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We give a reduction from clique to establish that sparse Principal Components Analysis 
(sparse PCA) is NP-hard. Using our reduction, we exclude a fully polynomial time 
approximation scheme (FPTAS) for sparse PCA (unless P=NP). Under stronger average 
case complexity assumptions, we also exclude polynomial constant-factor approximation 
algorithms.
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1. Introduction

The earliest reference to principal components anal-
ysis (PCA) is in [15]. Since then, PCA has evolved into 
a classic tool for data analysis. A challenge for the in-
terpretation of the principal components (or factors) is 
that they can be linear combinations of all the original 
variables. When the original variables have direct phys-
ical significance (e.g. genes in biological applications or 
assets in financial applications) it is desirable to have fac-
tors which have loadings on only a small number of the 
original variables. These interpretable factors are sparse 
principal components (spca). There are many heuristics for 
obtaining sparse factors [3,19,20,7,6,13,17] as well as some 
approximation algorithms with provable guarantees [2,
4]. Our goal in this short paper is to establish the NP-
hardness and inapproximability of spca using a reduction 
from clique.

The traditional formulation of sparse PCA is as cardinal-
ity constrained variance maximization:

E-mail address: magdon@cs.rpi.edu.
http://dx.doi.org/10.1016/j.ipl.2017.05.008
0020-0190/© 2017 Elsevier B.V. All rights reserved.
Problem: spca (sparse PCA)
Input: Symmetric matrix S ∈ R

n×n; sparsity r ≥ 0; 
variance M ≥ 0.

Question: Does there exist a unit vector v ∈ R
n

with at most r non-zero elements (vtv = 1 and 
‖v‖0 ≤ r) for which vt

Sv ≥ M?

In the machine learning context, S is the covariance ma-
trix for the data and, when there is no sparsity constraint, 
the solution v∗ is the top right singular vector of S. A gen-
eralization of spca is the generalized eigenvalue problem 
for symmetric input matrices S and Q: maximize vt

Sv
w.r.t. v, subject to vt

Qv = 1 and ‖v‖0 ≤ r. This generalized 
eigenvalue problem is NP-hard [12] (via a reduction from 
sparse regression which is known to be NP-hard [14,8]). It 
is deeply embeded folklore that spca is NP-hard. The im-
portance of sparse factors in dimensionality reduction has 
been recognized in some early work (the varimax criterion 
[10] has been used to rotate the factors to encourage spar-
sity, and this has been used in multi-dimensional scaling 
approaches to dimensionality reduction [16,11]).
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Summary of our results. We give a simple reduction 
from clique which shows that spca is NP-hard. This re-
sult also implies that it is NP-hard to determine the sign 
of the optimal objective value (if some algorithm A deter-
mined the sign of the optimal objective, one can solve spca

by feeding S − MI into A). As we already mentioned, NP-
hardness is folklore knowledge whose origin we are unable 
to determine. One of our contributions is to make this 
folklore a concrete fact together with a formal proof. The 
reduction from clique may be new. Our proof derives the 
input S to spca from the adjacency matrix of the input G
to clique, so the problem remains NP-hard even if S is re-
stricted to such inputs, whose entries are in {0, 1}. Further, 
instead of constructing S from the adjacency matrix of the 
input to clique, we can use the Laplacian, and our ap-
proach would still go through with some details changed. 
Thus, our results hold even when the input S is restricted 
to diagonally dominant matrices (a restriction of positive 
semi-definite). In typical machine learning applications, S

is a covariance matrix which is positive semi-definite, and 
so spca remains NP-hard when restricted to that context.

Our main result is that there is no poly(n) (1 −
O (1/r2))-approximation algorithm for spca unless P = N P . 
This result also holds under the restrictions discussed 
above for NP-hardness. We should mention that subse-
quent related but independent work [4] studies the ap-
proximability of spca for positive semi-definite matrices, 
where they provide an n−1/3-approximation and also show 
inapproximability to within (1 − ε) for some small ε .

Notation. A, B, . . . are matrices; a, b, . . . are vectors; 
and, G, H, . . . are graphs. The top eigenvalue of a matrix 
A is λ1(A); ‖A‖2 is the spectral norm. For an undirected 
graph G , its adjacency matrix A is a (0,1)-matrix with 
Ai j = 1 whenever edge (i, j) is in G . The spectral radius of 
a graph is the spectral norm of its adjacency matrix (also 
the top eigenvalue λ1). 0 (resp. 1) are vectors or matrices 
of only zeros (resp. ones); for example, 1m×n is a m × n
matrix of ones.

2. Sparse PCA is NP-complete: reduction from CLIQUE

Problem: clique

Input: Undirected graph G = (V , E); clique size K .
Question: Does there exist a K -clique in G?

