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a b s t r a c t

We give two provably accurate feature-selection techniques for the linear SVM. The algorithms run in
deterministic and randomized time respectively. Our algorithms can be used in an unsupervised or
supervised setting. The supervised approach is based on sampling features from support vectors. We
prove that the margin in the feature space is preserved to within ϵ-relative error of the margin in the full
feature space in the worst-case. In the unsupervised setting, we also provide worst-case guarantees of
the radius of the minimum enclosing ball, thereby ensuring comparable generalization as in the full
feature space and resolving an open problem posed in Dasgupta et al. (2007) [7]. We present extensive
experiments on real-world datasets to support our theory and to demonstrate that our method is
competitive and often better than prior state-of-the-art, for which there are no known provable guar-
antees.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The linear Support Vector Machine (SVM) is a popular classi-
fication method [6]. Few theoretical results exist for feature se-
lection with SVMs. Empirically, numerous feature selection tech-
niques work well [14,11]. We present a deterministic and a ran-
domized feature selection technique for the linear SVM with a
provable worst-case performance guarantee on the margin. The
feature selection is unsupervised if features are selected ob-
liviously to the data labels; otherwise, it is supervised. Our algo-
rithms can be used in an unsupervised or supervised setting. In
the unsupervised setting, our algorithm selects a number of fea-
tures proportional to the rank of the data and preserves both the
margin and radius of minimum enclosing ball to within ϵ-relative
error in the worst-case, thus resolving an open problem posed in
Dasgupta et al. [7]. In the supervised setting, our algorithm selects
O(# support vectors) features using only the set of support vectors,
and preserves the margin for the support vectors to within ϵ-re-
lative error in the worst-case.

1.1. SVM basics

The training data has n points ∈ xi
d, with respective labels

∈ { − + }y 1, 1i for = …i n1 . For linearly separable data, the primal
SVM learning problem [6] constructs a hyperplane w* which
maximizes the geometric margin (the minimum distance of a data
. Paul),
i.edu (P. Drineas).
point to the hyperplane), while separating the data. For non-se-
parable data the “soft” 1-norm margin is maximized. The dual
Lagrangian formulation [6] of the soft 1-norm SVM reduces to the
following quadratic program:
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The regularizer C is part of the input and the hyperplane classifier
can be constructed from the αi. The out-of-sample performance is
related to the VC-dimension of the resulting “fat”-separator. As-
suming that the data lie in a ball of radius B, and that the hy-
pothesis set consists of hyperplanes of width γ (the margin), then
the VC-dimension is γ( )O B /2 2 [27]. Thus, by the VC-bound [28], the
out-of-sample error is bounded by the in-sample error and a term
monotonic in γB /2 2.

1.2. Our contributions

Our motivation comes from the fact that all prior feature se-
lection methods for SVM are heuristics with no provable guaran-
tees. We give two provably accurate feature selection techniques
for linear SVM in both unsupervised and supervised settings with
worst-case performance guarantees on the margin. We use the
single set spectral sparsification technique (BSS, for short)1 [1] as
our deterministic algorithm (the algorithm runs in deterministic
1 The name BSS comes from the authors: Batson, Spielman and Srivastava.
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time, hence the name “deterministic”) and leverage-score sam-
pling [7] as the randomized algorithm. We give a new simple
method of extending unsupervised feature selection to supervised
in the context of SVMs by running the unsupervised technique on
the support vectors. This allows us to select only (O (# support
vectors) features for the deterministic algorithm ( Õ # support
vectors) features for the randomized algorithm, where Õ hides the
logarithmic factors) while still preserving the margin on the sup-
port vectors. Since the support vectors are a sufficient statistic for
learning a linear SVM, preserving the margin on the support
vectors should be enough for learning on all the data with the
sampled feature set.

More formally, let γ* be the optimal margin for the support
vector set (which is also the optimal margin for all the data). The
optimal margin γ* is obtained by solving the SVM optimization
problem using all the features. For a suitably chosen number of
features r, let γ̃* be the optimal margin obtained by solving the
SVM optimization problem using the support vectors in the sam-
pled feature space. We prove that the margin is preserved to
within ϵ-relative error: ( )γ γ˜* ≥ − ϵ *12 2. For the deterministic al-
gorithm, the number of features required is

( )= # ϵr O support vectors/ 2 , whereas the randomized algorithm re-

quires ( )= ˜ # ϵr O support vectors/ 2 features to be selected.
In the unsupervised setting, by running our algorithm on all the

data, instead of only the support vectors, we get a stronger result
statistically, but using more features. The deterministic algorithm
requires ρ( ϵ )O / 2 features to be selected, while the randomized al-

gorithm requires ( )ρ ρ

δϵ ϵ
⎜ ⎟⎛
⎝

⎞
⎠O log2 2 features to be selected, where

ρ is the rank of the training matrix, δ ∈ ( )0, 1 is the failure prob-
ability and ϵ ∈ ( ]0, 1/2 is an accuracy parameter. Again, defining γ̃*
as the optimal margin obtained by solving the SVM optimization
problem using all the data in the sampled feature space, we prove
that ( )γ γ˜* ≥ − ϵ *12 2. We can now also prove that the data radius is

preserved, ( )˜ ≤ + ϵB B1
2 2. This means that γ*B /2 2 is preserved to

within ϵ-relative error, which means that the generalization error
is also preserved to within ϵ-relative error. The rank of the data is
the effective dimension of the data, and one can construct this
many combinations of pure features that preserve the geometry of
the SVM exactly. What makes our result non-trivial is that we
select this many pure features and preserve the geometry of the
SVM to within ϵ-relative error.

On the practical side, we provide an efficient heuristic for our
supervised feature selection using BSS which allows our algorithm
to scale-up to large datasets. While the main focus of this paper is
theoretical, we compare both supervised and unsupervised ver-
sions of feature selection using single-set spectral sparsification
and leverage-score sampling with the corresponding supervised
and unsupervised forms of Recursive Feature Elimination (RFE)
[14], Linear Programming SVM (LPSVM) [11], uniform sampling
and rank-revealing QR factorization (RRQR) [13] based method of
column selection. Feature selection based on the single-set spec-
tral sparsification and leverage-score sampling technique is com-
petitive and often better than RFE and LPSVM, and none of the
prior art comes with provable performance guarantees in either
the supervised or unsupervised setting.

