
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

SDE: GRAPH DRAWING USING SPECTRAL DISTANCE

EMBEDDING ∗

ALI CIVRIL†

Computer Science Department,

Rensselaer Polytechnic Institute,

110 8th Street, Troy, New York 12180, United States of America

and

MALIK MAGDON-ISMAIL

Computer Science Department,

Rensselaer Polytechnic Institute,

110 8th Street, Troy, New York 12180, United States of America

and

ELI BOCEK-RIVELE

Computer Science Department,

Rensselaer Polytechnic Institute,

110 8th Street, Troy, New York 12180, United States of America

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

We present a novel algorithm for drawing undirected connected graphs, by using
a spectral decomposition of the distance matrix to approximate the graph theoretical
distances. The main advantages of our algorithm are that it is ”exact” (as opposed to
iterative), and it gives results that preserve symmetry and uniform node density, i.e.,
the drawings are aesthetically pleasing. Our approach has the benefits of fast spectral
techniques, but at the same time it produces drawings of a quality comparable to or better
than the much slower force-directed approaches. The computational complexity of our
algorithm is governed by its two main steps: distance matrix computation using an all-
pairs shortest path algorithm, which is O(|V ||E|); and low-order spectral decomposition,
which is O(|V |2). The runtime for typical 20, 000 node graphs ranges from 100 to 150
seconds.

Keywords: eigenvector, singular value decomposition, power iteration, finite metric

∗A preliminary version of this paper will appear in the 13th International Symposium on Graph
Drawing GD’05.

†To whom correspondence should be addressed.

1

1. Introduction

A graph G = (V, E) is a pair where V is the vertex set and E is the edge set,

which is a binary relation over V . The graph drawing problem is to compute an

aesthetically pleasing layout of vertices and edges so that it is easy to grasp visually

the inherent structure of the graph. The quantification of the notion ”aesthetically

pleasing” in an efficiently tractable way is one of the main tasks in graph drawing.

In this paper, we only consider straight-line edge drawings for which a variety

of aesthetic criteria have been studied: number of edge crossings; uniform node

densities; graph theoretic distance preservation (distortion); symmetry. Depending

on the aesthetic criteria of interest, various approaches have been developed, and a

general survey can be found in [14, 21].

For the straight-line edge drawings, the graph drawing problem reduces to the

problem of finding the coordinates of the vertices in two dimensions. A popular

approach is to define an energy function or a force-directed model with respect to

vertex positions, and to iteratively compute a local minimum of the energy func-

tion. The positions of the vertices at the local minimum produce the final layout.

This approach is generally simple and easy to extend to new energy functions. Var-

ious energy functions and force models have been studied [4, 5, 6, 13] and there

exist several improvements to handle large graphs, most of them concentrating on

a multi-scale paradigm. Multi-scale approaches involve laying out a coarser level

of the graph first, and then taking advantage of this coarse layout to compute the

vertex positions at a finer level [7, 9, 10, 18, 23]. The force-directed approach can

accommodate complex aesthetic criteria, however the more complex the criteria, the

less efficient the algorithm. Typical force-directed algorithms incorporate a repul-

sion term and an attraction term, and tend to give aesthetically pleasing drawings.

The main drawbacks of force-directed algorithms are that they are inefficient (even

in multi-scale approaches) and are sensitive to the ratio of repulsive to attraction

forces.

Spectral graph drawing approaches have become popular recently. We use the

term spectral graph drawing to refer to any approach that produces a final layout

using the spectral decomposition of some matrix derived from the vertex and edge

sets of the graph. In this paper, we present a spectral graph drawing algorithm

SDE (Spectral Distance Embedding), in which we use the spectral decomposition

of the graph theoretical distance matrix to produce the final layout of the vertices.

In the final layout, the pair-wise Euclidean distances of the vertices approximate

the graph theoretical distances. SDE consists of two main steps:

(i) all-pairs shortest path computation, which takes O(|V ||E|) time.

(ii) spectral decomposition of the distance matrix, in which we find the optimal

rank-d reconstruction to embed in d-dimensions. The complexity of this step

is O(d|V |2).

