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a b s t r a c t

Given a matrix A ∈ Rm×n (n vectors in m dimensions), we consider the problem of
selecting a subset of its columns such that its elements are as linearly independent as
possible. This notion turned out to be important in low-rank approximations to matrices
and rank revealing QR factorizations which have been investigated in the linear algebra
community and can be quantified in a few different ways. In this paper, from a complexity
theoretic point of view, we propose four related problems in which we try to find a
sub-matrix C ∈ Rm×k of a given matrix A ∈ Rm×n such that (i) σmax(C) (the largest
singular value of C) is minimum, (ii) σmin(C) (the smallest singular value of C) is maximum,
(iii) κ(C) = σmax(C)/σmin(C) (the condition number of C) is minimum, and (iv) the volume
of the parallelepiped defined by the column vectors of C is maximum. We establish the
NP-hardness of these problems and further show that they do not admit PTAS. We then
study a natural Greedy heuristic for the maximum volume problem and show that it has
approximation ratio 2−O(k log k). Our analysis of the Greedy heuristic is tight to within a
logarithmic factor in the exponent, which we show by explicitly constructing an instance
for which the Greedy heuristic is 2−Ω(k) from optimal. When A has unit norm columns,
a related problem is to select the maximum number of vectors with a given volume. We
show that if the optimal solution selects k columns, then Greedy will select Ω(k/ log k)
columns, providing a log k approximation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

To motivate the discussion, consider the set of three vectors{
e1 =

[
1
0

]
, e2 =

[
0
1

]
, u =

[√
1− ε2
ε

]}
,

which are clearly dependent, and any two of which are a basis. Thus any pair can serve to reconstruct all vectors. Suppose
we choose e1, u as the basis, then e2 = (1/ε)u− (

√
1− ε2/ε)e1, and we have a numerical instability in this representation

as ε → 0. Such problems get more severe as the dimensionality of the space gets large (curse of dimensionality), and it is
natural to ask the representatives to be ‘‘as far away from each other as possible’’. A natural formalization of this problem
is to find the representatives which span the largest volume, since the volume is a quantification of how far the vectors are
from each other. Another would be to choose them so that the matrix that they form is well conditioned, i.e. its condition
number is small which intuitivelymeans that thematrix is as close as possible to an orthogonal one and its smallest singular
value is largewith respect to the largest singular value. Thus, given a set of n vectors inRm represented as amatrix A ∈ Rm×n
and a positive integer k, we discuss four distinct problems in which we ask for a subset C ∈ Rm×k satisfying some spectral
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optimality condition:
(i) MinMaxSingularValue: σ1(C) is minimum;
(ii) MaxMinSingularValue: σk(C) is maximum;
(iii) MinSingularSubset: κ(C) = σ1(C)/σk(C) is minimum;
(iv) MAX-VOL: Vol(C) =

∏k
i=1 σi(C), the volume of the parallelepiped defined by the column vectors of C is maximum.

In all cases, the optimization is over all possible choices of C , and σ1(C) ≥ σ2(C) ≥ · · · ≥ σk(C) are the singular values of
the sub-matrix defined by C . Before presenting themain results of the paper, wewill first briefly review how these concepts
are related to low-rank approximations to matrices and rank revealing QR factorizations.

1.1. Low-rank approximations to matrices

The notion of volume has already received some interest in the algorithmic aspects of linear algebra. In the past decade,
the problem of matrix reconstruction and finding low-rank approximations to matrices using a small sample of columns
has received much attention (see for example [4,8,7,9]). Ideally, one has to choose the columns to be as independent as
possible when trying to reconstruct a matrix using a few columns. Along these lines, in [4], the authors introduce ‘volume
sampling’ to find low-rank approximation to a matrix where one picks a subset of columns with probability proportional
to their volume squared. Improving the existence results in [4], [5] also provides an adaptive randomized algorithm which
includes repetitively choosing a small number of columns in a matrix to find a low-rank approximation. The authors show
that if one samples columns proportional to the volume squared, then one obtains a provably good matrix reconstruction
(randomized). Thus, sampling larger volume columns is good. A natural question is to ask what happens when one uses the
columns with largest volume (deterministic). The problem MAX-VOL is the algorithmic problem of obtaining the columns
with largest volume and we rely on [5] as the qualitative intuition behind why obtaining the maximum volume sub-matrix
should play an important role in matrix reconstruction.
Goreinov and Tyrtyshnikov [13] provide a more explicit statement of how volume is related to low-rank approximations

in the following theorem:
Theorem 1 ([13]). Suppose that A is an m× n block matrix of the form

A =
(
A11 A12
A21 A22

)
where A11 is nonsingular, k× k, whose volume is at least µ−1 times the maximum volume among all k× k sub-matrices. Then1
‖A22 − A21A−111 A12‖∞ ≤ µ(k+ 1)σk+1(A).
This theorem implies that if one has a good approximation to the maximum volume k × k sub-matrix, then the rows

and columns corresponding to this sub-matrix can be used to obtain a good approximation to the entire matrix. If σk+1(A)
is small for some small k, then this yields a low-rank approximation to A. Thus, finding maximum volume sub-matrices is
important for matrix reconstruction. We take a first step in this direction by considering the problem of choosing anm× k
sub-matrix of maximum volume. Relating maximum volume k × k sub-matrices to maximum volume m × k matrices or
obtaining an analogue of Theorem 1 form× k sub-matrices is beyond the scope of this paper.