The reduction is fairly straightforward. Given the inputs 
(G, K ) for clique, we construct the inputs (S, r, M) for spca

as follows. Let S be the adjacency matrix of G; let r = K ; 
and, let M = K − 1. Clearly the reduction is polynomial. 
We now prove that there is a K -clique in G if and only if
there is a K -sparse unit vector v for which vt

Sv ≥ K − 1. 
We need the following lemma on the spectral radius (top 
eigenvalue) of an adjacency matrix.

Lemma 1 ([5]). Let A be the adjacency matrix of a graph H of 
order �. If H is an �-clique, then ‖A‖2 = λ1(A) = � − 1; if H is 
not an �-clique, then ‖A‖2 = λ1(A) < � − 1.
We now prove the claim. Suppose Q is a K -clique in 
G and let SQ be the K × K principal submatrix of S cor-
responding to the nodes in Q . Let z be a unit-norm top 
eigenvector of SQ , and let v(z) be the vector with K non-
zeros induced by z: the non-zeros in v are at the indices 
corresponding to the nodes in Q and the values are the 
corresponding values in z. Then,

vt
Sv = zt

SQ z = λ1(SQ ) = K − 1,

where the last equality follows from Lemma 1 because 
SQ is the adjacency matrix of a K -clique. So, v(z) is a 
K -sparse unit vector for which vt

Sv ≥ K − 1. Now, sup-
pose that there is a unit-norm K -sparse v for which vt

Sv ≥
K − 1. Let SQ be the K × K principal submatrix of S cor-
responding to the non-zero entries of v and let z(v) be 
the K -dimensional vector consisting only of the non-zeros 
of v. Let Q be the subgraph induced by the nodes cor-
responding to the non-zero indices of v (SQ is the adja-
cency matrix of Q ). Then, vt

Sv = zt
SQ z ≥ K − 1, and so 

λ1(SQ ) ≥ K − 1. By Lemma 1 if Q is not a K -clique then 
λ1(SQ ) < K − 1, so it follows that Q is a K -clique. Clearly
spca is in NP and so it is NP-complete.

3. Inapproximability of SPCA

We now provide evidence that there is no efficient ap-
proximation algorithm for spca. First we rule out the pos-
sibility of a fully polynomial time approximation scheme 
(FPTAS). Given any instance (S, r) of spca, define OPT(S, r)=
maxv vt

Sv over unit-norm r-sparse v. A (1 −ε)-approxima-
tion algorithm for spca produces a unit-norm r-sparse 
solution ṽ for any given instance (S, r) satisfying ṽt

Sṽ ≥
(1 − ε)OPT(S, r). An FPTAS is algorithm to compute a (1 −
ε)-approximation for ε > 0 and every instance of spca that 
is polynomial in n, r, ε−1. The next theorem establishes 
that there is no polynomial (1 − O (1/r2))-approximation 
algorithm and hence no FPTAS.

Theorem 2 (No FPTAS). Unless P=NP, there is no polynomial 
time (1 − ε)-approximation algorithm for spca with

ε < ε∗(r) = r + 1

2(r − 1)

(
1 −

√
1 − 8

(r + 1)2

)

= 2

r2 − 1
+ O (1/r4).

The reason Theorem 2 implies no FPTAS is because 
if there were an FPTAS, then there would be a (1 −
O (1 /r2))-approximation algorithm which runs in poly(n,r2)

time, which is poly(n) because r ≤ n. But Theorem 2 shows 
that there is no poly(n)-time (1 − O (1/r2))-approximation 
algorithm.

Proof. The proof essentially amounts to strengthening 
Lemma 1 for the case that H is not an �-clique. Specifi-
cally in Lemma 1, if adjacency matrix A ∈ R

�×� is not the 
adjacency matrix of an �-clique, then we will show that

λ1(A) ≤ � − 3

2
+ � + 1

2

(
1 − 8

(� + 1)2

)1/2

= (� − 1)(1 − ε∗(�)). (∗)
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Suppose that (∗) holds whenever H is not an �-clique. 
For any spca instance (S, r), suppose the polynomial al-
gorithm A gives a (1 − ε)-approximation with ε < ε∗(r). 
We show how to use A to polynomialy decide clique. 
Given (G, K ), the inputs to clique, use our reduction to 
construct (S, K , K − 1), the inputs to spca. Now run al-
gorithm A on (S, K ) to obtain ṽ and compute x = ṽSṽ. 
If x ≥ (K − 1)(1 − ε∗(K )) then OPT(S, K ) = K − 1 and 
so there is a K -clique in G; if x < (K − 1)(1 − ε∗(K ))

then OPT(S, K ) < K − 1 (since we have a better than 
(1 − ε∗(K ))-approximation) and so there is no K -clique 
in G .

To prove (∗), we first consider the adjacency matrix of 
a complete graph minus one edge,

A =
[

02×2 12×(�−2)

1(�−2)×2 1�−21t

�−2 − I(�−2)×(�−2)

]

By symmetry, the top eigenvector can be written 
[

x12
y1�−2

]
. 