SDE can be used to produce a d-dimensional embedding, the most practical

being d = 2, 3. We focus on d = 2 in this paper. We present the results of

2

SDE HDE ACE

Figure 1: Comparison of SDE with other spectral methods (HDE and ACE) on the
finite element mesh of a cow with |V | = 1820, |E| = 7940.

our algorithm through several examples, including run-times. Compared to similar

techniques, we observe that our results achieve superior drawings, while at the same

time not significantly sacrificing computation time. A comparison of SDE with two

popular spectral graph drawing algorithms (HDE and ACE) is given in Figure 1

(Additional comparisons are given in Figures 7 and 8). ACE and HDE are very

efficient spectral graph drawing techniques, which give reasonably good drawings

for some graphs [11, 16], but can give drawings with very large distortion on many

(even simple) graphs. On the other hand, SDE produces good drawings on almost

every graph we have tried, with reasonable running times. The main exception is

trees which are problematic for all three spectral graph drawing techniques; however,

many good specialized algorithms exist for trees [21].

The breakdown of the paper is as follows: first, we discuss some related work

on spectral graph drawing. In Section 2, we discuss the spectral decomposition of

the distance matrix, followed by the algorithm and the results in Sections 3 and

4 respectively. We then give an analysis of the performance characteristics of the

algorithm, followed by some concluding remarks in Section 6, where we also discuss

possible improvements to the algorithm.

1.1. Related Work

There are general methods to draw graphs and detailed information about dif-

ferent approaches can be found in [14, 21]. Our algorithm is based on spectral

decomposition which is a relatively new approach to graph drawing. Spectral graph

drawing formulates graph drawing as a problem of computing the eigenvalues and

eigenvectors of certain matrices related to the structure of the graph. The formu-

lation is mathematically clean, in that exact (as opposed to iterative) solutions can

be found, because eigenvectors and eigenvalues can be computed exactly in O(|V |3)
time. Our work falls within the category of spectral graph drawing, which is the

related work we elaborate upon.

The method described in [11] by Harel and Koren embeds the graph in a high

dimension (typically 50) with respect to carefully chosen pivot nodes. One then

3

projects the coordinates into two dimensions by using a well-known multivari-

ate analysis technique called principal component analysis (PCA), which involves

computing the first few largest eigenvalues and eigenvectors of the covariance ma-

trix of the points in the higher dimension. The running time of the algorithm is

O(m|E| + m2|V |) which is driven by the computation of the m × m covariance

matrix and the power iteration to compute the largest eigenvalues and associated

eigenvectors, where m is the dimension in which the graph is drawn in the first

stage.

ACE (Algebraic multigrid Computation of Eigenvectors) [16] minimizes Hall’s

Energy function E = 1
2

∑n

i,j=1 wij(xi − xj)
2 in each dimension, modulo some non-

degeneracy and orthogonality constraints (n is the number of nodes, xi is the

one-dimensional coordinate of the ith node and wij is the weight of the edge be-

tween i and j). This minimization problem can be reduced to obtaining the eigen-

decomposition of the Laplacian of the graph. A multi-scaling approach is also used,

creating coarser levels of the graph and relating them to the finer levels using an in-

terpolation matrix. The multi-scaling allows the power iteration to converge faster

as the initial starting vectors in the power iteration makes use of the previously

calculated results at the coarser levels. An iterative approach to minimizing Hall’s

energy E could also be used and results in an update of the form, xi =
P

j∈N(i) xj

|N(i)| ,

i.e., xi is placed at the center of mass of its neighbors. This basic method was

first introduced by Tutte [22], and is known as the barycenter method. To avoid

the degenerate solution in which all the nodes are placed at the same location,

Tutte proposed to split the nodes into two sets Sfixed and Svariable. The nodes

in Sfixed are ”nailed” to the corners of a polygon, and the nodes in Svariable are

updated iteratively. In [15], all of the nodes are positioned simultaneously by solv-

ing a constrained quadratic optimization. The solution once again reduces to the

eigen-decomposition of a matrix associated with the graph.

Both of the methods described above are fast due to the small sizes of the

matrices processed. Specifically, ACE also takes advantage of the simple form of

Hall’s energy function by using a multi-scaling approach to the eigen-decomposition.