1.2. Rank revealing QR factorizations

QR factorization, which has many practical applications [12], is another approach to finding an orthonormal basis for the
space spanned by the columns of a matrix. The task is to express a given matrix A ∈ Rn×n as the product of an orthogonal
matrix Q ∈ Rn×n and an upper-triangular matrix R ∈ Rn×n. For 1 ≤ k ≤ n, the first k columns of Q spans the same space
as that spanned by the first k columns of A. A naive approach to finding such a factorization might yield linearly dependent
columns in Q , if the structure of A is disregarded. Hence, onemight try to consider permuting the columns of A so as to find a
QR factorizationwhich reveals ‘‘important’’ information about thematrix. Along these lines, rank revealing QR factorizations
were introduced by Chan [3].
Given a matrix A ∈ Rn×n, consider the QR factorization of the form

AΠ = Q
(
R11 R12
0 R22

)
where R11 ∈ Rk×k and Π ∈ Rn×n is a permutation matrix. One can easily see that, by the interlacing property of singular
values (see [12]), σk(R11) ≤ σk(A) and σ1(R22) ≥ σk+1(A). If the numerical rank of A is k, i.e. σk(A) � σk+1(A), then one
naturally would like to find a permutation Π for which σk(R11) is sufficiently large and σ1(R22) is sufficiently small. A QR
factorization is said to be a rank revealing QR (RRQR) factorization if σk(R11) ≥ σk(A)/p(k, n) and σ1(R22) ≤ σk+1(A)p(k, n)
where p(k, n) is a low degree polynomial in k and n.
The QR algorithm proposed by Businger and Golub [1], which is essentially the algorithmwewill analyze for maximizing

the volume, works well in practice. But, as is pointed out by Kahan [16], there are matrices where it fails to satisfy the

1
‖B‖∞ denotes the maximummodulus of the entries of a matrix B.
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requirements of an RRQR factorization yielding exponential p(k, n). Much research on finding RRQR factorizations has
yielded improved results for p(k, n) [3,15,2,19,14,6]. It was noted in [15] that it turns out that ‘‘the selection of the sub-
matrix with the maximum smallest singular value suggested in [11] can be replaced by the selection of a sub-matrix with
maximumdeterminant’’. (Our hardness results for all the problemswe consider alsomake a justification of how similar they
are). Along these lines, the effort has been trying to find a sub-matrix with a volume as large as possible. Pan [20] unifies the
main approaches by defining the concept of local maximum volume and then gives a theorem relating it to p(k, n).
Definition 2 ([20]). Let A ∈ Rm×n and C be a sub-matrix of A formed by any k columns of A. Vol(C)(6= 0) is said to be local
µ-maximum volume in A, if µVol(C) ≥ Vol(C ′) for any C ′ that is obtained by replacing one column of C by a column of A
which is not in C .
Theorem 3 ([20]). For a matrix A ∈ Rn×n, an integer k (1 ≤ k < n) and µ ≥ 1, let Π ∈ Rn×n be a permutation matrix such
that the first k columns of AΠ is a local µ-maximum in A. Then, for the QR factorization

AΠ = Q
(
R11 R12
0 R22

)
,

we have σmin(R11) ≥ (1/
√
k(n− k) µ2 + 1)σk(A) and σ1(R22) ≤

√
k(n− k) µ2 + 1 σk+1(A).

We would like to note that, MAX-VOL asks for a stronger property of the set of vectors to be chosen, i.e. it asks for a
‘‘good’’ set of vectors in a global sense rather than requiring local optimality. Nevertheless, it is clear that an approximation
ratio for MAX-VOL translates to a result in the context of RRQR factorizations. Because, if one could obtain a subset which
is µ-maximum (as opposed to local µ-maximum) then the same theorem would hold, since the volume of any new set of
vectors which is a result of exchanging a column between the current set and the rest of the columns is smaller than the
largest possible volume. However, the result obtained via the approximation factor we provide for Greedy is already inferior
to a mathematically different analysis which proves p(k, n) =

√
n− k 2k [14] and we do not state it explicitly.

1.3. Our contributions

First, we establish theNP-hardness of the problemswe consider. In fact,we prove that no PTAS for themexists by showing
that they are inapproximable to within some factor. Specifically, we obtain the following inapproximability results:
(i) MinMaxSingularValue is inapproximable to within 2/

√
3− ε;

(ii) MaxMinSingularValue is inapproximable to within (2/3)1/2(k−1) + ε;
(iii) MinSingularSubset is inapproximable to within (22k−3/3k−2)1/2(k−1) − ε;
(iv) MAX-VOL is inapproximable to within 2

√
2/3+ ε.

Next, we consider a simple (deterministic) Greedy algorithm for the last problem and show that it achieves a 1/k!
approximation to the optimal volumewhen selecting k columns.We also construct an explicit example forwhich the Greedy
algorithmgives no better than a 1/2k−1 approximation ratio, thus proving that our analysis of the Greedy algorithm is almost
tight (to within a logarithmic factor in the exponent). An important property of the approximation ratio for the Greedy
algorithm is that it is independent of n, and depends only on the number of columns one wishes to select.
We then consider the related problem of choosing the maximum number of vectors with a given volume, in the case

when all columns in A have unit norm. If the optimal algorithm loses a constant factor with every additional vector selected
(which is a reasonable situation), then the optimal volumewill be 2−Ω(k). When the optimal volume for k vectors is 2−Ω(k) as
motivated above, we prove that the Greedy algorithm choosesΩ(k/log k) columns having at least that much volume. Thus,
theGreedy algorithm iswithin a log k-factor of themaximumnumber of vectorswhich can be selected given a target volume.