1.3. Related work

All the prior art is heuristic in that there are no performance
guarantees; nevertheless, they have been empirically tested
against each other. Our algorithm comes with provable bounds,
and performs comparably or better in empirical tests. Previous
results do not give guarantees in part due to the difficulty of
analyzing the behavior of the margin when the data (in particular
the features) change. We give a short survey of the prior art: Gu-
yon et al. [14] and Rakotomamonjy [24] proposed SVM based
criteria to rank features based on the weights. Weston et al. [31]
formulated a combinatorial optimization problem to select fea-
tures by minimizing γB /2 2. Weston et al. [32] used the zero norm to
perform error minimization and feature selection in one step. A
Newton based method of feature selection using linear program-
ming was given in Fung and Mangasarian [11]. Tan et al. [26]
formulated the ℓ0-norm Sparse SVM using mixed integer pro-
gramming. Do et al. [9] proposed margin-radius SVM (MR-SVM)
which performs feature selection and ranking by optimizing the
radius-margin bound with a scaling factor, and extend this work in
Kalousis and Do [15] using a quadratic optimization problem with
quadratic constraints. Another line of work includes the doubly
regularized Support Vector Machine (DrSVM) [29] which uses a
mixture of ℓ2-norm and ℓ1-norm penalties to solve the SVM op-
timization problem and perform variable selection. Subsequent
works on DrSVM involve reducing the computational bottleneck
[30,33]. Gilad-Bachrach et al. [12] formulate the margin as a
function of set of features and score to sets of features according to
the margin induced. Park et al. [18] studied the Fisher consistency
and oracle property of penalized SVM where the dimension of
inputs is fixed and showed that their method is able to identify the
right model in most cases.

Paul et al. [22,23] used random projections on linear SVM in an
unsupervised manner and showed theoretically that the margin
and data-radius are preserved. They used linear combinations of
features to obtain the provable guarantees and the motivation of
their work was to speed-up the SVM running time by using ran-
dom projections as a pre-processing step. Empirically, they
achieved faster running time, but their out-of-sample error was
worse than that of full-data. This is different from our work in
several aspects. In this work, we select pure features (and not
linear combinations of features) in both unsupervised and su-
pervised settings and obtain provable performance guarantees in
both cases. We show empirically, that by selecting pure features,
we are able to obtain better out-of-sample performance than full-
data, which was not possible in the earlier work of [22,23].

BSS and leverage-score sampling have been used to select
features for k-means [3,4], regularized least-squares classifier
[7,20] and ridge regression [21] and for core-set construction for
canonical correlation analysis [19]. Our work further expands re-
search into sparsification algorithms for machine learning.
2. Background

2.1. Notation

…A B, , denote matrices and α …b, , denote column vectors; ei
(for all i¼1…n) is the standard basis, whose dimensionality will be
clear from context; and In is the ×n n identity matrix. The Singular
Value Decomposition (SVD) of a matrix ∈ ×A n d of rank

{ }ρ ≤ n dmin , is equal to Σ=A U VT , where ∈ ρ×U n is an ortho-
gonal matrix containing the left singular vectors, Σ ∈ ρ ρ× is a
diagonal matrix containing the singular values σ σ σ≥ ≥ … >ρ 01 2 ,

and ∈ ρ×V d is a matrix containing the right singular vectors. The
spectral norm of A is σ=A 2 1.

2.2. Matrix sampling formalism

Let A be the data matrix consisting of n points and d dimen-
sions, ∈ ×S d r be a matrix such that ∈ ×AS n r contains r columns
of A (S is a sampling matrix as it samples r columns of )A . Let
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∈ ×D r r be the diagonal matrix such that ∈ ×ASD n r rescales the
columns of A that are in AS. We will replace the sampling and re-
scaling matrices by a single matrix ∈ ×R d r , where =R SD first
samples and then rescales r columns of A.

Let X be a generic data matrix in d dimensions whose rows are
data vectors xi

T , and let Y be the diagonal label matrix whose di-
agonal entries are the labels, = yYii i . Let α α α α= … ∈⎡⎣ ⎤⎦ , , , n

n
1 2 be

the vector of lagrange multipliers to be determined by solving Eq.
(2). In matrix form, the SVM dual optimization problem is

α α α

α α

−

= ≤ ≤ ( )
α

0 C

1 YXX Y

1 Y

max:
1
2

subjectto: 0; . 2

T T T

T

(In the above, C1 0, , are vectors with the implied constant en-
try). When the data and label matrices contain all the data, we will
emphasize this using the notation ∈ ∈× × X Y,n d n ntr tr . Solving
(2) with these full data matrices gives a solution α̇*. The data xi for
which α ̇ * > 0i are support vectors and we denote by

∈ ∈× × X Y,p d p psv sv the data and label matrices containing only
the p support vectors. Solving (2) with ( )X Y,tr tr or ( )X Y,sv sv result
in the same classifier. Let α* be the solution to (2) for the support
vector data. The optimal separating hyperplane is

α α* = ( ) ̇* = ( ) *w X Y X Y ,T Ttr tr sv sv

where Xsv is the support vector matrix. The geometric margin is

γ* = *w1/
2
, where α* = ∑ *

=w i
n

i2

2

1 . The data radius is

= * − *B x xmin max ix x
2i
.

Our goal is to study how the SVM performs when run in the
sampled feature space. Let X Y, be data and label matrices (such
as those above) and ∈ ×R d r a sampling and rescaling matrix
which selects r columns of X. The transformed dataset into the r
selected features is ˜ =X XR , and the SVM optimization problem in
this feature space becomes

α α α

α α

^ − ^ ^

^ = ≤ ^ ≤ ( )

α̂

0 C

1 YXRR X Y

1 Y

max :
1
2

,

subject to: 0; . 3

T T T T

T

For the supervised setting, we select features from the support
vector matrix and so we set =X Xsv and =Y Ysv and we select ⪡r d1
features using R . For the unsupervised setting, we select features
from the full data matrix and so we set =X Xtr and =Y Ytr and we
select ⪡r d2 features using R .
3. Feature selection algorithms

As in the previous section, X is a generic data matrix in d di-
mensions. The feature selection algorithm is easy to state and
breaks down into 3 basic steps:

1: Compute the right singular matrix V of X, so Σ=X U VT ,

where =V V IT .
2: Use V in the algorithm implied by Lemma 1 or Lemma 3 to

construct a sampling and rescaling matrix ∈ ×R d r for ap-
propriately chosen r . When using Lemma 1 to construct R, we
call our method BSS-feature selection, whereas when using
Lemma 3 to construct R, we call it leverage-score based
feature selection.