The drawings reflect the general structure of the graph, however there is nothing

that prevents the nodes from becoming too close to one another since there is no

repulsion term in the energy function. This may result in aesthetically unpleasant

drawings of certain graphs and some of these problems are illustrated in Figures 1,

7 and 8.

We propose a new spectral graph drawing algorithm that explicitly approxi-

mates the graph theoretical distances between nodes. It sits between the fast spec-

tral methods, which may sacrifice on quality, and slow force-directed approaches,

which produce high quality drawings. Other related algorithms that try to em-

bed distance matrices on manifolds and which have been used in different contexts

(localization from incomplete distance matrices and dimensionality reduction us-

ing local distance information) are Multi-Dimensional Scaling [12], Semi-Definite

Embedding [3], Isomap [20] and Locally Linear Embedding [19].

The problem our algorithm (SDE) addresses is that of embedding a finite metric

4

space in R
2 under the l2-norm [17]. Most research in this area of mathematics has

focused on determining what kinds of finite metric spaces are embeddable using low

distortion embeddings. Our work does not provide any guarantees on the distortion

of the resulting embedding, which is an active area of research. However, we do

provide some results indicating that if a low distortion optimal embedding exists,

then SDE will find an embedding with near-optimal distortion.

1.2. Notation

We use i, j, k, . . . for indices of vectors and matrices; bold uncapitalized letters

x,y, z for vectors in R
d and bold capitalized letters for matrices. Typically, M,N

are used to represent n×n matrices and X,Y,Z for n×d matrices, which represent

n vectors in R
d. The norm of a vector ||x || is the standard Euclidean norm and for

a matrix, we mostly use the Frobenius norm ||M ||F or the spectral norm ||M ||S [8].

The transpose of a vector or a matrix is denoted as xT ,MT .

2. Spectral Decomposition of the Distance Matrix

Given a graph G = (V, E) with n nodes, let V = {v1, v2, . . . , vn}. The distance

matrix D is the symmetric n× n matrix containing all the pair-wise distances, i.e.,

Dij is the shortest path length between vi and vj . Suppose that the position at

which vertex vi is placed is xi. We are seeking a positioning that approximates the

graph theoretical distances with the Euclidean distances, i.e,

‖xi − xj‖ ≈ Dij , for i, j = 1, 2, . . . , n. (1)

Taking squares of both sides, we have

xi
2 + xj

2 − 2xi · xj ≈ D2
ij . (2)

To write this expression in matrix notation, we will need to define some special

matrices. Let L be an n × n symmetric matrix such that Lij = D2
ij , for i, j =

1, 2, . . . , n. Let X,Q and 1n be defined as follows:

XT = [x1, . . . ,xn], QT = [‖x1‖2, . . . , ‖xn‖2], 1T
n = [1, . . . , 1].

Note that X is an n × d matrix containing the positions, Q is an n × 1 matrix

containing the magnitude of the positions and 1n is the n × 1 vector of ones. We

discuss general d; however, d = 2 is the case of practical interest. Now (2) can be

written as

[Q1n
T]ij + [Q1n

T]ji − 2[XXT]ij ≈ Lij . (3)

Since [A]ij = [AT]ji, and (Q1n
T)T = 1nQT , the entire set of equations in matrix

form is

Q1n
T + 1nQT − 2XXT ≈ L. (4)

5

Note that Q is a function of X. The goal is to find X for which the above equality

approximately holds. This set of equalities may not be exactly satisfied if L cannot

be embedded in R
d. As it stands, (4) is hard to solve on account of the dependance

of Q on X. We massage it into a more convenient form by using a projection matrix

γ = In −
1

n
1n1n

T , (5)

where In is the n× n identity matrix. Multiplying both sides of (4) by γ from the

left and the right, we obtain

γQ1n
T
γ + γ1nQT

γ − 2γXXT
γ ≈ γLγ. (6)

Since γ is a projection operator, (4) becomes

(γX)(γX)T ≈ −1

2
γLγ, (7)

where we have used the fact that γ = γ
T . We may interpret this equation more

easily by setting

Y = γX = (X− 1

n
1n1n

TX). (8)