1.4. Preliminaries and notation

For a matrix A ∈ Rm×n where n ≤ m, σi(A) is the ith largest singular value of A for 1 ≤ i ≤ n. Let A = {v1, v2, . . . , vn}
be given in column notation. The volume of A, Vol(A) can be recursively defined as follows: if A contains one column, i.e.
A = {v1}, then Vol(A) = ‖v‖, where ‖·‖ is the Euclidean norm. If A has more than one column, Vol(A) = ‖v−π(A−{v})(v)‖ ·
Vol(A − {v}) for any v ∈ A, where πA(v) is the projection of v onto the space spanned by the column vectors of A. It is
well known that π(A−{v})(v) = AvA+v v, where Av is the matrix whose columns are the vectors in A − {v}, and A

+
v is the

pseudo-inverse of Av (see for example [12]). Using this recursive expression, we have

Vol(S) = Vol(A) = ‖v1‖ ·
n−1∏
i=1

‖vi+1 − AiA+i vi+1‖

where Ai = [v1 · · · vi] for≤ i ≤ n− 1.

1.5. Organization of the paper

The remainder of the paper is structured as follows: In Section 2, we provide hardness results for the four problems.
The approximation ratio of a Greedy algorithm for MAX-VOL is analyzed in Section 3 where we also show tightness of the
analysis. Finally, some open questions and comments are outlined in Section 4.
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2. Hardness of subset selection problems

We define four decision problems:

Problem: Min–MaxSingularValue
Instance: A matrix A ∈ Rm×n of rank at least k, andM ∈ R.
Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σ1(C) ≤ M .
Problem: Max–MinSingularValue
Instance: A matrix A ∈ Rm×n of rank at least k, andM ∈ R.
Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σk(C) ≥ M .
Problem: Min-SingularSubset
Instance: A matrix A ∈ Rm×n of rank at least k, andM ∈ R.
Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σ1(C)/σk(C) ≤ M .
Problem: MAX-VOL
Instance: A matrix A ∈ Rm×n with normalized columns and of rank at least k, andM ∈ [0, 1].
Question: Does there exist a sub-matrix C ∈ Rm×k of A such that Vol(C) ≥ M?

Theorem 4. Max–MinSingularValue, Min–MaxSingularValue, Min-SingularSubset and MAX-VOL are NP-hard.

Proof. We give a reduction from ‘exact cover by 3-sets’, which is known to be NP-complete (see for example [10,17]). This
reduction will provide the NP-hardness result for all the problems.

Problem: Exact cover by 3-sets (X3C)
Instance: A set Q and a collection C of 3-element subsets of Q .
Question: Does there exist an exact cover for Q , i.e. a sub-collection C ′ ⊆ C such that every element in Q appears exactly

once in C ′?

We use the following reduction from X3C to the problems: let Q = {q1, q2, . . . , qm} and C = {c1, c2, . . . , cn} be given as
an instance of X3C. We construct the matrix A ∈ Rm×n, in which each column A(j) corresponds to the 3-element set cj. The
non-zero entries in A(j) correspond to the elements in cj. Specifically, set

Aij =
{
1/
√
3 if qi ∈ cj

0 otherwise.

(Note that every A(j) has exactly 3 non-zero entries and has unit norm.) For the reduced instances, we set k = m/3 and
M = 1.
It is clear that the reduction is polynomial time. All that remains is to show that the instance of X3C is true if and only if

the corresponding instances of the four decision problems are true.
Suppose the instance of X3C is true. Then, there is a collection C ′ = {ci1 , ci2 , . . . , cim/3} of cardinalitym/3, which exactly

coversQ . (Note that,m should be amultiple of 3, otherwise no solution exists.) Consider the sub-matrix C of A corresponding
to the 3-element sets in C ′. Since the cover is exact, cij ∩ cik = ∅ ∀j, k ∈ {1, . . . ,m/3} where j 6= k, which means that
A(ij) · A(ik) = 0. Hence, C is orthonormal and all its singular values are 1, which makes the instances of all four problems we
consider true.
Conversely, suppose the instance of Min–MaxSingularValue is true, i.e. there exists C such that σ1(C) ≤ 1. We have

σ1(C) = ‖C‖2 ≥ ‖C‖F/
√
k = 1, which gives σ1(C) = 1. On the other hand,

∑k
i=1 σi(C)

2
= ‖C‖2F = k. Thus, all the

singular values of C are equal to 1, i.e. C is an orthogonal matrix. Now, suppose the instance of Max–MinSingularValue is
true, namely there exists C such that σk(C) ≥ 1. Then, the volume defined by the vectors in C , Vol(C) =

∏k
i=1 σi(C) ≥ 1.

Since the vectors are all normalized, we also have Vol(C) ≤ 1, which gives
∏k
i=1 σi(C) = 1. Thus, all the singular values of

C are equal to 1, which means that C is an orthogonal matrix. If the instance of Min-SingularSubset is true, i.e. there exists
C such that σ1(C)/σk(C) ≤ 1, we immediately have that C is an orthogonal matrix. Finally, that the instance of MAX-VOL is
true means that the columns are pair-wise orthonormal and we have the desired result.
Thus, if any of the reduced instances are true, then there is a C in A whose columns are pair-wise orthonormal. We will

now show that if such a C exists, then the instance of X3C is true. Let u, v be two columns in C; we have u · v = 0. Since the
entries in C are all non-negative, ui · vi = 0 ∀i ∈ [1,m], i.e. u and v correspond to 3-element sets which are disjoint. Hence,
the columns in C correspond to a sub-collection C ′ of 3-element sets, which are pair-wise disjoint. Therefore, every element
of Q appears at most once in C ′. C ′ containsm elements corresponding to them non-zero entries in C . It follows that every
element of Q appears exactly once in C ′, concluding the proof. �

Our reduction in the NP-hardness proofs yields gaps, which also provides hardness of approximation results for the
optimization versions of the problems.

