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a b s t r a c t

We analyze the phenomenon of collusion for the purpose of boosting the pagerank of a
node in an interlinked environment. We investigate the optimal attack pattern for a group
of nodes (attackers) attempting to improve the ranking of a specific node (the victim). We
consider attacks where the attackers can only manipulate their own outgoing links. We
show that the optimal attacks in this scenario are uncoordinated, i.e. the attackers link
directly to the victim and no one else; nodes do not link to each other. We also discuss
optimal attack patterns for a group that wants to hide itself by not pointing directly to the
victim. In these disguised attacks, the attackers link to nodes l hops away from the victim.
We show that an optimal disguised attack exists and how it can be computed. The optimal
disguised attack also allows us to find optimal link farm configurations. A link farm can be
considered as a special case of our approach: the target page of the link farm is the victim
and the other nodes in the link farm are the attackers for the purpose of improving the rank
of the victim. The target page can however control its own outgoing links for the purpose
of improving its own rank, which can be modeled as an optimal disguised attack of 1-hop
on itself. Our results are unique in the literature as we show optimality not only in the
pagerank score, but also in the rank based on the pagerank score. We further validate our
results with experiments on a variety of random graph models.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Generally, a search for a particular topic on a particular search engine (such as Google) will output a ranked list of relevant
web pages. The prominence of a page in this listing is an important indicator of how many people will visit the page. For
a commercial web site, its prominence with respect to product searches has important financial consequences, as does the
prominence of a competitor’s websitewith respect to slander about products. Prominence in rankings is prestigious, can add
credibility to a site or a concept and can be used to make political statements [16]. For example, a series of attempts, called
Google bombs, to improve the ranking of certain sites for a specific keyword were used to give weight to a specific political
point of view, e.g., making theweb-biography of the U.S. President the top hit for the term ‘‘miserable failure’’.1 As a result of
the importance attached to one’s pagerank, especially one’s Google pagerank, artificial methods for boosting one’s pagerank

✩ A preliminary workshop version of this paper was presented at the First International Workshop on Adversarial Information Retrieval on the Web
(AIRWeb 05) in conjunction with the 14th International World Wide Web Conference (WWW2005), Chiba, Japan, 10–14 May, 2005.
∗ Corresponding author. Tel.: +1 518 276 4857.

E-mail addresses: sibel@cs.rpi.edu (S. Adalı), liut2@cs.rpi.edu (T. Liu), magdon@cs.rpi.edu (M. Magdon-Ismail).
1 The first Google bomb was with respect to the text ‘‘talentless hack’’. Since then several other attacks also succeeded in raising the ranks of web pages

with respect to specific keyword(s), in some cases using as few as 25 links. It has been argued that several factors contributed to the success of these attacks:
the number and prominence of the attacking pages; the (un)popularity of the keyword, the use of the same keyword in all links, the higher rankings of Blogs
due the frequency of their updates, etc. Some of the keywords chosen in these attacks were very rare on theWeb at the time of the attack: ‘‘FrenchMilitary
Victories’’. However, even attacks using keywords as popular as ‘‘Weapons of Mass Destruction’’ have been successful (BBC News, Sunday, 7 December,
2003).
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are an active area for discussion. Pagerank is one of the many factors that is used in Google’s ranking algorithm [18] and a
significantly high pagerank can boost the prominence of a page considerably.

In addition to Google bombs that were oriented toward an external site, a web-retailer could also make use of link
manipulation to improve the prominence of its ownweb-site with respect to a particular topic(s). Link farms are a common
method for boosting pageranks [10] where a set of dummy pages are purposefully created to improve the pagerank of a
specific page. However, in a link farm, the targeted page is controlled by the link farm aswell. The link bombers or spammers
are usually some (coordinated) set of web pages which add outgoing links to their web page. Some of these links will point
to the attacked page, and contain the text they (the bombers) are trying to associate with the attacked page. The issue we
address is how these bombers should organize their outgoing links in order to maximize the success of their link bomb in
terms of pagerank score and rank.

There has been discussion on whether a link bomb can be considered an ‘‘undesirable’’ attack [20] that exploits a
weakness in the pagerank-style algorithms [12,18]. The pagerank algorithm assigns you a pagerank by considering the
number and importance (according to PageRank) of web pages that point to you. Given that a search engine like Google
currently ranks over 10 billion pages, one would expect that a very small number of web pages should not be able to change
the ranking of a page dramatically, contrary towhat has been observed. Thus, onemotivation for studying the optimal attack
is to determine specific abnormal but effective attack patterns that could be identified as artificial link bombs.