Y is an n× d matrix containing the coordinates in X, each translated by the same

vector 1
n
1n

TX, i.e., each translated by the mean of the X coordinates. Thus, Y

is the same set of coordinates as X in a different coordinate system; one in which

mean(Y) = 0. Since the distance matrix is invariant to rotations and translations,

a solution for Y is just as acceptable as a solution for X. Letting M = − 1
2γLγ, we

get

YYT ≈M. (9)

Note that Y has rank d. If D were a true Euclidean distance matrix, then M would

have rank at most d and we could exactly recover Y, solving our problem. Since D

may not be a true distance matrix , i.e., D may not be embeddable in R
d, M will

generally have rank greater than d. Naturally, we want to approximate M as closely

as possible. The metric we choose is the spectral norm, so we wish to find the best

rank-d approximation to M with respect to the spectral norm. This is a well-known

problem, which is equivalent to finding the largest d eigenvalues of M. Specifically,

order the eigenvalues of M such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and let u1,u2, . . . ,un

be the associated eigenvectors. Then, the spectral decomposition of M yields M =
∑n

k=1 λkukuk
T , and the rank-d approximation of M is Md =

∑d

k=1 λkukuk
T .

Theorem 1 (see for example[8]) Md is the best rank-d approximation to M

w.r.t. the spectral norm.

The final centralized coordinates are then given by Y = [
√

λ1u1, . . . ,
√

λdud].

6

SDE(G)

1: Compute the distance matrix D using an APSP algorithm on G
2: Define matrix L such that Lij = D2

ij .

3: return Y = PowerIteration(− 1
2γLγ, ε) % epsilon is a tolerance

Figure 2: The spectral graph drawing algorithm SDE.

3. The Graph Drawing Algorithm

The algorithm can now be succintly stated as an implementation of Theorem 1.

Specifically, there are two stages:

(i) computing all-pairs shortest path lengths to obtain L.

(ii) finding a rank-d approximation of M = − 1
2γLγ which corresponds to com-

puting the largest d eigenvalues and eigenvectors.

In order to implement (i), we run a BFS for each node. The complexity of this

step is O(|V ||E|). For (ii), rather than using an exact algorithm which will be

O(|V |3), we use a standard procedure typically referred to as the power iteration

to compute the eigenvalues and eigenvectors of M. The power iteration typically

produces results as good as the exact algorithm, but much more efficiently. It

starts with some random initial vectors and iteratively multiplies them with the

relevant matrix modulo orthonormality constraints. The procedure stops when

some termination condition is met, for example, when the change in direction of

the eigenvector is negligible, i.e., the cosine of the dot product of the previous

estimate and the newly computed estimate is above 1 − ε for some small ε. We

impose one additional condition for termination, which ensures that the ratio of

the direction change between two consecutive iterations is above some value, 1 + ε

in our case. The convergence of the power iteration depends on the eigenvalues of

the matrix; in practice it takes some constant number of iterations to compute the

eigenvalues to some precision, since convergence is exponentially fast. The matrix

multiplications we perform in the power iteration take O(|V |2) time, which makes

the overall complexity of the power iteration O(d|V |2). Thus, the complexity of

our algorithm is O(|V ||E| + d|V |2), which is equal to O(|V ||E|) for d = 2. The

space complexity is O(|V |2) since we need to store all the pair-wise distances. The

algorithm is summarized in Figure 2 with a detailed implementation of the power

iteration given in Figure 3.

4. Results

We have implemented our algorithm in C++, and Table 1 gives the running time

results on a Pentium IV 3.2 GHz processor system. We present the results of running

the algorithm on several graphs of varying size up to about 20, 000 nodes. We show

results for some small graphs in order to illustrate explicitly how the symmetries

are preserved, in addition to several benchmark graphs. Finally in Figure 7 and 8,

7

PowerIteration(M,ε)

1: current← ε; y1 ← random/‖random‖
2: repeat
3: prev ← current
4: u1 ← y1

5: y1 ←Mu1

6: λ1 ← u1 · y1 % compute the eigenvalue
7: y1 ← y1/‖y1‖
8: current← u1 · y1

9: until current ≥ 1− ε or |current/prev| ≤ 1 + ε
10: current← ε; y2 ← random/‖random‖
11: repeat
12: prev ← current
13: u2 ← y2