Theorem 5. Min–MaxSingularValue(k) is NP-hard to approximate within 2/
√
3− ε.
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Proof. We will provide a lower bound for σ1(C) for the reduced instance of X3C when it is false, which will establish the
hardness result. Assume that the X3C instance is not true. Then any collection of size m/3 has at least two sets which have
non-empty intersection. Let si and sj be two sets such that |si ∩ sj| = 1. And, let vi, vj be the corresponding vectors in the
Min–MaxSingularValue instance. Then, we have v1 · v2 = 1/3. Hence, v1 and v2 correspond to the following matrix V up to
rotation:

V =
(
1 1

3

0 2
√
2
3

)
.

Note that, if |si ∩ sj| > 1, then the largest singular value of the corresponding matrix will be greater than that of V as v1 · v2
will have a greater value. Also, it is a well known fact that the largest eigenvalue of any symmetric matrix A is greater than
that of any principal sub-matrix of A. Thus, if we consider a matrixW of more than two vectors which also contain vi and vj,
its largest singular value (which is the square root of the largest eigenvalue ofW TW ) will be greater than that of V . Hence,
in order to find a lower bound for σ1(C), it suffices to analyze V . This amounts to finding the square roots of the eigenvalues
of V TV . Hence, we are seeking λ such that

det(V TV − λI) =

∣∣∣∣∣ 109 − λ 2
√
2
9

2
√
2
9

8
9 − λ

∣∣∣∣∣ = 0. (1)

λ = 4/3 and λ = 2/3 satisfy (1). Hence, σ1(C) ≥ 2/
√
3, which concludes the proof. �

Theorem 6. MAX-VOL(k) is NP-hard to approximate within 2
√
2/3+ ε.

Proof. Assume that the X3C instance is not true. Then, we have at least one overlapping element between two sets. Any
collection of size m/3 will have two sets v1, v2 which have non-zero intersection. The corresponding columns in A′ have
d(v1, v2) = ‖v1 − (v1 · v2)v2‖ = ‖v1 − (1/3)v2‖ ≤ 2

√
2/3, where d(v1, v2) is the orthogonal part of v1 with respect to v2.

Since Vol(A′) ≤ d(v1, v2), we have Vol(A′) ≤ 2
√
2/3. A polynomial time algorithmwith a 2

√
2/3+ ε approximation factor

for MAX-VOL would thus decide X3C, which would imply P = NP . �

Theorem 7. Max–MinSingularValue is NP-hard to approximate within (2/3)1/2(k−1) + ε.
Proof. If the X3C instance is false, from the proof in Theorem 6we have

∏k
i=1 σi(C) ≤ 2

√
2/3. Combining this with σ1(C) ≥

2/
√
3 from the proof in Theorem 5, we get

∏k
i=2 σi(C) ≤

√
6/3, which gives σk(C) ≤ (

√
6/3)1/(k−1) = (2/3)1/2(k−1). �

Theorem 8. Min-SingularSubset is NP-hard to approximate within (22k−3/3k−2)1/2(k−1) − ε.
Proof. Assuming that the X3C instance is false, from the proofs in Theorems 5 and 7, we have σ1(C)/σk(C) ≥
(22k−3/3k−2)1/2(k−1) − ε. �

3. The Greedy approximation algorithm for MAX-VOL

Having shown that the decision problem MAX-VOL is NP-hard, it has two natural interpretations as an optimization
problem for a given matrix A:
(i) MAX-VOL(k): Given k, find a subset of size kwith maximum volume.
(ii) MaxSubset(V): Given V and that A has unit norm vectors, find the largest subset C ⊆ Awith volume at least V .

The natural question iswhether there exists a simple heuristicwith some approximation guarantee. One obvious strategy
is the following Greedy algorithm which was also proposed in [1] to construct QR factorizations of matrices:

Algorithm 1: Greedy
S ← ∅
while|S| < k do
Select largest norm vector v ∈ A
Remove the projection of v from every element of A
S ← S ∪ v

endwhile
We would like to note that one can obtain a result related to the approximation ratio of Greedy which is implicit in [14]

via the following theorem:
Theorem 9 ([14]). For a matrix A ∈ Rn×n and an integer k (1 ≤ k < n), let the first k columns of AΠ be the columns chosen by
Greedy whereΠ ∈ Rn×n is a permutation matrix and

AΠ = Q
(
R11 R12
0 R22

)
.

Then, σi(R11) ≥ σi(A)/(
√
n− i 2i) for 1 ≤ i ≤ k.

Based on this theorem, one can easily derive the following result.
Theorem 10. Greedy has approximation ratio O(2−k(k−1)/2n−k/2).
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Proof. Let C be the first k columns of AΠ , i.e. the columns chosen by Greedy. Since, Q is orthogonal, we have

Vol(C) = Vol(R11) =
k∏
i=1

σi(R11) ≥
k∏
i=1

σi(A)/(
√
n− i 2i)

≥ 2−k(k−1)/2
(
k∏
i=1

σi(A)/n1/2
)

≥ 2−k(k−1)/2n−k/2
(
k∏
i=1

σi(A)

)
≥ 2−k(k−1)/2n−k/2 · Volmax

where Volmax is the maximum possible volume a subset can attain. �

This analysis is loose as the volume
∏k
i=1 σi(A) may not be attainable using k columns of A. One major problem with

this bound is that it has exponential dependence on n. Our (almost) tight analysis will provide an improvement on the
approximation ratio of the theorem above in twoways: first, wewill remove the dependence on n, and secondwe get better
than quadratic dependence on k in the exponent. The outline of the remainder of this section is as follows: In Section 3.1,
we analyze the performance ratio of Greedy. Section 3.2 presents an explicit example for which Greedy is bad. We analyze
Greedy for MaxSubset(V) in Section 3.3 where we require the columns of thematrix be unit norm, in which case the volume
is monotonically non-increasing or non-decreasing in the number of vectors chosen by any algorithm.