We present results on the optimal link bomb. Specifically, the attackers are a set of web pages whose outgoing links can
bemanipulated, and the victim is the target web page to be bombed. The victim’s outgoing links cannot bemanipulated. Our
main result is to establish the following theorems as a starting point for a discussion of accountability on linked structures
such as the WWW.

Theorem 1. The attack which maximizes the pagerank score of the victim is the direct individual attack.

Theorem 2. The attack which maximizes the rank of the victim is the direct individual attack.

Rank is the order statistic defined by the pagerank, and the direct individual attack is the attack in which every attacker
points only to the victim and to no other page. In particular, in the optimal attack, none of the attackers point to each other.
Thus, the optimal attack masquerades as a set of uncoordinated ‘‘random’’ nodes, all pointing to the same page. Note that
both the stated theorems are non-trivial. An attack that maximizes pagerank score of the victim is not necessarily one that
maximizes the pagerank rank, if the attack also raises some other node’s pagerank score above the victim’s score. To our
knowledge, our result is the first result in terms of rank.

We also discuss optimal ‘‘disguised’’ attack patterns, in which none of the attackers wish to directly point to the victim—
all paths from the attackers to the victimmust be of at least someminimum length ℓ from the victim. In this case the optimal
attack is still a direct individual attack, however now the attackers point to some other intermediate node (not the victim).

Theorem 3. There is an optimal disguised attack in which every attacker’s only link is to the same node which is distance ℓ − 1
from the victim.

In our work, we assume that the attackers can only control their outgoing links. They may not control the outgoing
links of any other nodes (so the target page is outside the attacking set). Here, we give the extensions and complete proofs
of optimality of the original results on optimal direct and disguised attacks, which were initially discussed in preliminary
form in [1]. In disguised attacks, no attacker can point to the attacked node. For malicious link bombs, it is reasonable to
assume that the target is outside the attacker set. When the attackers are trying to boost one of their own sites, however,
the attackers can control the outgoing links of the target page. This is the case in link farms. The optimal configuration in a
link farm therefore follows directly from our results: in the link farm all the attackers except the target use the direct attack
to improve the target’s rank. The target (who is now also an attacker) uses the optimal disguised attack of length ℓ = 1,
after the other attackers have made their direct attacks to boost its own rank.

While the optimal attack is always the direct individual attack, the amount bywhich the direct individual attack surpasses
other (more coordinated) attack patternsmay depend on the nature of the graph.We give experimental results that quantify
this phenomenon for a variety of different attack patterns. On certain random graph models of the Web, some coordinated
attack patterns are almost as good as the direct individual attack, and can hence be used in place of the direct individual
attack as a means of disguising the attack. While the effect of graph structure on the pagerank has been investigated in the
literature [17,12], to our knowledge, these are the first results regarding the effect of the graph structure on the effectiveness
of link bombs.

Our results raise interesting questions such as how to detect and respond to link bomb attacks (in general this problem is
NP-hard, see for example [22]). Since the attackers will have no visible associations amongst themselves, it is hard to detect
and prove that they are participating in an attack. If the optimal attack were a tree structure, there would be a small set of
nodes with high prominence that one might argue are ‘‘responsible’’ for the attack. The other nodes pointing to these nodes
could also be held accountable aiding and abetting the actions of the responsible nodes. Such accountability is not possible
in an individual attack.

We proceed by first discussing the related work and giving some preliminary definitions, followed by a preview of our
result for an isolated graph, in which the only nodes are the attackers and the victim. We then discuss general graphs,
followed by some experimental results on a variety of random graph models. We conclude with a discussion of the
implications of our results. (We defer some technical proofs to an appendix)
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1.1. Related work

Link spamhas received significant attention recently, andmost of thework goes along the lines of quantifying the impact
of different collusion strategies on pagerank [13,2,7,10]. Bianchini et al. [4] analyzes the impact of different community
structures in the optimal energy, i.e. total pagerank value for a set of pages. Another line of research concentrates on
the problem of modifying pagerank to make it resistant to such collusion strategies [14,23,6]. In particular, Gyongyi et al.
[14] concentrates on using a set of handpicked trusted sites to bias the pagerank computation and develops methods for
selecting seeds to be evaluated in this algorithm. Similarly, Zhang et al. [23] develop a method for stalling the random jump
probabilities to reduce the impact of colluding web pages. Caverlee et al. [6] introduce the notion of domain or host level
influence throttling to combat link spam. Drost and Scheffer [9] introduce machine learning algorithms to recognize spam
pages, including those with link spam; their work considers both number of incoming and outgoing links as well as features
related to the content.