14: u2 ← u2 − u1(u1 · u2) % orthogonalize against u1

15: y2 ←Mu2

16: λ2 ← u2 · y2 % compute the eigenvalue
17: y2 ← y2/‖y2‖
18: current← u2 · y2

19: until current ≥ 1− ε or |current/prev| ≤ 1 + ε
20: return (

√
λ1y1

√
λ2y2)

Figure 3: The power iteration method for finding eigenvectors and eigenvalues (d =
2).

we compare some drawings generated by our algorithm, together with the results

of other spectral graph drawing algorithms HDE and ACE [11, 16]. Note that the

results for HDE are produced by the standard application of the algorithm, which

uses the first and the second principal components [11]. For the power iteration, we

set the tolerance ε = 10−7.

Table 1 shows that SDE is reasonably fast for graphs up to 20,000 nodes. As can

be seen from Figures 4, 5 and 6, it also produces aesthetically pleasing drawings of a

wide range of graphs varying in size, node density and degree of symmetry. Figure

7 and 8 highlight the main advantages of SDE over other spectral graph drawing

methods. Specifically, it preserves the symmetries in the graph and maintains uni-

form node density to a large extent, and hence produces a better representation of

the overall graph structure. To be fair, we note that on some graphs (eg. 3elt),

ACE and HDE give comparable drawings to SDE, much more quickly. However,

they suffer from many problems illustrated in the figures. Typically, node densities

are not preserved resulting in distortions of the general structure.

In the last column of Table 1, we also give the Frobenius norm of the embedding

error ε = D−D′ where Dij =
√

L′
ij and L′ = Q1n

T +1nQ
T −2YYT , as a measure

of how accurate the drawing is with respect to the graph theoretical distances. The

Frobenius errors computed in Table 1 are defined as

8

Graph |V| |E| APSP PI Total || ε ||F || ε ||F ′

Jagmesh1 936 2664 0.1 0.1 0.2 2.26 0.154
Can1072 1072 5686 0.2 0.3 0.5 1.52 0.314
Grid 50x50 2500 4900 0.7 0.5 1.2 4.49 0.171
Torus 50x50 2500 5000 0.7 0.6 1.3 10.1 0.357
Nasa1824 1824 18692 1.0 0.8 1.8 1.45 0.250
Blckhole 2132 6370 0.6 1.5 2.1 5.90 0.334
Nasa2146 2146 35052 2.1 0.7 2.8 1.49 0.179
Lshp3466 3466 10215 1.8 2.0 3.8 2.48 0.111
4970 4970 7400 2.8 2.3 5.1 4.77 0.162
Grid 70x70 4900 9660 2.8 2.4 5.2 6.28 0.170
Airfoil1 4253 12289 3.4 3.5 6.9 5.81 0.265
3elt 4720 13722 4.7 3.8 8.5 10.2 0.382
Sierpinski08 9843 19683 16 9 25 14.4 0.170
Grid 100x100 10000 19800 18 12 30 8.96 0.170
Whitaker3 9800 28989 25 8 33 1.51 0.054
Crack 10240 30380 28 17 45 2.04 0.085
4elt2 11143 32818 34 15 49 9.16 0.252
Bcsstk33 8738 291583 77 15 92 1.67 0.252
4elt 15606 45878 86 47 133 11.5 0.308
Sphere 16386 49152 107 30 137 17.6 0.291
Vibrobox 12328 165250 125 40 165 2.99 0.562
Cti 16840 48232 91 78 169 7.40 0.328

Table 1: Running time of SDE for several graphs. (Most of these graphs can be
downloaded from [1, 2].)

|| ε ||F =

√

1

n2

∑

i,j

(Dij −D′
ij)

2, || ε ||F ′ =

√

√

√

√

1

n2

∑

i6=j

(

1−
D′

ij

Dij

)2

(10)

The Frobenius errors may not be considered as an exact quantification of what

embodies an aesthetic drawing. Furthermore, for certain graphs, no matter how

good a graph drawing algorithm is, these errors may not be under some certain

threshold as they depend on the embedability of the graph with respect to the

graph theoretical distances, but one expects these errors to be as small as possible

for any intuitively pleasing drawing.

5. Performance Analysis

The formal problem we are attempting to solve is a problem in minimum dis-

tortion finite metric embedding [17]. We approach this problem using a spectral

decomposition of the matrix of squared distances. We now give some results that

explain the intuition behind why and when our algorithm will work well in practice.