3: Sample and rescale the columns of X to output the feature

matrix ˜ =X XR .

As stated, our basic algorithm is unsupervised, using only the data
matrix X that is the input. If the input data matrix depends on the
labels in the training data, then the algorithm becomes supervised.
3.1. Unsupervised feature selection

The input to feature selection is the matrix =
⎡
⎣⎢

⎤
⎦⎥Xaug

tr X
xB

T

tr
which

is the full training data augmented by the vector xB
T at the center of

the minimum enclosing ball for the data. The matrix of r2 selected
features is X Rtr .

3.2. Supervised feature selection

The input to our feature selection is the support vector matrix
Xsv and the matrix of r1 selected features is X Rsv . Not only do we
select features, but we also shrink the number of data points.
4. Our main tools

In this section, we describe our main tools of feature selection
from the numerical linear algebra literature, namely single-set
spectral sparsification and leverage-score sampling. Both of these
methods select columns from a matrix with orthonormal rows so
that the resulting matrix is as close to orthonormal as possible.
That is, by using step 2 of feature selection algorithm described in
Section 3, we get ≈V V V RR VT T T .

4.1. Single-set spectral sparsification

The BSS algorithm [1] is a deterministic greedy technique that
selects columns one at a time. The algorithm samples r columns in
deterministic time, hence the name deterministic sampling. Con-
sider the input matrix as a set of d column vectors

= ‥‥⎡⎣ ⎤⎦V v v v, , ,T
d1 2 , with ( )∈ = ‥ℓ i dv 1, ,i . Given ℓ and > ℓr , we

iterate over τ = ‥ −r0, 1, 2, 1. Define the parameters δτ τL U, , L
and δU as follows:

( )
( )τ δ δ δ τ= − ℓ = =

+ ℓ

− ℓ
= ( + ℓ )τ τL r

r

r
U r, 1,

1 /

1 /
and .L U U

For ∈ U L, and ∈ ℓ×ℓA a symmetric positive definite matrix

with eigenvalues λ λ λ… ℓ, , ,1 2 , define ( )Φ = ∑
λ=

ℓ
−L A, i L1
1

i
and

( )Φ̂ = ∑
λ=

ℓ
−U A, i U1
1

i
as the lower and upper potentials respec-

tively. These potential functions measure how far the eigenvalues
of A are from the upper and lower barriers U and L respectively.
We define ( )δ Lv A, , ,L and ( )δ Uv A, , ,U as follows:

( ) ( )( )
( ) ( ) ( )δ

δ

Φ δ Φ
δ( ) =

− +
+ −

− − +ℓ
−

ℓ
−

L
L

L L
Lv A

v A I v

A A
v A I v, , ,

, ,L

T
L

L

T
L

2
1

( ) ( )( ) ( )δ
δ

Φ Φ δ
δ( ) =

+ −
^( ) − ^( + )

+ + −ℓ
−

ℓ
−

U
U

U U
Uv A

v I A v

A A
v I A v, , ,

, ,
.U

T
U

U

T
U

2
1

At every iteration, there exists an index τi and a weight >τt 0 such
that, δ≤ ( )τ

−t Lv A, , ,i L
1 and δ≥ ( )τ

−t Uv A, , , .i U
1 Thus, there will be

at most r columns selected after τ iterations. The running time of
the algorithm is dominated by the search for an index τi satisfying

( ) ( )δ δ≤τ τ τ τU Lv A v A, , , , , ,i U i L and computing the weight τt . One

needs to compute the upper and lower potentials Φ̂( )U A, and
( )Φ L A, and hence the eigenvalues of A. Cost per iteration is (ℓ )O 3

and the total cost is ( ℓ )O r .3 For =i d1, .., , we need to compute
and for every vi which can be done in ( )ℓO d 2 for every iteration,

for a total of ( ℓ )O rd .2 Thus total running time of the algorithm is
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( )ℓO rd .2 We include the algorithm as Algorithm 1.

Algorithm 1. Single-set spectral sparsification [1].
In

O
1

2

3

4

5

put: = … ∈ ℓ×⎡⎣ ⎤⎦ V v v v, ,T
d

d
1 2 with ∈ ℓvi and > ℓr .

utput: Matrices ∈ ∈× × S D,d r r r .
. Initialize = ℓ×ℓA 00 , = =× ×S 0 D 0,d r r r .

. Set constants δ = 1L and ( ) ( )δ = + ℓ − ℓr r1 / / 1 /U .

. for τ = 0 to −r 1 do

� Let ( )τ δ τ= − ℓ = + ℓτ τL r U r; U .

� Pick index ∈ { }i d1, 2 ,.. and number >τt 0, such that

( ) ( )δ δ≤τ τ τ τU Lv A v A, , , , , , .i U i L

�Let ( )( ) ( )δ δ= +τ τ τ τ τ
−t U Lv A v A, , , , , ,i U i L

1 1
2

� Update = +τ τ τ+ tA A vvi i
T

1 ; set =τ+τ
S 1i , 1 and

=τ τ τ+ + tD 1/1, 1 .
. end for

. Multiply all the weights in D by ( )( )− ℓ−r r1 / .1

. Return S and D.
6

Algorithm 2. Leverage-score sampling [25].
Input: = … ∈ ℓ×⎡⎣ ⎤⎦ V v v v, ,T
d

d
1 2 with ∈ ℓvi and > ℓr ,

δϵ ∈ ( ] ∈ ( ]0, 1/2 , 0, 1/2 .

Output: Matrices ∈ ∈× × S D,d r r r .
1. Compute the normalized leverage scores

= = …ℓp i d, for 1, 2, , .i

Vi 2
2

2. Initialize = =× ×S 0 D 0,d r r r .

3. Fix a sampling parameter ( )=
δ

ℓ

ϵ

ℓ

ϵ
⎜ ⎟⎛
⎝

⎞
⎠r O log .2 2

4. For = …t r1, , i.i.d random trials:
� If the i-th feature is selected with probability p ,i then

= = rpS D1, 1/it tt i .