We highlight two of the works which are the most closely related to ours. The work by Gyöngyi and Garcia-Molina
[13] was developed independently of ours and has a similar flavor. In particular, they consider the case of optimal link
spam structure under the assumption of constant leakage, which is a significant limitation. Additionally, they compute the
magnitude of the attacks for various attack patterns. The limitation of the constant leakagewas addressed byDu et al. in [10].
In particular, they consider the possibility that the attackers can have control of other pages in addition the link spam farm.
Du, Shi and Zhao also consider disguised attacks, when the attacking nodes must point to non-target nodes (in addition to
the possibility of pointing to target nodes). One difference between this existing work and ours, is that it is focused on the
pagerank bombing. We do provide results for pagerank bombing, but our main result is to show that the same optimality
of the direct attack holds for the rank, which is more difficult to analyze. However, we do not quantify algebraically the
improvement in pagerank scores for different link farm configurations, which is shown in Du, Shi and Zhao and Gyöngyi
and Garcia-Molina.

Our results for optimal disguised attacks can be converted to algorithms, however these algorithms require global
knowledge of the graph to implement, which may be non-realistic for bounded complexity attackers. Du et al. [10] also
consider disguised attacks, but allow the attackers to point to the target but in a non-obvious way; an optimal strategy
chooses nodes to point to so as to minimize the leakage in pagerank forced by the disguise. In general, computing any
optimal disguised attack should involve the knowledge of the entire graph. An interesting open question is whether there
are near-optimal disguised attacks which can be locally computed, only knowing some bounded in and out-neighborhood
of the target and similarly some bounded in-neighborhood of the attackers.

2. Preliminaries

A search query on a set of keywords results in an ordered list of web pages W = {ωi}. Each web page ω ∈ W contains
some or all of the keywords either in its text or in the text of a link that points from some other web page to ω. A scoring
function is used to order the pages in W . The most prominent page (page with the highest score) is given rank 1, etc.

Google [5] considers many factors in its scoring function, including: keyword frequency; relative locations of the
keywords; the position and style of the keywords. An important factor in the scoring function is the pagerankwhich depends
on how theweb page is embedded in the entire graph ofweb pages. An early paper on the Google system [5] suggests that no
one factor dominates the scoring function, however, the pagerank plays an important role. In this paper, wewill concentrate
only on the pagerank factor and discuss how it can be manipulated.

The web graph is a directed graph G = (V , E) that models the World Wide Web. The vertex set V represents the pages
and documents, and the edge set E represents the links between the pages and documents.2 The edges are directed: if
(v1, v2) ∈ E, then v1 contains a link to v2. In a web graph, the in-degree indeg(v) of page v is the number of links that point
to v and the out-degree outdeg(v) is the number of links originating from v that point to other pages. A (directed) path of
length ℓ is a sequence of vertices v0, v1, . . . , vℓ with (vi−1, vi) ∈ E for i = 1, . . . , ℓ. vℓ is the terminal node in the path, and
v1, . . . , vℓ−1 are intermediate nodes. We allow parallel edges between two vertices, but no self-loops.

The pagerank pi models the probability that node i will be visited either by randomly navigating down links in the web
graph or by randomly jumping to page i. Let α be the probability to navigate, and 1 − α the probability to jump. Then the
pageranks {pj} of the nodes in a graph simultaneously satisfy the set of linear equations3

pi = α


(vj,vi)∈E

pj
outdeg(vj)

+
1 − α

N
. (1)

2 Note that the definition of an edge is traditionally given by hyperlinks in a web page. However, it is also possible to count URLs in the body of a web
page as links. The definition of what constitutes a link is usually application dependent.
3 An alternative and common formulation of the pageranks in the literature is as the stationary distribution of a suitably defined finite irreducible