The distance matrix D represents a finite metric space. Our approach is to use

9

a spectral technique to estimate L, where Lij = D2
ij . Suppose that the optimal

embedding (which we define below) is given by the coordinates z1, . . . , zn, which

we collect in the matrix Z (analogous to X,Y). Let DZ and LZ be the distance

matrix and the matrix of squared distances implied by Z. We can then write

L = LZ + ε. (11)

We refer ε as the metric embedding error. Z is optimal in that || ε ||S is infimum

over all possible Z. L is embeddable if ε = 0.

Theorem 2 If L is embeddable, then, up to an orthogonal transformation, our

algorithm returns Z− 1
n
1n1n

T Z.

Proof. Multiplying both sides of (11) by γ from the left and right, we obtain

γLγ = γLZγ

= −2(Z− 1

n
1n1n

T Z)(Z− 1

n
1n1n

TZ)T

= −2AAT ,

(12)

where A = Z − 1
n
1n1n

TZ is rank-d. Since our algorithm computes a rank-d ap-

proximation Ad of the matrix − 1
2γLγ, and the right hand side of (12) is rank-d, we

exactly recover − 1
2γLγ, i.e., AdAd

T = − 1
2γLγ = AAT . Since the singular values

of a matrix A are the nonnegative square roots of the eigenvalues of AAT and the

left singular vectors of that matrix are the eigenvectors of AAT , we can write the

singular value decompositions of Ad and A as Ad = UΣV1
T and A = UΣV2

T .

Multiplying the equation for Ad from left by V1, we have AdV1 = UΣ since

V1 is orthogonal. Substituting this expression in the equation for A, we obtain

A = AdV1V2
T . Note that V = V1V2

T is also orthogonal since VVT = Id and

therefore Ad differs from A by at most an orthogonal transformation. �

Since the distance matrix is invariant to orthogonal transformations, we obtain

the following corollary, which is the basic intuition behind SDE:

Corollary 1 When the distance matrix is embeddable, the coordinates recovered by

SDE exactly reproduce the distance matrix.

When the distance matrix is not exactly embeddable, but the embedding error

ε is small, SDE should approximately reproduce the distance matrix. Suppose that

ε 6= 0, and let

M = −1

2
γLZγ

= −2(Z− 1

n
1n1n

TZ)(Z − 1

n
1n1n

TZ)T .

(13)

Let ε1 = − 1
2γεγ. Then, using (11), − 1

2γLγ = M + ε1. The next theorem states

that the optimal rank-d approximation for − 1
2γLγ is a also a good approximation

to M (up to the embedding error ε).

Theorem 3 Let Md be the optimal rank-d approximation to − 1
2γLγ = M + ε1.

Then, ||Md −M ||S ≤ || ε ||S.

10

Proof. By the triangle inequality, we have

||Md −M ||S = ||Md −M− ε1 + ε1 ||S
≤ ||Md −M− ε1 ||S + || ε1 ||S .

(14)

Since Md is the best rank-d approximation to M + ε1 and M is itself rank-d,

||Md −M− ε1 ||S ≤ ||M−M− ε1 ||S
= || ε1 ||S .

(15)

Thus, ||Md −M ||S ≤ 2|| ε1 ||S . To conclude, note that since γ is a projection ma-

trix, ||γ ||S ≤ 1, so by sub-multiplicativity, || ε1 ||S = || − 1
2γεγ ||

S
≤ 1

2 ||γ ||
2
S || ε ||S ≤

1
2 || ε ||S . �

Thus, if SDE returns the coordinates Y, then ||γYYT
γ − γZZT

γ ||S is small

provided that L is nearly embeddable (which depends on the perturbation ε). Un-

fortunately this alone does not guarantee that γY ≈ γZO for some orthogonal

d × d matrix O, i.e., in general, the eigenvectors are not stable to perturbations.

The next theorem relates the change in eigenvectors to the spectrum.

Theorem 4 (Corollary 7.2.6 in [8]) Let ê1 and ê2 be the top two eigenvectors of

M+ε1, and e1 and e2 be the top two eigenvectors of M. Then there exists functions

f1 and f2 of M and ε1 such that || e1 − ê1 || ≤ f1(M, ε1) and || e2 − ê2 || ≤ f1(M, ε1).