Return S and D.
We present the following lemma for the single-set spectral
sparsification algorithm.

Lemma 1 (BSS [1]). Given ∈ ×ℓV d satisfying = ℓV V IT and > ℓr ,
we can deterministically construct sampling and rescaling matrices

∈ ×S d r and ∈ ×D r r with =R SD, such that, for all ∈ ℓy :

( ) ( )− ℓ ≤ ≤ + ℓr rVy V Ry Vy1 / 1 / .T2

2
2

2

2 2

2
2

We now present a slightly modified version of Lemma 1 for our
theorems.

Lemma 2. Given ∈ ×ℓV d satisfying = ℓV V IT and > ℓr , we can
deterministically construct sampling and rescaling matrices ∈ ×S d r

and ∈ ×D r r such that for =R SD, − ≤ ℓ rV V V RR V 3 /T T T
2

.

Proof. From Lemma 1, it follows,

( ) ( )σ σ≥ − ℓ ≤ + ℓℓ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠r rV RR V V RR V1 / , 1 / .T T T T2

1

2

Thus, ( )λ − ≤ − − ℓ ≤ ℓ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟r rV V V RR V 1 1 / 2 / .max

T T T 2

Similarly, ( )( )λ − ≥ − + ℓ ≥ ℓ
⎛
⎝⎜

⎞
⎠⎟r rV V V RR V 1 1 / 3 / .min

T T T 2

Combining these two results, we have

− ≤ ℓ rV V V RR V 3 / .T T T
2

Note: Let ϵ = ℓ r3 / . It is possible to set an upper bound on ϵby
setting the value of r. We will assume ϵ ∈ ( ]0, 1/2 . □

4.1.1. Leverage-score sampling
Our randomized feature selection method is based on im-

portance sampling or the so-called leverage-score sampling [17].
Let ∈ ℓ×V R d be the matrix containing the top-ℓ right singular
vectors of the training set X, where ℓ is the rank of X. Compute the
normalized leverage scores pi as follows,

=
ℓ

= ( )p i d
V

, for 1, 2 ,..., . 4i
i 2

2

Fix a sampling parameter ( )=
δ

ℓ

ϵ

ℓ

ϵ
⎜ ⎟⎛
⎝

⎞
⎠r O log .2 2 Then in r random i.i.

d. trials, keep the i-th feature with probability pi and multiply it by
the factor rp1/ i . The time complexity is dominated by the time to
compute the SVD of X. The i-th leverage-score characterizes the
importance of the i-th feature. These scores form a probability
distribution over the columns of X, since ∑ == p 1.i

d
i1 We include

the algorithm as Algorithm 2.

Lemma 3 ([25]). Let ϵ ∈ ( ]0, 1/2 be an accuracy parameter. Given

∈ ×ℓV d satisfying = ℓV V I .T Let pi be as Eq. (4) and let

( )=
δ

ℓ

ϵ

ℓ

ϵ
⎜ ⎟⎛
⎝

⎞
⎠r O log2 2 be the number of columns picked in r i.i.d trials.

Construct the sampling and rescaling matrix R. Then with probability

at least 0.99, − ≤ ϵV V V RR V .T T T
2

5. Theoretical analysis

Our feature selection algorithms are relatively simple and we
show that running the linear SVM in the feature space results in a
classifier with provably comparable margin to the SVM classifier
obtained from the full feature space. Our main results are in
Theorems 1 and 3. We state the theorems for BSS, but similar
theorems can be stated for leverage-score sampling. Since the
feature selection algorithm using leverage-score sampling is a
randomized algorithm, the theorems related to margin and geo-
metry preservation with leverage-score sampling hold with cer-
tain probability. BSS is a deterministic feature selection algorithm,
hence there is no failure probability involved in the theorems.

5.1. Margin is preserved by supervised feature selection

Theorem 1 says that you get comparable margin from solving
the SVM on the support vectors (equivalently all the data) and
from solving the SVM on support vectors in a feature space with
only (# )O support vectors features.

Theorem 1. Given ϵ ∈ ( ]0, 1/2 , perform supervised BSS-feature se-
lection on Xsv with = ( ϵ )r O p/1

2 , to obtain the feature sampling and
rescaling matrix R . Let γ* and γ̃* be the margins obtained by solving
the SVM dual (2) with ( )X Y,sv sv and ( )X R Y,sv sv respectively. Then,

( )γ γ˜* ≥ − ϵ *1 .2 2

Proof. Let ∈ ∈× × X Y,n d n ntr tr be the feature matrix and class
labels of the training set (as defined in Section 2) and let
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α α α α̇* = * * … * ∈⎡⎣ ⎤⎦ , , , n
T n

1 2 be the vector achieving the optimal

solution for the problem of Eq. (2). Then,

( )∑ α αα= *̇ − ̇* ̇*
( )=

Z Y X X Y
1
2 5

opt
j

n

j
T Ttr tr tr tr

1

Let ≤p n be the support vectors with α ̇ > 0j . Let

α α α α* = * * … * ∈⎡⎣ ⎤⎦ , , , p
T p

1 2 be the vector achieving the optimal

solution for the problem of Eq. (5). Let ∈ ×X p dsv , ∈ ×Y p psv be the
support vector matrix and the corresponding labels respectively.
Let Σ=X U V ,Tsv and = −E V V V RR VT T T . Then, we can write Eq. (5)
in terms of support vectors as,

( )∑

∑

∑

α α

α α

α α

α α

α

α

α

Σ Σ

Σ Σ

Σ Σ

= * − * *

= * − * *

= * − * *

− * *
( )

=

=

=

Z Y X X Y

Y U V V U Y

Y U V RR V U Y

Y U E U Y

1
2

1
2

1
2

1
2
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T T

i

p

i
T T T

i

p

i
T T T T

T T

sv sv sv sv

sv sv

sv sv

sv sv

1

1

1

Let α α α α˜* = ˜* ˜* … ˜* ∈⎡⎣ ⎤⎦ , , , p
T p

1 2 be the vector achieving the optimal

solution for the dimensionally-reduced SVM problem of Eq. (6)

using ˜ =X X R
sv sv . Using the SVD of Xsv ,

∑ α αα Σ Σ˜ = ˜ * − ˜* ˜*
( )=

Z Y U V RR V U Y
1
2

.
7

opt
i

p

i
T T T Tsv sv

1

Since the constraints on α α* ˜*, do not depend on the data it is clear
that α̃* is a feasible solution for the problem of Eq. (6). Thus, from
the optimality of α*, and using Eq. (7), it follows that