Markov chain with transitionmatrix P = (1−α)M+αU , where U is a matrix of 1’s. Many of our results could be obtained by analyzing how the stationary
distribution changes under perturbations of P . Our approach is more graph theoretic, treating the problem as a flow.
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(0 ≤ α ≤ 1 and N = |V |.) The first term represents the probability to reach i by random navigation. An edge may
appear multiple times if there are parallel links. The second term represents the probability to reach i by randomly jumping.
Typically, α ∈ [0.85, 0.95]. The pagerank pi is larger if vi has a large in-degree, and its incoming links are from high pagerank
nodeswith small out-degree. The PageRank algorithm [18] is an iterative approach to solving these equations. The pageranks
are all initialized to p0i =

1
N . The PageRank iteration is given by

pt+1
i = α


(vj,vi)∈E

ptj
outdeg(vj)

+
1 − α

N
. (2)

pti converges to the (unique) solution of (1). We assume that every page can manipulate its outgoing links, but it cannot
change its incoming links.

A link bomb, or attack occurs when a group of attackers A = {v1, . . . , vK } alter their outgoing links so as to boost the
pagerank of a victim v0 ∉ A. Before the attack, if the edge set is E, then after the attack the edge set will be Ē where the only
edges added or removed from E are of the form (vi, u)where 1 ≤ i ≤ K and u ∈ V , i.e., the attackersmay remove and/or add
outgoing links only. After the attack, the new web graph is Ḡ = (V , Ē). Let pi denote the pageranks in the original graph G
(before the attack), and p̄i the pageranks in Ḡ (after the attack). Themagnitude of the attack ∆p0 = p̄0 − p0 is the amount by
which the pagerank of the victim increased, and is a measure of the success of the attack. In our analysis, we only consider
the magnitude of the attack, and assume that all other factors entering into the scoring function are unchanged.

3. The optimal link bomb

In this section, we investigate how tomaximize themagnitude of the attack. In particular, we show that the effectiveness
of the attack does not increase if the attackers try to coordinate the attack in some way, by introducing links among
themselves in order to increase their ranks. (Recall that, incoming links from higher ranked pages are more beneficial to
your rank.) First, we consider a simplified case, in which the attackers and the victim are isolated from the rest of the graph.
We then consider the general case.

3.1. Isolated Graphs

We first restrict our attention to a graph whose vertex set is composed only of the attackers and the victim, V = A ∪ v0
(i.e., N = |V | = K +1). Assume (for simplicity) that v0 does not point to anymember of A. We first consider some examples
of attacks, before giving the general result. In all cases, all the attackers in A point to the victim v0, and what differentiates
the attacks is how the attackers are themselves organized.

Direct individual: The only links are to v0.
Tree: The attackers form a tree. For any graph with a topological order, one can compute the pageranks

efficiently (in linear time). We will specialize to a star attack in which v2, . . . , vK point to v1 and all
attackers point to v0.

Cycle: The attackers form a cycle.
Complete: The attackers a complete graph.

By solving the linear system (1) for the graph resulting from each of these attacks, we obtain

Lemma 4. For the isolated graph,

p̄0(individual) = p0(1 + αK),

p̄0(star) = p0

1 +

α

2
(K(1 + α) + 1 − α)


,

p̄0(cycle) = p0


1 +

αK
2 − α


,

p̄0(complete) = p0


1 +

αK
K(1 − α) + α


,

where p0 = (1 − α)/(K + 1) is the initial pagerank of v0.
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Since 0 ≤ α ≤ 1, after some algebra, we obtain

Theorem 5. For the isolated graph,

p̄0(individual) ≥ p̄0(star) ≥ p̄0(cycle) ≥ p̄0(complete).

We will show that the direct individual attack is optimal for the isolated graph. Note that when a node has zero outdegree,
it ‘‘stunts’’ the flow of pagerank. This means that the sum of the pageranks need not be 1, i.e. {pi} need not be a probability
distribution. Summing (1) over i, we get

i

pi = α


i


(vi,vj)∈E

pj
outdeg(vj)

+ 1 − α.

If outdeg(vi) > 0, vi contributes
pi

outdeg(vi)
exactly outdeg(vi) times to the summation for a total contribution of pi. If

outdeg(vi) = 0, then vi does not contribute to the summation, so we obtain
i

pi = α


outdeg(vi)>0

pi + 1 − α,

= α


i

pi + 1 − α − α


outdeg(vi)=0

pi.