3.1. Approximation ratio of Greedy

We consider Greedy after k steps. First, we assume that the dimension of the space spanned by the column vectors in A is
at least k, since otherwise there is nothing to prove. Let span(S) denote the space spanned by the vectors in the set S and let
πS(v) be the projection of v onto span(S). In this section, let d(v, S) = ‖v − πS(v)‖ be the norm of the part of v orthogonal
to span(S). Let Vk = {v1, . . . , vk} be the set of vectors in order that have been chosen by the Greedy algorithm at the end
of the kth step. LetWk = {w1, . . . , wk} be a set of k vectors of maximum volume. Our main result in this subsection is the
following theorem:
Theorem 11. Vol(Vk) ≥ 1/k! · Vol(Wk).
Weprove the theorem through a sequence of lemmas. The basic idea is to show that at the jth step, Greedy loses a factor of

at most j to the optimal. Theorem 11 then follows by an elementary induction. First, define αi = π(Vk−1)(wi) for i = 1, . . . , k.
αi is the projection ofwi onto span(Vk−1)where Vk−1 = {v1, . . . , vk−1}. Let βi = wi − π(Vk−1)(wi). Hence, we have

wi = αi + βi for i = 1, . . . , k. (2)
Note that the dimension of span(Vk−1) is k − 1, which means that the αi’s are linearly dependent. We will need some

stronger properties of the αi’s.
Definition 12. A set of m vectors is said to be in general position, if they are linearly dependent and any m − 1 element
subset of them are linearly independent.
It is immediate from Definition 12 that

Remark 13. Let U = {γ1, . . . , γm} be a set ofm vectors in general position. Then, γi can be written as a linear combination
of the other vectors in U , i.e.

γi =
∑
l6=i

λilγl (3)

for i = 1, . . . ,m. λil’s are the coefficients of γl in the expansion of γi.

Lemma 14. Let U = {γ1, . . . , γm} be a set of m vectors in general position. Then, there exists a γi such that |λij| ≤ 1 for all j 6= i.
Proof. Assume, without loss of generality that A = {γ2, γ3, . . . , γm} has the greatest volume among all possible m − 1
element subsets of U . We claim that γ1 has the desired property. Consider the set Bj = {γ1, . . . , γj−1, γj+1, . . . , γm} for
2 ≤ j ≤ m. Let Cj = A − {γj} = Bj − {γ1}. Then, since A has the greatest volume, Vol(A) = Vol(Cj) · d(γj, Cj) ≥ Vol(Bj) =
Vol(Cj) · d(γ1, Cj). Hence, we have d(γj, Cj) ≥ d(γ1, Cj). Then, using (3), we can write

γ1 = λ
1
j γj +

∑
l6=j,l6=1

λ1l γl. (4)

Denoting δj = πCj(γj) and θj = γj − δj, (4) becomes

γ1 =

(
λ1j δj +

∑
l6=j,l6=1

λ1l γl

)
+ λ1j θj
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where the term in parentheses is in span(Cj). Hence, the part of γ1 which is not in span(Cj), θ1 = γ1−πCj(γ1) = λ
1
j θj and so

‖θ1‖ = |λ
1
j |‖θj‖. Note that ‖θ1‖ = d(γ1, Cj) and ‖θj‖ = d(γj, Cj), so d(γ1, Cj) = |λ

1
j |d(γj, Cj). Since d(γ1, Cj) ≤ d(γj, Cj), we

have |λ1j | ≤ 1. �

Lemma 15. If ‖αi‖ > 0 for i = 1, . . . , k and k ≥ 2, then there exists a set of m vectors U = {αi1 , . . . , αim} ⊆ {α1, . . . , αk}
with m ≥ 2 that are in general position.

Proof. Note that the cardinality of a set U with the desired properties should be at least 2, since otherwise there is nothing
to prove. We argue by induction on k. For the base case k = 2, we have two vectors α1 and α2 spanning a 1-dimensional
space and clearly any one of them is linearly independent since neither is 0. Assume that, as the induction hypothesis, any
set of k ≥ 2 non-zero vectors {α1, . . . , αk} spanning at most a k − 1 dimensional space has a non-trivial subset in general
position. Consider a k + 1 element set A = {α1, . . . , αk+1} with dim(span(A)) ≤ k. If the vectors in A are not in general
position, then there is a k element subset A′ of A which is linearly dependent. Hence, dim(span(A′)) ≤ k − 1 for which, by
the induction hypothesis, we know that there exists a non-trivial subset in general position. �

The existence of a subset in general position guaranteed by Lemma 15 will be needed when we apply the next
lemma.

Lemma 16. Assume that ‖αi‖ > 0 for i = 1, . . . , k. Then, there exists an αij such that d(αij ,W
′

k−1) ≤ (m − 1) · d(vk, Vk−1),
where W ′k−1 = Wk − {wij}.

Proof. LetU = {αi1 , . . . , αim} ⊆ {α1, . . . , αk} be in general positionwherem ≥ 2 (the existence ofU is given by Lemma15).
Assume that αi1 has the property given by Lemma 14. Let U

′
= {wi2 , . . . , wim}. We claim that αi1 has the desired property.

First, note that d(αi1 ,W
′

k−1) ≤ d(αi1 ,U
′), since span(U ′) is a subspace of span(W ′k−1). We seek a bound on d(αi1 ,W

′

k−1).
Using (3) and (2), we have

αi1 =
∑
l6=1

λ1ilαil =
∑
l6=1

λ1il(wil − βil)

where αil ’s are the vectors in U and βil ’s are their orthogonal parts. Rearranging,∑
l6=1

λ1ilβil =

(∑
l6=1

λ1ilwil

)
− αi1 .