∑

∑

α α

α α

α α

α α

α α

α

α

Σ Σ

Σ Σ

Σ Σ

Σ Σ

Σ Σ

= * − * *

− * *

≥ ˜ * − ˜* ˜*

− ˜* ˜*

= ˜ − ˜* ˜*
( )

=

=

Z

Z

Y U V RR V U Y

Y U E U Y

Y U V RR V U Y

Y U E U Y

Y U E U Y

1
2

1
2

1
2

1
2
1
2
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p

i
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opt
T T

sv sv
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sv sv

sv sv

sv sv

1

1

We now analyze the second term using standard sub-
multiplicativity properties and =V V IT . Taking α Σ= ˜*Q Y UT sv ,

α α

α

α

Σ Σ

Σ

˜* ˜*

≤

=

= ˜*

= ˜*
( )

Y U E U Y

Q E Q

E Q

E Y U V

E Y X

1
2

1
2
1
2
1
2

1
2
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T T

T

T T

T

sv sv

sv

sv sv

2 2 2

2 2
2

2 2

2

2 2

2

Combining Eqs. (8) and (9), we get

α≥ ˜ − ˜*
( )Z Z E Y X

1
2

. 10opt opt
T sv sv

2 2

2

We now proceed to bound the second term in the right-hand side
of the above equation. Towards that end, we bound the difference:
( ) ( )* *

* * *

α α α α

α α α

Σ Σ Σ Σ

Σ Σ

˜ − ˜* = ˜ − ˜*

≤ ˜ = ˜ = ˜

Y U V RR V V V U Y Y U E U Y

E Y U E Y U V E Y X .

T T T T T T T

T T T T

sv sv sv sv

sv sv sv sv
2 2

2

2 2

2

2 2

2

We can rewrite the above inequality as

α α α

α

˜* − ˜* ≤ ˜*

≤
−

˜*

Y X R Y X E Y X

E
E

Y X R
1

.

T T T

T

sv sv sv sv sv sv

sv sv

2

2

2

2
2 2

2

2

2
2

2

Combining with Eq. (10), we get

α≥ ˜ −
−

˜*
( )

⎛
⎝⎜

⎞
⎠⎟Z Z

E
E

Y X R
1
2 1

.
11

opt opt
T sv sv2

2
2

2

Now recall that α* = *w Y XT T sv sv , α˜ * = ˜*w Y X RT T sv sv ,

α* = ∑ *
=w i

p
i2

2

1 , and α˜ * = ∑ ˜ *
=w i

p
i2

2

1 . Then, the optimal solutions

Zopt and Z̃opt can be expressed as follows:

= * − * = *
( )Z w w w

1
2

1
2

. 12opt 2
2

2
2

2
2

˜ = ˜ * − ˜ * = ˜ *
( )Z w w w

1
2

1
2

. 13opt 2
2

2
2

2
2

Combining Eqs. (11)–(13), we get

* ≥ ˜ * −
−

˜ * = −
−

˜ *
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟w w

E
E

w
E

E
w

1
1

1
.2

2
2
2 2

2
2
2 2

2
2
2

Let γ* = ∥ * ∥−w 2
1 be the geometric margin of the problem of Eq. (6)

and let γ̃* = ∥ ˜ * ∥−w 2
1 be the geometric margin of the problem of Eq.

(7). Then, the above equation implies: ( )γ γ* ≤ − ˜*−

−
1 E

E
2

1

1
22

2

( )γ γ⇒˜* ≥ − *
−1 .E

E
2

1
22

2
The result follows because ∥ ∥ ≤ ϵE /22 by

our choice of r , and so ( )∥ ∥ −∥ ∥ ≤ ϵE E/ 12 2 . □

We now state a similar theorem for leverage-score sampling.

Theorem 2. Given ϵ ∈ ( ]0, 1/2 , perform supervised Leverage-score

based feature selection on Xsv with ( )=
δϵ ϵ

⎜ ⎟⎛
⎝

⎞
⎠r O logp p

1 2 2 , to obtain

the feature sampling and rescaling matrix R . Let γ* and γ̃* be the

margins obtained by solving the SVM dual (2) with ( )X Y,sv sv and

( )X R Y,sv sv respectively. Then with probability at least 0.99,

( )γ γ˜* ≥ − ϵ *1 .2 2

5.2. Geometry is preserved by unsupervised feature selection

In the unsupervised setting, the next theorem says that with a
number of features proportional to the rank of the training data
(which is at most the number of data points), we preserve γB /2 2,
thus ensuring comparable generalization error bounds (B is the
radius of the minimum enclosing ball).

Theorem 3. Given ϵ ∈ ( ]0, 1/2 , perform unsupervised BSS-feature
selection on the full data Xtr with ( )ρ= ϵr O /2

2 , where ρ = ( )Xrank tr ,
to obtain the feature sampling and rescaling matrix R . Let γ* and γ̃*
be the margins obtained by solving the SVM dual (2) with ( )X Y,tr tr

and ( )X R Y,tr tr respectively; and, let B and B̃ be the radii for the data
matrices Xtr and X Rtr respectively. Then,

( )
( )γ γ γ

˜

˜*
≤

+ ϵ
− ϵ *

= + ϵ
*

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟

B B
O

B1

1
1 .

2

2

2

2

2

2

Proof (sketch). The proof has two parts. First, as in Theorem 1 we
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prove that ( )γ γ˜* ≥ − ϵ · *1 .2 2 This proof is almost identical to the

proof of Theorem 1 (replacing ( )X Y,sv sv with ( )X Y,tr tr ), and so we

omit it. Second, we prove that ( )˜ ≤ + ϵB B1
2 2. We give the result

(with proof) as Theorem 5 . The theorem follows by combining
these two results. □

We now state a similar theorem for leverage-score sampling.