After rearranging terms and solving for


i pi, we obtain the following useful lemma.

Lemma 6.


i pi = 1 −
α

1−α


outdeg(vj)=0 pj.

This lemma is useful for proving the next theorem; though it is a special case of the general result in the next section, it is
illustrative and the proof gives an intuition for the general case.

Theorem 7. For an isolated graph, the individual attack uniquely maximizes p0.

Proof. Since
K

i=1 pi =
K

i=0 pi − p0, Lemma 6, gives

K
i=1

pi = 1 −
α

1 − α


outdeg(vi)=0

pi − p0,

≤ 1 −
p0

1 − α
,

with equality iff v0 is the only vertex with degree 0. For an arbitrary attack,

p0 = α


(vi,v0)∈E

pi
outdeg(vi)

+
1 − α

K + 1
,

(a)
≤ α


(vi,v0)∈E

pi +
1 − α

K + 1
,

(b)
≤ α


1 −

p0
1 − α


+

1 − α

K + 1
.

Solving for p0, we obtain that

p0 ≤


1 − α

K + 1


(1 + αK).

This bound is attained by the individual attack. Uniqueness follows because equality in (a) occurs iff outdeg(vi) = 1
whenever (vi, v0) ∈ E, and equality in (b) occurs iff every edge (vi, v0) is in E. �

3.2. Arbitrary graphs

When v0, . . . , vK are embedded in a larger graph G, the direct individual attack is still optimal. Intuitively, one can view
the PageRank iteration (2) as sending a flow of pagerank down the directed edges. The maximum flow from vi to v0 occurs
when vi points directly to v0, and to no other node—any other links divert the flow and leads to a lower magnitude attack.
The following results will make this intuition more formal. We will generally refer to nodes which are neither the attackers
nor the victim by wj, and uj will be used to refer to any node. The 1-neighborhood N1(v) of a node v is the set of nodes to
which v points. Nk(v) (k > 1) is the set of k-neighborhood nodes: u ∈ Nk(v) iff for some w ∈ Nk−1(v), (w, u) ∈ E. Note
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that v could be in its own k-neighborhood for k > 1, and N0(v) = {v}. In this section, many of the proofs are involved, and
so we will sketch the intuition and defer the technical proofs to the appendix.

Consider attacker vi, and, without loss of generality, assume it initially has no outgoing links. Suppose now that it adds
δ outgoing edges. This results in α

δ
of its rank ‘‘flowing’’ along each of its edges to its neighbors (note there may be parallel

links). Thus, the rank increase for a 1-neighbor uj is given by

∆1
j = α


(vi,uj)∈E

pi
outdeg(vi)

,

where the superscript 1 indicates that uj is a 1-neighbor, and j is an index that enumerates the 1-neighbors. The sum is over
all parallel edges that vi may have to uj. This increase in rank in turn propagates to 2-neighbors, resulting in an increase in
the rank of a 2-neighbor uk by an amount

∆2
k = α


(uj,uk)∈E

s.t uj∈N1(vi)

∆1
j

outdeg(uj)
.

The sum is over all 1-neighbors pointing to uk (including parallel edges). If the newly added edges create a path from vi to
v0, then some amount of vi’s pagerank will propagate to v0. We define ∆l

j to be the change in the page rank of uj from flow
down all paths of length l from vi to uj,

∆l
j = α


(uk,uj)∈E

s.t uk∈Nl−1(vi)

∆l−1
k

outdeg(uk)
.

Let δ(l) be the total increase in page rank through paths of length l, δ(l) =


j ∆
l
j. Since the pagerank increase attenuates by

a factor α with each edge, we have the following lemma.

Lemma 8. For ℓ ≥ 1,

δ(l) ≤ αlpi,

with equality iff δ(l − 1) = αl−1pi and for every uk ∈ Nl−1(vi), outdeg(uk) > 0.

Proof. See Section 4.1.1. �

Let S be a set of nodes. A path q passes through S if some node of S is an intermediate node of q. A set of paths P pass through
S if every path in P passes through S. Let Pt be a collection of paths that passes through S, with every path in Pt having the
same terminal node t ≠ vi (t is not an intermediate node of any path in Pt ). We call t a progeny of S with respect to the
paths Pt . Since every path passes through S, some prefix of every path in Pt has a terminal node in S. For each path q ∈ Pt ,
let qS be a (any) prefix with terminal node in S, and let Pt(S) denote the collection of such distinct prefixes {qS}.