The eigenvalue equation is[
02×2 12×(�−2)

1(�−2)×2 1�−21t

�−2 − I(�−2)×(�−2)

][
x12

y1�−2

]

= λ

[
x12

y1�−2

]
,

and we obtain the equations:

(� − 2)y = λx;
2x + (� − 3)y = λy.

Solving for λ gives the quadratic λ2 − (� − 3)λ − 2(� − 2) =
0, and the positive root is

λ = � − 3

2
+ 1

2

√
(� + 1)2 − 8,

which is the expression in (∗). Since the spectral radius is 
strictly decreasing with edge-removal (using the Raleigh 
quotient and the Perron–Frobenius Theorem, see [18, 
page 9]), we have proved the upper bound in (∗). �

Under stronger (average-case) complexity assumptions 
we can also exclude polynomial constant factor approxi-
mations for spca. A natural optimization version of clique

is the densest-K -subgraph (dκs): Given (G, K ) find a sub-
graph Q on K nodes with the maximum number of edges. 
There is evidence that dκs does not admit efficient approx-
imation algorithms [1].

Let G and G ′ be two graphs on n vertices. Suppose that 
one of the graphs has an �-clique and for the other graph, 
every subgraph on � vertices has at most δ�(� −1)/2 edges 
for 0 < δ < 1. If one has a polynomial δ-approximation al-
gorithm for dκs then one can determine which of G, G ′
has the �-clique in polynomial time. We show that if one 
has an α-approximation algorithm for spca, then one can 
determine which of G, G ′ has the �-clique in polynomial 
time for δ ≤ α2. This means that if there are no polynomial 
algorithms to distinguish between graphs with �-cliques 
and graphs whose � subsets are all below a density α2, 
then there are no polynomial α-approximation algorithms 
for spca.
Suppose there is an α-approximation algorithm for
spca. So, given any instance (S, r) of spca, in polynomial 
time one can construct a solution ṽ for which ṽt

Sṽ ≥
αOPT(S, r). Let G, G ′ be the two graphs described above 
with δ = α2. Note that

δ = α2 < α2 (� − 1)

�
+ 1

�
,

where the inequality is because 0 < α < 1. Now, let A be 
the adjacency matrix of G and run the α-approximation al-
gorithm for spca with inputs (A, �) to produce a solution ṽ. 
If ṽt

Aṽ ≥ α(� − 1), declare that G contains the �-clique; 
otherwise declare that G ′ contains the �-clique. We prove 
that our algorithm correctly identifies the graph with the 
�-clique.

If G does contain the �-clique, then OPT(A, �) = � − 1
and the output ṽ will satisfy ṽt

Aṽ ≥ α(� − 1) (because 
it is an α-approximation) and so we will correctly iden-
tify G to have �-clique. Now suppose that G does not 
contain the �-clique. So, every �-node subgraph in G has 
at most e ≤ δ�(� − 1)/2 edges. We now use the bound 
on the spectral radius of a graph with e edges from [9]: 
‖A‖2 ≤ √

2e − n + 1, and since e ≤ δ�(� − 1)/2, we have 
that

‖A‖2 ≤ √
δ�(� − 1) − � + 1

=
√

α2�(� − 1) − � + 1

<

√(
α2 (� − 1)

�
+ 1

�

)
�(� − 1) − � + 1

= α(� − 1).

Since ‖A‖2 < α(� −1), we will correctly identify G ′ to have 
the �-clique. The conclusion is summarized in the follow-
ing theorem.

Theorem 3. A polynomial α-approximation algorithm for spca 
gives a polynomial algorithm to distinguish between two graphs 
on n vertices, one of which contains an �-clique and the other 
with every subset of � nodes having at most α2�(� − 1)/2 edges 
(for any (n, �)).

Under a variety of complexity assumptions it is known 
that one cannot efficiently distinguish between graphs 
with �-cliques and graphs in which all subsets of size �
are sparse (for varying degrees of sparseness).

Theorem 4 (No constant factor approximation for dκs [1]). Let 
1 > δ > 0 be any constant approximation factor. Let G and G ′
be two graphs on �2 vertices. One of the graphs has an �-clique 
and for the other graph, every subgraph on � vertices has at most 
δ�(� − 1)/2 edges. Suppose there is no polynomial time algo-
rithm for solving the hidden clique problem for a planted clique 
of size n1/3 . Then, there is no polynomial algorithm to determine 
which of G, G ′ has the �-clique.

Using Theorem 3 with Theorem 4,

Corollary 5 (No constant factor approximation for spca). 
Suppose there is no polynomial time algorithm for solving 
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the hidden clique problem for a planted clique of size n1/3. 
Then, for any constant 0 < α < 1, there is no polynomial time 
α-approximation algorithm for spca.
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