Theorem 4. Given ϵ ∈ ( ]0, 1/2 , perform unsupervised Leverage-score

based feature selection on the full data Xtr with ( )= ρ ρ

δϵ ϵ
⎜ ⎟⎛
⎝

⎞
⎠r O log2 2 2 ,

where ρ = ( )Xrank tr , to obtain the feature sampling and rescaling

matrix R . Let γ* and γ̃* be the margins obtained by solving the SVM

dual (2) with ( )X Y,tr tr and ( )X R Y,tr tr respectively; and, let B and B̃ be

the radii for the data matrices Xtr and X Rtr respectively. Then with
probability at least 0.99,

( )
( )γ γ γ

˜

˜*
≤

+ ϵ
− ϵ *

= + ϵ
*

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟

B B
O

B1

1
1 .

2

2

2

2

2

2

5.3. Proof that the data radius is preserved by unsupervised BSS-
feature selection
Theorem 5. Let ( )= ϵr O n/2
2 , where ϵ > 0 is an accuracy parameter,

n is the number of training points and r2 is the number of features
selected. Let B be the radius of the minimum ball enclosing all points

in the full-dimensional space, and let B̃ be the radius of the ball
enclosing all points in the sampled subspace obtained by using BSS in

an unsupervised manner. For R as in Lemma 2, ( )˜ ≤ + ϵB B1 .
2 2

Proof. We consider the matrix ∈ ( + )×XB
n d1 whose first n rows are

the rows of Xtr and whose last row is the vector xB
T ; here xB de-

notes the center of the minimum radius ball enclosing all n points.
Then, the SVD of XB is equal to Σ=X U VB B B B

T , where ( )∈ ρ+ ×UB
n 1 B,

Σ ∈ ρ ρ×B
B B, and ∈ ρ×V d B. Here ρB is the rank of the matrix XB and

clearly ρ ρ≤ + 1B . (Recall that ρ is the rank of the matrix Xtr.) Let B
be the radius of the minimal radius ball enclosing all npoints in the
original space. Then, for any i¼1,…,n,

≥ − = ( − ) ( )+B x x e e X . 14i B i n
T

B
2

2
2

1 2

2

Now consider the matrix X RB and notice that

( )
Σ Σ

Σ

( − ) − ( − )

= ( − ) − ( − )

= ( − ) ( − )

≤ ( − )

= ( − )

+ +

+ +

+ +

+

+

e e X e e X R

e e X X X RR X e e

e e U E U e e

E e e U

E e e X .

i n
T

B i n
T

B

i n
T

B B
T

B
T

B
T

i n

i n
T

B B B B B
T

i n

B i n
T

B B

B i n
T

B

1 2

2
1 2

2

1 1

1 1

2 1 2

2

2 1 2

2

In the above, we let ∈ ρ ρ×EB
B B be the matrix that satisfies

= +V V V RR V EB
T

B B
T T

B B, and we also used =V V IB
T

B . Now consider the
ball whose center is the ( + )n 1 -th row of the matrix X RB (es-
sentially, the center of the minimal radius enclosing ball
for the original points in the sampled space). Let
˜ = ( − )= … +i e e X Rarg maxi n i n

T
B1 1 2

2
; then, using the above bound

and Eq. (14), we get
( − ) ≤ + ( − ) ≤ +˜ + ˜ +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Be e X R E e e X E1 1 .i n

T
B B i n

T
B B1 2

2

2 1 2

2

2
2

Thus, there exists a ball centered at +e X Rn
T

B1 (the projected center
of the minimal radius ball in the original space) with radius at
most + BE1 B 2

that encloses all the points in the sampled

space. Recall that B̃ is defined as the radius of the minimal radius
ball that encloses all points in sampled subspace; clearly,

( )˜ ≤ +B BE1 .B
2

2
2 We can now use Lemma 2 on VB to conclude

that (using ρ ρ≤ + 1B ) ≤ ϵE .B 2
□

6. Experiments

We compared BSS and leverage-score sampling with RFE [14],
LPSVM [11], rank-revealing QR factorization (RRQR), random fea-
ture selection and full-data without feature selection on synthetic
and real-world datasets. For the supervised case, we first run SVM
on the training set, then run a feature selection method on the
support-vector set and recalibrate the model using the support
vector-set. For unsupervised feature selection, we perform feature
selection on the training set. For LPSVM, we were not able to
control the number of features and report the out-of-sample error
using the features output by the algorithm. We did not extrapolate
the values of out-of-sample error for LPSVM. We repeated random
feature selection and leverage-score sampling five times. We
performed ten-fold cross-validation and repeated it ten times. For
medium-scale datasets like TechTC-300 we do not perform ap-
proximate BSS. For large-scale datasets like Reuters-CCAT [16] we
use the approximate BSS method as described in Section 6.5. We
used LIBSVM [5] as our SVM solver for medium-scale datasets and
LIBLINEAR [10] for large-scale datasets. We do not report running
times in our experiments, since feature selection is an offline-task.
We implemented all our algorithms in MATLAB R2013b on an Intel
i-7 processor with 16GB RAM. BSS and leverage-score sampling
are better than LPSVM and RRQR and comparable to RFE on 49
TechTC-300 datasets.

6.1. Other feature selection methods

In this section, we describe other feature-selection methods
with which we compare BSS and Leverage-score sampling.

6.1.1. Rank-revealing QR factorization (RRQR)
Within the numerical linear algebra community, subset selec-

tion algorithms use the so-called Rank Revealing QR (RRQR) fac-
torization. Let A be a n�d matrix with ( )<n d and an integer

( )<k k d and assume partial QR factorizations of the form

=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟AP Q

R R

0 R
,11 12

22

where ∈ ×Q n n is an orthogonal matrix, ∈ ×P d d is a permutation
matrix, ( ) ( )∈ ∈ ∈× × − ( − )× −  R R R, ,k k k d k d k d k

11 12 22 The above fac-
torization is called a RRQR factorization if ( ) ( )σ σ≥ ( )p k dR A / ,min k11 ,

( )σ σ≤ ( ) ( )p k dR A , ,max min22 where ( )p k d, is a function bounded by a
low-degree polynomial in k and d. The important columns are

given by ( )=A Q R
01
11 and ( ) ( )σ σ=A Ri i1 11 with ≤ ≤i k1 . We per-

form feature selection using RRQR by picking the important col-
umns which preserve the rank of the matrix. We use the RRQR
method implemented in Matlab.

