to each model, pnk. These values are calculated
using Eqn. (9) with the added term lnπk, to account for the mixture weight. The
posterior probabilities are then normalized for each data sample over all mixtures;
∑M

k=1 pnk = 1. For the maximization step, the mixture weights are approximated

by the posterior probabilities; πk = 1
N

∑N
n=1 pnk. Also, in estimating the values for

D and a for mixture k, data samples xn are weighted by the respective posterior
probability, ptk. The mixture means are now updated by µk = 1

T

∑N
n=1 ptkxn.

When calculating the gradients for D and a, an element on the diagonal of Σ and
βn now become Σii =

∑N
n=1 ptk(xn(i)− µk(i))2 and βn = ptk(xT

nak − µT
k ak).

In the next section, we explore how our approximation compares to the
diagonal approximation and the full rank covariance matrix.

6 Experiments

Synthetic Data

A key property of the LRPDD is that it captures the correlation information of
the covariance matrix. To visualize the capabilities of the LRPDD, we compare
the LRPDD and diagonal approximations with the full matrix in Figure 3.

To qualitatively illustrate the performance of our algorithm, we synthesized
GMM data. Training datasets consisted of samples generated by a GMM with
six clusters, randomly generated means, and randomly generated positive semi-
definite covariance matrices for each mixture. An experiment consists of training
a GMM on a dataset using one of the approximation methods described above
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Figure 3 Differences in approximating a matrix with the LRPDD and Diagonal
Methods

Dims. Diag. Pert. Full

10 -109 -101 -87

50 -1032 -1005 -734

100 -2250 -2219 -1615

Table 1 In-sample average log probabilities for N=10k,M=6 (div. by 1000)

Dims. Diag. Pert. Full

10 -109 -101 -88
50 -948 -925 -868

100 -2243 -2189 -2050

Table 2 In-sample average log probabilities for N=1k,M=6 (div. by 100)

(full covariance matrix, diagonal, or low rank perturbed). The results from our
experiments with these datasets are shown in Tables 1 - 4.

6.0.1 Training Performance

We show performance from two perspectives, the in-sample and out-sample
average log probabilities. Experiments were performed over various sample
dimensions, dataset sizes, and number of mixtures. Tables 1 to 4 show results for
datasets of different sample size, N , and number of mixtures, M . 100 datasets
were generated for each pair of sample dimension and dataset size. The average log
probabilities are calculated over the log probabilities from the 100 datasets. The
values have been divided by 1000 to make comparison easier.

From these tables, we can see a clear trend that the perturbed matrices provide
a better approximation over the diagonal matrices. Since we see this in both our
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Dims. Diag. Pert. Full

10 -111 -103 -100
50 -1035 -1009 -897

100 -2254 -2199 -1994

Table 3 In-sample average log probabilities for N=10k,M=3 (div. by 1000)

Dims. Diag. Pert. Full
10 -11 -10.2 -8.95

50 -95.6 -94.5 -95.6

100 -225.9 -232.2 -249.1

Table 4 Out-sample average log probabilities N=1k,M=6 (div. by 1000)

Dims. Pert Full Full/Pert

50 18.04 45.65 2.53

100 33.39 162.92 4.88

Table 5 Runtimes using the Full matrix and the Perturbed approximation with T10k

in-sample and out-sample accuracies, we can be assured that the performance of
the perturbed matrix is not due to overfitting. Further, the out-sample accuracies
bolded in Table 4, show that, at high dimensions, there is a greater potential for
the full matrix to overfit than the perturbed matrix. The LRPDD provides the
user a compromise between the loss of information from using a diagonal matrix
with the potential for overfitting that comes from using the full covariance matrix.

6.0.2 Runtimes

As we have claimed earlier, our motivation is to improve approximation without
incurring large computational cost. We timed the training phase of each of
the experiments. Figures 4 to 6 graph these runtimes with respect to sample
dimension.

Figure 4 Relation between runtimes and sample dimension for Low Rank Perturbed
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Figure 5 Relation between runtimes and sample dimension for Diagonal

Figure 6 Relation between runtimes and sample dimension for Full Covariance
Matrix

Since the scale of time is not the same, the runtimes for each approximation
are plotted separately. Each graph shows how the training time increases with
dimension for models with various numbers of mixtures (in this case, 3,6, and 9
mixtures). This makes it easier to see how the computational cost increases with
respect to sample dimension. In these graphs, we can see that both the diagonal
and perturbed approximations have a cost that increases linearly with respect to
sample dimension, since they are bounded by O(d). Also, we see the full covariance
matrix cost increases quadratically. Table 5 shows the ratio of runtimes between
using the full matrix to the perturbed matrix clearly growing with dimension.

6.1 Experimental Results on Real Data

We look at the effect of our low rank perturbed approximation on training GMMs
on real world speech. The speech comes from a TIMIT corpus of American English
accents. Speakers who were raised in various places in America were recorded while
speaking 10 sentences. We look only at those speakers who were raised in the
northern and southern regions.

The data is processed so that every 25ms of speech yields a 39-dimensional
sample. We then train two GMMs, one for the northern samples and another for
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Full Cov. Diagonal Perturbed

Sample Acc. 61.6% 49.5% 54.3%
Word Acc. 76.5% 45.9% 60.0%

Table 6 Percentage accuracy of GMMs on speech samples

the southern samples. Test samples are then categorized based on which GMM
gives a higher log probability. Whole words are similarly classified based on which
GMM gives a higher average log probability.

6.1.1 Training Performance

Table 6 shows the resulting accuracy of using various approximations for the
covariance matrix when classifying speech samples. As we saw in the synthetic
data, the low rank perturbed approximation gives a better performance over the
diagonal approximation. In particular, there is a significant increase with respect
to the accuracy in classifying spoken words.

7 Conclusion

We have proposed a new method of approximating the covariance matrix for a
Gaussian Mixture Model. Instead of simply using the diagonal, we use a low-rank
perturbation of a diagonal matrix and approximate the inverse of the covariance
matrix, rather than the matrix itself. The conjugate gradient method is used to
optimize the parameters with respect to the log probability formula. We have
developed a training algorithm that is bounded linearly with respect to sample
dimension. This makes its computational cost comparable to that of the diagonal
approximation, while at the same time able to model correlations in the data.

In our experimental results we compared our approximation method to the
diagonal approximation and the full covariance matrix. We have shown that our
matrix approximations not only outperform the diagonal approximation but avoid
the overfitting that comes with the full rank covariance matrix. Further, we
presented runtimes that demonstrates the comparable computation cost of the low-
rank approximation to the diagonal approximation. The additional cost of the low-
rank approximation over the diagonal approximation is acceptable in any situation
where the variances are insufficient (as seen with the alphabet dataset).

It is of theoretical interest to develop analytic solutions to the LRPDD
problem. This matrix decomposition may also be of independent interest. While
we have a working version of the LRGMM, there are a few ways to improve upon
it. Currently we use the conjugate gradient to improve the approximation. Finding
appropriate stopping criteria can further improve the runtime of the LRGMM.
Also, the LRGMM uses a rank 1 perturbation. It is possible to create an adaptive
LRGMM that adds additional ranks of perturbations. Finally, as previously stated,
the overlapping clusters are determined by a simple heuristic. There is promise
in exploring alternative heuristics for assigning data points to clusters. The code
for this model can be found bundled with our social networking code, which is
available online by Purnell (2010).
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