The influence I(S|Pt(S)) of vi on S is the total flow of pagerank (summed over all nodes in S) from vi to S along the paths
in Pt(S) (which are (distinct) prefixes in Pt ). The influence I(t|Pt) of vi on t is the total flow of pagerank that flows to t along
the paths in Pt (which pass through S). Every path in Pt has at least one additional edge compared with its corresponding
prefix that terminates in S, so the influence that propagates to t along Pt can be at most the influence that propagates to S
along the paths in Pt(S), attenuated by a factor α. We have the following lemma.

Lemma 9. Let Pt be a collection of paths from vi to t which passes through a set of nodes S (t appears only as a terminal node in
Pt ). Let Pt(S) be a (any) collection of distinct prefixes terminating in S. Then

I(t|Pt) ≤ αI(S|Pt(S)),

independent of which prefixes are used in the construction of Pt(S).

Proof. See Section 4.1.2. �

We now consider vi’s attack on v0. Let P denote the collection of all (distinct) paths from vi to v0 in which v0 appears only as
the terminal node, i.e., v0 is not an intermediate node of any path in P . Note that if there are cycles in the graph, then P may
contain an infinite number of paths. Let the flow of pagerank from vi to v0 down the paths in P be denoted ∆. There may be
cycles containing v0, in which case, the pagerank increase ∆ will continue to flow around these cycles, back to v0 increasing
the pagerank further, i.e., ∆ will be amplified by the cycles. Let ∆pi0 be vi’s contribution to the magnitude of the attack,

∆pi0(∆) = ∆ + amp(∆),

where amp(∆) is the amplification due to the cycles that contain v0. The larger ∆, the larger will be the amplification of ∆,
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Lemma 10. ∆pi0(∆) is a monotonically increasing function of ∆.

Proof. See Section 4.1.3. �

Lemmas 8–10 are the main tools we will need to prove our main result, namely that the individual attack is optimal with
respect to pagerank. By Lemma10, since∆pi0 ismonotonically increasing in∆,∆pi0 will bemaximizedwhen∆ ismaximized.
∆ is given by the sum of the flows of pagerank from vi to v0 along the paths in P , therefore we only need to consider this
flow.

Let ℓ be the length of the shortest path in P (theremay bemany such shortest paths). Consider the set L of all distinct paths
of length ℓ originating at vi. Some of these paths have terminal node v0. We now restrict our attention to the set L′ containing
those paths in L which do not have terminal node v0. Note that none of the paths in L′ can have v0 as an intermediate node
since the shortest path from vi to v0 has length ℓ. Let S denote the set of terminal nodes in L′. Partition P into two disjoint
sets, Pℓ and P>ℓ, where Pℓ contains the paths in P with length ℓ and P>ℓ the paths with length > ℓ. Every path in P>ℓ must
pass through at least one of the nodes in S, therefore P>ℓ passes through S. Every path in P>ℓ has terminal node v0, and v0
does not appear as an intermediate node in any of these paths. Thus, v0 is a progeny of S with respect to P>ℓ. Every path in
P>ℓ has a prefix of length ℓ with terminal node in S. Collect these distinct prefixes into the set P>ℓ(S).

Let ∆ℓ be the contribution to ∆ due to flow along the paths in Pℓ, and ∆>ℓ the contribution due to flow along the paths
in P>ℓ. Then,

∆ = ∆ℓ + ∆>ℓ,

(a)
= ∆ℓ

v0
+ I(v0|P>ℓ),

(b)
≤ ∆ℓ

v0
+ αI(S|P>ℓ(S)),

(c)
≤ ∆ℓ

v0
+ I(S|P>ℓ(S)),

(d)
≤ ∆ℓ

v0
+


s∈S

∆ℓ
s

(e)
≤ δ(ℓ)

(f )
≤ αℓpi

(a) follows from the definitions of ∆ℓ
v0

and influence; (b) follows from Lemma 9 and (c) because α ≤ 1. (d) follows because
the paths in P>ℓ(S) are all of length ℓ, so P>ℓ(S) is a subset of all the paths of length ℓ that terminate in S; (e) follows from
the definition of δ(ℓ), since S ∪ v0 ⊆ Nℓ(vi); finally, (f) is an application of Lemma 8. Equality occurs iff S is empty, and all
paths from vi are of length ℓ, ending at v0. Certainly, the optimal value of ℓ is 1, and so we have the following theorem.4

Theorem 11. ∆pi0 is maximized if and only if the only edge from vi is to v0. This is independent of all the other edges in the graph,
in particular independent of the edges from the other vj.