6.1.2. Random feature selection
We select features uniformly at random without replacement

which serves as a baseline method. To get around the randomness,



Table 1
Most frequently selected features using the synthetic dataset.

=r 301 =r 401

k¼40 k¼50 k¼40 k¼50

BSS 40, 39, 34, 36,
37

50, 49, 48, 47,
44

40, 39, 34, 37,
36

50, 49, 48, 47, 44

Lvg 40, 39, 37, 36,
34

50, 49, 48, 47,
46

40, 39, 37, 31,
32

50, 49, 48, 31, 47

RFE 40, 39, 38, 37,
36

50, 49, 48, 47,
46

40, 39, 38, 37,
36

50, 49, 48, 47, 46

LPSVM 40, 39, 38, 37,
34

50, 49, 48, 43,
40

40, 39, 38, 37,
34

50, 49, 48, 43,
40

RRQR 40, 30, 29, 28,
27

50, 30, 29, 28,
27

40, 39, 38, 37,
36

50, 40, 39, 38,
37
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we repeat the sampling process five times.

6.1.3. Recursive feature elimination
Recursive Feature Elimination (RFE), [14] tries to find the best

subset of features which leads to the largest margin of class se-
paration using SVM. At each iteration, the algorithm greedily re-
moves the feature that decreases the margin the least, until the
required number of features remain. At each step, it computes the
weight vector and removes the feature with smallest weight. RFE
is computationally expensive for high-dimensional datasets.
Therefore, at each iteration, multiple features are removed to avoid
the computational bottleneck.

6.1.4. LPSVM
The feature selection problem for SVM can be formulated in the

form of a linear program. LPSVM [11] uses a fast Newton method
to solve this problem and obtains a sparse solution of the weight
vector, which is used to select the features.

6.2. BSS implementation issues

At every iteration, there can be multiple columns which satisfy
the condition,

( ) ( )δ δ≤τ τ τ τU Lv A v A, , , , , , .i U i L

Batson et al. [1] suggest picking any column which satisfies this
constraint. Selecting a column naively leaves out important fea-
tures required for classification. Therefore, we choose the column
vi which has not been selected in previous iterations and whose
Euclidean-norm is highest among the candidate set. Columns with
zero Euclidean norm never get selected by the algorithm.

In our implementation, we do not use the data center as one of
the inputs (since computing the center involves solving a quad-
ratic program).

6.3. Experiments on supervised feature selection

6.3.1. Synthetic data
We generate synthetic data as described in Bhattacharyya [2],

where we control the number of relevant features in the dataset.
The dataset has n data-points and d features. The class label yi of
each data-point was randomly chosen to be 1 or -1 with equal
probability. The first k features of each data-point xi are the re-
levant features and are drawn from ( )−y j, 1i distribution, where

( )μ σ, 2 is a random normal distribution with mean μ and var-

iance s2 and j varies from 1 to k. The remaining ( − )d k features are
chosen from a ( )0, 1 distribution and are noisy features. By
construction, among the first k features, the kth feature has the
most discriminatory power, followed by ( − )k th1 feature and so
on. We set n to 200 and d to 1000. We set k to 40 and 50 and ran
two sets of experiments. We set the value of r1, i.e. the number of
features selected, to 30 and 40 for all experiments. We performed
ten-fold cross-validation and repeated it ten times. We used
LIBSVM with default settings and set C¼1. We compared with the
other methods. The mean out-of-sample error was 0 for all
methods for both k¼40 and k¼50. Table 1 shows the set of five
most frequently selected features by the different methods for one
such synthetic dataset. The top features picked up by the different
methods are the relevant features by construction and also have
good discriminatory power. This shows that supervised BSS and
leverage-score sampling are as good as any other method in terms
of feature selection. We repeated our experiments on ten different
synthetic datasets and each time, the five most frequently selected
features were from the set of relevant features. Thus, by selecting
only 3–4% of all features, we show that we are able to obtain the
most discriminatory features along with good out-of-sample error
using BSS and leverage-score sampling.

6.3.2. TechTC-300
For our first real dataset, we use 49 datasets of TechTC-300 [8]

which contain binary classification tasks. Each data matrix consists
of 150–280 documents (the rows of the data matrix), and each
document is described with respect to 10,000–50,000 words
(features are columns of the matrix). We removed all words with
at most four letters from the datasets. We set the parameter C¼1
in LIBSVM and used default settings. We tried different values of C
for the full-dataset and the out-of-sample error averaged over 49
TechTC-300 documents did not change much, so we report the
results of C¼1. We set the number of features to 300, 400 and 500.
Fig. 1 shows the out-of-sample error for the 49 datasets for

=r1 300, 400 and 500. For the supervised feature selection, BSS is
comparable to RFE and leverage-score sampling and better than
RRQR, LPSVM, full-data and uniform sampling in terms of out-of-
sample error. For LPSVM, the number of selected features averaged
over 49 datasets was greater than 500, but it performed worse
than BSS and leverage-score sampling. Leverage-score sampling is
comparable to BSS and better than RRQR, LPSVM, full-data and
uniform sampling and slightly worse than RFE. The experiments
on full-data give worse performance in terms of out-of-sample
error than the established and proposed methods. This seems to
suggest the full-data with all the features are overfitting the model
and by removing irrelevant features, we are reducing overfitting
and obtaining better performance.

We list the most frequently occurring words selected by su-
pervised BSS and leverage-score for the =r 3001 case for five
TechTC-300 datasets over 100 training sets. Table 2 shows the
names of the five TechTC-300 document-term matrices. The words
shown in Table 3 were selected in all cross-validation experiments
for these five datasets. The words are closely related to the cate-
gories to which the documents belong, which shows that BSS and
Leverage-score sampling select important features from the sup-
port-vector matrix. For example, for the document-pair (ii), where
the documents belong to the category of “Arts:Music:Styles:Opera”
and “US:Navy: Decommisioned Attack Submarines”, the BSS algo-
rithm selects submarine, hullnumber, opera, tickets and Leverage-
score sampling selects hullnumber, opera, music, tickets which are
closely related to the two classes. Thus, we see that using only 2–
4% of all features we are able to obtain good out-of-sample error.