Furthermore, these functions depend on how well separated the eigenvalues of M

are, the size of the error ε1, and how well aligned the error is to M.

The functions f1, f2 in Theorem 4 have the expected dependence on M, ε1. In

particular, the better separated the spectrum of M is and the smaller ε1 is, the

smaller the values of f1, f2 will be. An additional concern is how well aligned ε1

is to M. The precise formulation of this can be found in [8], but in a nutshell,

the perturbations in the small singular value subspaces of M should be small (i.e.

the relative perturbations should be small). According to Theorem 4, when the

eigenvalues of M are well separated and ε is small, then not only will Md be close

to M, but so will the top two eigenvectors match closely. Thus, SDE will recover a

close approximation to ZO for some orthogonal matrix O, i.e., the distance matrix

is nearly recovered. Note that the separation of the eigenvalues is a necessary con-

dition for the power iteration to converge quickly. Thus, when the power iteration

fails to converge quickly, it is already a sign that SDE may produce undesirable

results. However, it also means that any rank-2 decomposition, including the opti-

mal embedding must have a high relative embedding error. To see this, note that

|| ε1 ||2F ≥
∑n

i=3 σ2
j (L), and since σ2

3(L) ≈ σ2
1,2(L) (because the singular values are

not well separated), the embedding error will be a constant fraction of ||L ||F .

6. Conclusion

We have presented a novel graph drawing algorithm SDE which is based on

computing the spectral decomposition of the matrix of squared graph theoretical

11

distances. Our algorithm has the advantages of spectral graph drawing techniques,

for example exact (as opposed to iterative) computation of the coordinates, and

efficiency, while at the same time producing drawings that are comparable in quality

to slower force directed-methods.

The running time of our algorithm is dominated by an APSP computation, which

is O(|V ||E|) using O(|V |2) space for storing pair-wise distances. SDE can readily

be extended to weighted graphs with run time O(|V ||E| log |V |), again dominated

by the APSP algorithm. Our algorithm is not as efficient as other methods such as

ACE, which runs in linear time. However, it is able to draw quite large graphs in

a reasonable amount of time, and therefore can be extremely useful as an auxiliary

drawing algorithm to obtain precise pictures of smaller regions contained within a

huge graph. The general structure of our algorithm also allows for zooming into a

graph, which corresponds to running SDE on a principle sub-matrix of the matrix

of squared distances.

The main bottleneck of SDE is caused by the fact that it needs to compute

the shortest path lengths between every pair of nodes. This also affects the power

iteration, where large (|V | × |V |) matrices need to be processed. We will briefly

discuss approaches to improve the efficiency of our algorithm without significant

sacrifice in quality (which will be the topic of forthcoming work). Since any valid

matrix of squared distances has rank 4, i.e. all the rows of the matrix can be

expressed as a linear combination of 4 vectors, the BFS algorithm need not be run

on all vertices, but rather on a small number (O(1)) of carefully chosen vertices.

This results in a sparse matrix representation of L, which will be accurate provided

that the perturbation ε is small, i.e., if L is embeddable. All the algorithms can then

be run on the sparse approximation, which will result in a runtime of O(mE), where

m = O(1) is the dimensionality of the sparse representation. Further increases in

efficiency can be obtained by using a multi-scaling approach in the power iteration,

which was introduced in [16]. This method relates the actual graph to a coarser level

of the graph using an interpolation matrix. Finding the eigenvalues and eigenvectors

of coarser level graphs makes the convergence faster at the finer levels.

References

1. http://wwwcs.uni-paderborn.de/fachbereich/ag/monien/research/part/graphs.html.

2. http://www.gre.ac.uk/ c.walshaw/partition/.

3. P. Biswas and Y. Ye. Semidefinite programming for ad-hoc wireless localization.
IPSN, Berkeley, CA, 2004.

4. R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing. ACM
Transactions on Graphics, 15(4):301–331, 1996.

5. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984.

6. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed place-
ment. Software - Practice And Experience, 21(11):1129–1164, 1991.