Note that the right-hand side is an expression for the difference between a vector in span(U ′) and αi1 . Hence,

d(αi1 ,W
′

k−1) ≤ d(αi1 ,U
′) = min

v∈span(U ′)
‖v − αi1‖

≤

∥∥∥∥∥∑
l6=1

λ1ilwil − αi1

∥∥∥∥∥
=

∥∥∥∥∥∑
l6=1

λ1ilβil

∥∥∥∥∥
≤

∑
l6=1

λ1il‖βil‖

≤ (m− 1) · max
1≤l≤m

‖βil‖

≤ (m− 1) · d(vk, Vk−1)

where the last two inequalities follow from Lemma 14 and the Greedy property of the algorithm, respectively. �

Before stating the final lemma, which gives the approximation factor of Greedy at each round, we need the following
simple observation.

Lemma 17. Let u be a vector, V and W be subspaces and α = πV (u). Then d(u,W ) ≤ d(u, V )+ d(α,W ).

Proof. Let γ = πW (α). By triangle inequality for vector addition, we have ‖u − γ ‖ ≤ ‖u − α‖ + ‖α − γ ‖ = d(u, V ) +
d(α,W ). The result follows since d(u,W ) ≤ ‖u− γ ‖. �

Lemma 18. At the kth step of Greedy, there exists awi such that d(wi,W ′k−1) ≤ k · d(vk, Vk−1) where W
′

k−1 = Wk − {wi}.

Proof. For k = 1, there is nothing to prove. For k ≥ 2, there are two cases.

(i) One of thewi’s is orthogonal to Vk−1 (‖αi‖ = 0). In this case, by the Greedy property, d(vk, Vk−1) ≥ ‖wi‖ ≥ d(wi,W ′k−1),
which gives the result.
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(ii) For allwi, ‖αi‖ > 0, i.e., allwi have non-zero projection on Vk−1. Assuming thatα1 = πVk−1(w1) has the desired property
proved in Lemma 16, we have for the correspondingw1

d(w1,W ′k−1) ≤ d(w1, Vk−1)+ d(α1,W
′

k−1)

≤ ‖β1‖ + d(α1,W ′k−1)
≤ ‖β1‖ + (m− 1) · d(vk, Vk−1)
≤ m · d(vk, Vk−1).

The first inequality is due to Lemma 17. The last inequality follows from the Greedy property of the algorithm, i.e. the fact
that d(vk, Vk−1) ≥ ‖β1‖. The lemma follows sincem ≤ k. �

The last lemma immediately leads to the result of Theorem 11, with a simple inductive argument as follows:

Proof. The base case is easily established since Vol(V1) = Vol(W1). Assume that Vol(Vk−1) ≥ 1/(k − 1)! · Vol(Wk−1) for
some k > 2. By Lemma 18, we have a wi such that d(wi,W ′k−1) ≤ k · d(vk, Vk−1) where W

′

k−1 = Wk − {wi}. It follows
that

Vol(Vk) = d(vk, Vk−1) · Vol(Vk−1)

≥
d(wi,W ′k−1)

k
·
Vol(Wk−1)
(k− 1)!

≥
d(wi,W ′k−1)

k!
· Vol(W ′k−1)

=
Vol(Wk)
k!

. �

3.2. Lower bound for Greedy

We give a lower bound of 1/2k−1 for the approximation factor of Greedy by explicitly constructing a bad example. We
will inductively construct a set of unit vectors satisfying this lower bound. It will be the case that the space spanned by the
vectors in the optimal solution is the same as the space spanned by the vectors chosen by Greedy. An interesting property
of our construction is that both the optimal volume and the volume of the vectors chosen by Greedy approach 0 in the limit
of a parameter δ, whereas their ratio approaches to 1/2k−1.
Wewill first consider the base case k = 2: let thematrixA = [v1w1w2]where dim(A) = 2 and d(v1, w1) = d(v1, w2) = δ

for some 1 > δ > 0 such that θ , the angle between w1 and w2 is twice the angle between v1 and w1, i.e. v1 is ‘between’
w1 and w2. If the Greedy algorithm first chooses v1, then limδ→0 Vol(V2)/Vol(W2) = 1/2 cos θ/2 = 1/2. Hence, for k = 2,
there is a set of vectors for which Vol(W2) = (2− ε) · Vol(V2) for arbitrarily small ε > 0.
For arbitrarily small ε > 0, assume that there is an optimal set of k vectors Wk = {w1, . . . , wk} such that Vol(Wk) =

(1 − ε)2k−1 · Vol(Vk) where Vk = {v1, . . . , vk} is the set of k vectors chosen by Greedy. The vectors in Wk and Vk span
a subspace of dimension k, and assume that wi ∈ Rd where d > k. Let d(v2, V1) = ε1 = δ for some 1 > δ > 0, and
d(vi+1, Vi) = εi = δεi−1 for i = 2, . . . , k− 1. Thus, Vol(Vk) = δk(k−1)/2 and Vol(Wk) = (1− ε)2k−1δk(k−1)/2. Assume further
that for all wi inWk, d(wi, Vj) ≤ εj for j = 1, . . . , k− 2 and d(wi, Vk−1) = εk−1 so that there exists an execution of Greedy
where no {w1, . . . , wk} is chosen.
We will now construct a new set of vectors Wk+1 = W ′k ∪ {wk+1} = {w

′

1, . . . , w
′

k, wk+1} which will be the optimal
solution. Letwji = πVj(wi), and let e

j
i = πVj(wi)−πVj−1(wi) for j = 2, . . . , k and e

1
i = w

1
i . Namely, e

i
j is the component ofwi

which is in Vj, but perpendicular to Vj−1 and e1i is the component of wi which is in the span of v1. (Note that ‖e
k
i ‖ = εk−1.)