6.4. Experiments on unsupervised feature selection

For the unsupervised feature selection case, we performed
experiments on the same 49 TechTC-300 datasets and set r2 to
300, 400 and 500.We include the results for different values of r2
in Fig. 2. For LPSVM, the number of selected features averaged over
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Fig. 1. Plots of out-of-sample error (eout) of Supervised BSS and leverage-score
compared with other methods for 49 TechTC-300 documents averaged over ten
ten-fold cross validation experiments. Vertical bars represent standard deviation.

Table 2
A subset of the TechTC matrices of our study.

id1 id2

(i) Arts: Music: Styles: Opera Arts: Education: Language: Reading
Instructions

(ii) Arts: Music: Styles: Opera US Navy: Decommisioned Attack
Submarines

(iii) US: Michigan: Travel &
Tourism

Recreation:Sailing Clubs: UK

(iv) US: Michigan: Travel &
Tourism

Science: Chemistry: Analytical: Products

(v) US: Colorado: Localities:
Boulder

Europe: Ireland: Dublin: Localities

Table 3
Frequently occurring terms of the five TechTC-300 datasets of Table 2 selected by
supervised BSS and Leverage-score sampling.

BSS Leverage-score sampling

(i) Reading, education, opera, frame Reading, opera, frame, spacer
(ii) Submarine, hullnumber, opera,

tickets
Hullnumber, opera, music, tickets

(iii) Michigan, vacation, yacht, sailing Sailing, yacht, michigan, vacation
(iv) Chemical, michigan, environmental,

asbestos
Travel, vacation, michigan,
environmental

(v) Ireland, dublin, swords, boulder,
colorado

Ireland, boulder, swords, school,
grade
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Fig. 2. Plots of out-of-sample error (eout) of Unsupervised BSS and leverage-score
compared with other methods for 49 TechTC-300 documents averaged over ten
ten-fold cross validation experiments. Vertical bars represent standard deviation.

S. Paul et al. / Pattern Recognition 60 (2016) 205–214212
49 datasets was close to 300. In the unsupervised case, BSS and
leverage-score sampling are comparable to each other and also
comparable to the other methods RRQR, LPSVM and RFE. These
methods are better than random feature selection and full-data
without feature selection. This shows that unsupervised BSS and
leverage-score sampling are competitive feature selection algo-
rithms. The full-data with all features are overfitting the model
and by using feature selection methods, we are removing
irrelevant features to reduce overfitting and obtaining better
performance.

Supervised feature selection is comparable to unsupervised
feature selection for BSS, Leverage-score sampling and RFE, while
unsupervised RRQR and LPSVM are better than their supervised
versions. Running BSS (or leverage-score sampling) on the sup-
port-vector set is equivalent to running BSS (or leverage-score
sampling) on the training data. However, RRQR and LPSVM are
primarily used as unsupervised feature selection techniques and
so they perform well in that setting. RFE is a heuristic based on
SVM and running RFE on the support-vectors is equivalent to
running RFE on the training data.



Table 4
Results of Approximate BSS. CCAT (train/test): (23,149/781,265), d¼47,236. Mean and standard deviation (in parenthesis) of out-of-sample error (eout). Eout of full-data is
8.6670.54.

Eout r1 BSS (t¼128) BSS (t¼256) RRQR RFE LPSVM

CCAT 1024 10.53 (0.59) 10.35 (0.64) 9.97 (0.62) 8.92 (0.57) 9.97 (0.55)
CCAT 2048 11.13 (0.66) 10.63 (0.62) 10.04 (0.66) 8.56 (0.54) 9.97 (0.55)
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6.5. Approximate BSS

We describe a heuristic to make supervised BSS scalable to
large-scale datasets. For datasets with large number of support
vectors, we premultiply the support vector matrix X with a ran-

dom gaussian matrix ∈ ×G t p to obtain ^ =X GX and then use BSS

to select features from the right singular vectors of X̂. The right

singular vectors of X̂ closely approximates the right singular

vectors of X. Hence the columns selected from X̂ will be ap-
proximately same as the columns selected from X. We include the
algorithm as Algorithm 3. We performed experiments on a subset
of Reuters Corpus dataset, namely reuters-CCAT, which contains
binary classification task. We used the L2-regularized L2-loss SVM
formulation in the dual form in LIBLINEAR and set the value of C to
10. We experimented with different values of C on the full-dataset,
and since there was small change in classificaton accuracy among
the different values of C, we chose C¼10 for our experiments. We
pre-multiplied the support vector matrix with a random gaussian
matrix of size t� p, where p is the number of support vectors and t
was set to 128 and 256. We repeated our experiments five times
using five different random gaussian matrices to get around the
randomness. We set the value of r1 in BSS to 1024 and 2048.
LPSVM selects 1898 features for CCAT. Table 4 shows the results of
our experiments. We observe that the out-of-sample error using
approx-BSS is close to that of RRQR and comparable to RFE, LPSVM
and full-data. The out-of-sample error of approx-BSS decreases
with an increase in the value of t. This shows that we get a good
approximation of the right singular vectors of the support vector
matrix with an increase in number of projections.

Algorithm 3. Approximate BSS.

Input: Support vector matrix ∈ ×X p d, t r, .

Output: Matrices ∈ ∈× × S D,d r r r .

1. Generate a random Gaussian matrix, ∈ ×G t p.

2. Compute ^ =X GX.

3. Compute right singular vectors Vof X̂ using SVD.
4. Run Algorithm 1 using V and r as inputs and get matrices S
and D as outputs.
5. Return S and D.

7. Conclusions

Our simple method of extending an unsupervised feature se-
lection method into a supervised one for SVM not only has a
provable guarantee, but also works well empirically: BSS and
leverage-score sampling are comparable and often better than
prior state-of-the-art feature selection methods for SVM, and
those methods do not come with guarantees.

Our supervised sparsification algorithms only preserve the
margin for the support vectors in the feature space. We do not
make any claims about the margin of the full data in the feature
space constructed from the support vectors. This appears chal-
lenging and it would be interesting to see progress made in this
direction: can one choose (# )O support vectors features for the full
data set and obtain provable guarantees on the margin and data
radius? There have been recent advances in approximate leverage-
scores for large-scale datasets. A possible future work in this di-
rection would be to see if those algorithms indeed work well with
SVMs.
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