7. P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-dimensional algorithm
for drawing large graphs. In Proc. 8th Int. Symp. Graph Drawing(GD’00), volume

12

1984 of LNCS, pages 211–221. Springer-Verlag, 2000.

8. G. H. Golub and C. V. Loan. Matrix Computations. Johns Hopkins U. Press, 1996.

9. S. Hachul and M. Jünger. Drawing large graphs with a potential-field-based multi-
level algorithm. In Proc. 12th Int. Symp. Graph Drawing(GD’04), LNCS, 2004.

10. D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. In
Proc. 8th Int. Symp. Graph Drawing(GD’00), volume 1984 of LNCS, pages 183–
196. Springer-Verlag, 2000.

11. D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In GD02,
LNCS. Springer-Verlag, 2002.

12. X. Ji and H. Zha. Sensor positioning in wireless ad-hoc sensor networks using
multidimensional scaling. IEEE Infocom, March 7-11, 2004.

13. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, 1989.

14. M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models.
Number 2025 in LNCS. Springer-Verlag, 2001.

15. Y. Koren. On spectral graph drawing. In COCOON 03, volume 2697 of LNCS,
pages 496–508. Springer-Verlag, 2003.

16. Y. Koren, D. Harel, and L. Carmel. Drawing huge graphs by algebraic multigrid
optimization. Multiscale Modeling and Simulation, 1(4):645–673, 2003. SIAM.

17. J. Matousek. Open problems on embeddings of finite metric spaces. Discr. Comput.
Geom., to appear.

18. A. Quigley and P. Eades. FADE: Graph drawing, clustering and visual abstraction.
In GD00, volume 1984 of LNCS, pages 197–210. Springer-Verlag, 2000.

19. S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323–2326, 2000.

20. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

21. I. G. Tollis, G. D. Battista, P. Eades, and R. Tamassia. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

22. W. T. Tutte. How to draw a graph. Proc. London Mathematical Society, 13:743–
768, 1963.

23. C. Walshaw. A multilevel algorithm for force-directed graph drawing. In GD00,
volume 1984. Springer-Verlag, 2000.

13

(a) Buckyball; |V | = 60, |E| = 90. (b) 50× 50 Grid; |V | = 2500, |E| = 4900.

(c) 50× 50 Bag; |V | = 2497, |E| = 4900. (d) Jagmesh1; |V | = 936, |E| = 2664.

(e) Nasa1824; |V | = 1824, |E| = 18692. (f) Nasa2146; |V | = 2146, |E| = 35052.

Figure 4: Layouts of some of the graphs tested I.

14

(a) 3elt; |V | = 4720, |E| = 13722. (b) 4elt; |V | = 15606, |E| = 45878.

(c) 50× 50 Torus; |V | = 2500, |E| = 5000. (d) 4elt2; |V | = 11143, |E| = 32818.

(e) Graph 4970; |V | = 4970, |E| = 7400. (f) Blckhole; |V | = 2132, |E| = 6370.

Figure 5: Layouts of some of the graphs tested II.

15

(a) Crack; |V | = 10240, |E| = 30380. (b) Bcsstk33;|V | = 8738|E| = 291583.

(c) Sphere; |V | = 16386, |E| = 49152. (d) Vibrobox; |V | = 12328, |E| = 165250.

(e) Whitaker3; |V | = 9800, |E| = 28989. (f) Cti; |V | = 16840, |E| = 48232.

Figure 6: Layouts of some of the graphs tested III.

16

20× 50 Grid; |V | = 1000, |E| = 1930. Sierpinski 8; |V | = 9843, |E| = 19683.

SDE

running time = 0.21 sec. running time = 24.72 sec.

HDE

running time = 0.01 sec. running time = 0.11 sec.

ACE

running time = 0.03 sec. running time = 0.78 sec.

Figure 7: Comparison of SDE with HDE and ACE I.

17

Whitaker3; |V | = 9800, |E| = 28989. Vibrobox; |V | = 12328, |E| = 165250.

SDE

running time = 33.42 sec. running time = 164.81 sec.

HDE

running time = 0.11 sec. running time = 0.24 sec.

ACE

running time = 0.25 sec. running time = 0.92 sec.

Figure 8: Comparison of SDE with HDE and ACE II.

18