Let u be a unit vector perpendicular to span(Wk). For eachwi we define a new vectorw′i = (
∑k−1
j=1 e

j
i)+
√
1− δ2eki + δεk−1u.

Intuitively, we are defining a set of new vectors which are first rotated towards Vk−1 and then towards u such that they are
δεk−1 away from Vk. Introduce another vectorwk+1 =

√
1− δ2v1−δεk−1u. Intuitively, this new vector is v1 rotated towards

the negative direction of u. Note that, in this setting εk = δεk−1. We finally choose vk+1 = wk+1.

Lemma 19. For anyw ∈ Wk+1, d(w, Vj) ≤ εj for j = 1, . . . , k− 1 and d(w, Vk) = εk.

Proof. For w = wk+1, d(wk+1, Vj) = εk ≤ εj for j = 1, . . . , k. Let w = w′i for some 1 ≤ i ≤ k. Then, for any 1 ≤ j ≤ k− 1,
we have d(w′i, Vj)

2
=
∑k−1
l=j+1 ‖e

l
i‖
2
+ (1 − δ2)‖eki ‖

2
+ δ2‖eki ‖

2
=
∑k
l=j+1 ‖e

l
i‖
2
= d(wi, Vj)2 ≤ εj

2 by the induction
hypothesis. �

Lemma 19 ensures that {v1, . . . , vk+1} is a valid output of Greedy. What remains is to show that for any ε > 0, we can
choose δ sufficiently small so that Vol(Wk+1) ≥ (1 − ε)2k · Vol(Vk+1). In order to show this, we will need the following
lemmas.

Lemma 20. limδ→0 Vol(Wk+1) = 2εk · Vol(Wk).
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Proof. With a little abuse of notation, letWk+1 denote the matrix of coordinates for the vectors in the setWk+1.

Wk+1 =


w1,1 w1,2 · · · w1,k

√
1− δ2k

w2,1 w2,2 · · · w2,k 0
...

...
. . .

...
...

√
1− δ2wk,1

√
1− δ2wk,2 · · ·

√
1− δ2wk,k 0

δk δk · · · δk −δk


where wi,j is the ith coordinate of wj, which is inWk. (Note that this is exactly how U is constructed in the inductive step).
Expanding on the right-most column of the matrix, we have

Vol(Wk+1) = |det(Wk+1)| = |
√
1− δ2k · det(A)+ (−1)k+1δk · det(B)| (5)

where A and B are the corresponding minors of the coefficients, i.e. the left-most lower and upper k × k sub-matrices of
Wk+1, respectively. Clearly, we have det(B) =

√
1− δ2 · det(Wk) whereWk is the matrix of coordinates for the vectors in

the setWk. Let C be the matrix obtained by replacing eachw1,i by 1 inWk. Then, using row interchange operations on A, we
can move the last row of A to the top. This gives a sign change of (−1)k−1. Then, factoring out

√
1− δ2 and δk in the first

and last rows respectively, we have det(A) = (−1)k−1δk
√
1− δ2 · det(C). Hence, (5) becomes

|det(Wk+1)| = (δk
√
1− δ2)|

√
1− δ2k · det(C)+ det(Wk)|. (6)

We will need the following lemma to compare det(Wk) and det(C). �

Lemma 21. limδ→0 det(C)/ det(Wk) = 1.

Proof. For i > 1, the elements of the ith rows of bothWk and C has δi−1 as a common coefficient by construction. Factoring
out these common coefficients, we have det(Wk) = δk(k−1)/2 · det(U) and det(C) = δk(k−1)/2 · det(U ′) where U and U ′ are
matrices with non-zero determinants as δ approaches 0. Furthermore, limδ→0 det(U) = det(U ′) as the elements in the first
row of U approaches 1. The result then follows.
Using Lemma 21 and (6), we have

lim
δ→0
Vol(Wk+1) = lim

δ→0
|det(Wk+1)| = 2δk|det(Wk)| = 2εk · Vol(Wk). �

Theorem 22. Vol(Wk+1) ≥ (1− ε)2k · Vol(Vk+1) for arbitrarily small ε > 0.

Proof. Given any ε′ > 0we can choose δ small enough so that Vol(Wk+1) ≥ 2εk(1−ε′)·Vol(Wk), which is always possible by
Lemma 20. Given any ε′′, we can apply induction hypothesis to obtain Vk andWk such that Vol(Wk) ≥ (1−ε′′)2k−1 ·Vol(Vk).
Thus,

Vol (Wk+1) ≥ 2εk(1− ε′) · Vol(Wk)
≥ 2εk(1− ε′)(1− ε′′)2k−1 · Vol(Vk)
= (1− ε′)(1− ε′′)2k · Vol(Vk+1),

where we have used Vol(Vk+1) = εk · Vol(Vk). Choosing ε′ and ε′′ small enough such that (1 − ε′)(1 − ε′′) > 1 − ε gives
the result. �

3.3. Maximizing the number of unit norm vectors attaining a given volume

In this section, we give a result on approximating the maximum number of unit norm vectors which can be chosen to
have at least a certain volume. This result is essentially a consequence of the previous approximation result. We assume that
all the vectors in A have unit norm, hence the volume is non-increasing in the number of vectors chosen by Greedy. Let OPTk
denote the optimal volume for k vectors. Note that OPTk ≥ OPTk+1 and the number of vectorsm, chosen by Greedy attaining
volume at least OPTk is not greater than k. Our main result states that, if the optimal volume of k vectors is 2−Ω(k), then
Greedy chooses Ω(k/log k) vectors having at least that volume. Thus, Greedy gives a log k approximation to the optimal
number of vectors. We prove the result through a sequence of lemmas. The following lemma is an immediate consequence
of applying Greedy onWk.

Lemma 23. LetWk = {w1, . . . , wk} be a set of k vectors of optimal volume OPTk. Then there exists a permutationπ of the vectors
in Wk such that dπ(k) ≤ dπ(k−1) ≤ · · · ≤ dπ(2) where dπi = d(wπi , {wπ1 , . . . , wπi−1}) for k ≥ i ≥ 2.

We use this existence result to prove the following lemma.

Lemma 24. OPTm ≥ (OPTk)(m−1)/(k−1) where m ≤ k.

Proof. Let Wk = {w1, . . . , wk} be a set of vectors of optimal volume OPTk. By Lemma 23, we know that there exists an
ordering of vectors inWk such that dπ(k) ≤ dπ(k−1) ≤ · · · ≤ dπ(2) where dπi = d(wπi , {wπ1 , . . . , wπi−1}) for k ≥ i ≥ 2. Let
Wm′ = {wπ(1), . . . , wπ(m)}. Then, we have OPTm ≥ Vol(Wm′) =

∏m
i=2 dπi ≥ (

∏k
i=2 dπi)

(m−1)/(k−1)
= (OPTk)(m−1)/(k−1). �
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Lemma 25. Suppose OPTk ≤ 2(k−1)m logm/(m−k). Then, the Greedy algorithm chooses at least m vectors whose volume is at least
OPTk.

Proof. We are seeking a condition for OPTk which will provide a lower bound form such that OPTm/m! ≥ OPTk. If this holds,
then Vol(Greedym) ≥ Optm/m! ≥ OPTk and so Greedy can choose at least m vectors which have volume at least OPTk. It
suffices to find such anm satisfying (OPTk)(m−1)/(k−1)/m! ≥ OPTk by Lemma 24. This amounts to 1/m! ≥ (OPTk)1−(m−1)/(k−1).
Since 1/m! ≥ 1/mm for m ≥ 1, we require 1/mm ≥ (OPTk)1−(m−1)/(k−1). Taking logarithms of both sides and rearranging,
we have−(k− 1)m logm/(k−m) ≥ logOPTk. Taking exponents of both sides yields 2(k−1)m logm/(m−k) ≥ OPTk. �

In order to interpret this result, we will need to restrict OPTk. Otherwise, for example if OPTk = 1, the Greedy algorithm
may never get more than 1 vector to guarantee a volume of at least OPTk since it might be possible to misguess the first
vector. In essence, the number of vectors chosen by the algorithm depends on OPTk. First, we discuss what is a reasonable
condition on OPTk. Consider n vectors in m dimensions which defines a point in Rm×n. The set of points in which any two
vectors are orthogonal has measure 0. Thus, define 2−α = maxij d(vi, vj). Then, it is reasonable to assume that α > 0, in
which case OPTk ≤ 2−αk = 2−Ω(k). Hence, we provide the following theorem which follows from the last lemma under the
reasonable assumption that the optimal volume decreases by at least a constant factor with the addition of onemore vector.
Theorem 26. If OPTk ≤ 2−Ω(k), then the Greedy algorithm choosesΩ(k/log k) vectors having volume at least OPTk.
Proof. For some α, OPTk ≤ 2−αk. Thus, we solve form such that 2−αk ≤ 2(k−1)m logm/(m−k). Suitable rearrangements yield

m ≤
αk(k−m)
(k− 1) logm

≤
2αk
logm

.

Form, the largest integer such thatm ≤ 2αk/log m, we have

m ≈
2αk

log(2αk/log m)
=

2αk
log(2αk)− log logm

= Ω

(
k
log k

)
. �

In reality, for a random selection of n vectors inm dimensions, α will depend on n and so the result is not as strong as it
appears.

4. Discussion

Our analysis of the approximation ratio relies on finding the approximation factor at each round of Greedy. Indeed, we
have found examples for which the volume of the vectors chosen by Greedy falls behind the optimal volume by as large
a factor as 1/k, making Lemma 18 tight. But it might be possible to improve the analysis by correlating the ‘gains’ of the
algorithm between different steps. Hence, one of the immediate questions is that whether one can close the gap between
the approximation ratio and the lower bound for Greedy. We conjecture that the approximation ratio is 1/2k−1.
We list other open problems as follows:

– Do there exist efficient non-Greedy algorithms with better guarantees for MAX-VOL?
– There is a huge gap between the approximation ratio of the algorithmwe have analyzed and the inapproximability result.
Can this gap be closed on the inapproximability side by using more advanced techniques?

– Volume seems to play an important role in constructing a low-rank approximation to a matrix. Can the result of [13]
be extended to yield a direct relationship between low-rank approximations and large volume m × k sub-matrices of
a matrix? Or, can we establish a result stating that there must exist a large volume k × k sub-matrix of a large volume
m × k sub-matrix such that one can find an approximation to the maximum volume k × k sub-matrix by running the
same algorithm again on the m × k sub-matrix? Solutions proposed for low-rank approximations thus far consider
only randomized algorithms. Can this work be extended to find a deterministic algorithm for matrix reconstruction?
Establishing the relationship between the maximum k× k sub-matrix and some k× k sub-matrix of a maximum volume
m× k sub-matrix would give a deterministic algorithm for matrix reconstruction with provable guarantees.

We would like to note that the approximation ratio of Greedy algorithm is considerably small because of the
‘multiplicative’ nature of the problem. Another important problemwhich resemblesMAX-VOL in terms of behavior (but not
necessarily in nature) is the Shortest Vector Problem (SVP), which is not known to have a polynomial factor approximation
algorithm. Indeed, the most common algorithm which works well in practice has a 2O(n) approximation ratio [18] and non-
trivial hardness results for this problem are difficult to find.
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