Theorem 11 directly implies the following result,

Corollary 12. The direct individual attack is optimal for maximizing the pagerank p0.

Though the direct individual attack maximizes the pagerank of v0, it is not obvious that this also maximizes the rank of v0,
which depends on the relative pageranks. Is it possible that some other attack, though it will increase p0 less, might increase
it more relative to some other node and hence improve v0’s rank more? The answer is no, i.e. the direct individual attack
also maximizes the rank (as opposed to the pagerank) of the victim.

Suppose that some other attack X maximizes the rank of v0. This means that for some node u, p̄Iv0 ≤ p̄Iu and p̄Xv0 > p̄Xu
(I denotes the direct individual attack). We show that such a situation can never occur, leading to the following result.

Theorem 13. The direct individual attack maximizes the rank of v0.

Proof. See Section 4.1.4. �

3.3. The optimal disguised attack

We now consider the situation in which the attackers wish to maximize the magnitude of their attack on v0, but they
wish to disguise the attack by not pointing directly to the victim. In such an attack, the anchor text will not be associated
to the victim, hence we assume that the victim already has a high prominence with respect to the anchor text. The specific
disguise constraint we consider is that for every attacker, the shortest path to the victim should have length at least ℓ ≥ 1.

4 An alternative proof of this theorem using the Markov chain approach can be given using a generalization of the result in [8], where it is shown that
adding the edge (i, j) can only increase the pagerank of j.
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Consider attacker vi. In any attack, some amount of pagerank flows from vi to v0. In any directed graph, we define f (u; v),
the forward value of vertex uwith respect to vertex v, to be the fraction of u’s pagerank that flows to v along paths with v as
terminal node but not as intermediate node. Thus, for example, f (v; v) = 1. Since the fraction of u’s rank that makes it to v
can be obtained by multiplying the fraction flowing to each neighbor with the fraction flowing from that neighbor to v, we
obtain the forward equation for the forward values f (u; v):

f (v; v) = 1,

f (u; v) =
α

outdeg(u)


(u,w)∈E

f (w; v). (3)

The forward equation (3) is similar to the pagerank equation (1) and can be solved by a similar iterative algorithm as in (2).
For every vertex u (not an attacker), we consider the edge set Eu = E ∪ (vi, u), which defines a new directed graph in

which the edge set is augmented by a single link from the attacker to u. For this graph, we can compute the forward value
fu(w; v0) of any vertex w with respect to v0. We define the value Vi(u) of vertex u to attacker vi by

Vi(u) = fu(vi; v0).

By Lemma 10 the optimal attack is the one that maximizes the flow of pagerank to v0, which means that vi should point to
the node u satisfying the ‘‘disguise constraints’’ that maximizes Vi(u). There may be many optimal attacks, but we will now
show that there exists an optimal attack for vi which consists of adding a single link to the vertex u that maximizes Vi(u),
which is at distance ℓ − 1 from v0. Let d(u, v) be the length of the shortest path from u to v; if no path exists from u to v, set
d(u, v) = ∞. Let Ul(v0) be the collection of nodes which have a path of length l to v0 and no shorter path to v0. Thus,

Ul(v0) = {u : d(u, v0) = l}.

Suppose that the disguise constraint (which we apply to all the attackers) is that the shortest path from an attacker to v0
must have length at least ℓ. Let Uℓ−1 = Uℓ−1(v0) be the nodes with a path of length ℓ − 1 to v0. First we show that the
maximum value of Vi(u) is attained for some node in Uℓ−1.
Lemma 14. max

u:d(u,v0)≥ℓ−1
Vi(u) = max

u∈Uℓ−1
Vi(u).

Proof. See Section 4.2.1. �
Lemma 14 implies that we only need consider nodes that are distance ℓ − 1 to v0 in determining which intermediate node
to attack. Note that for each u ∈ Uℓ−1, in order to compute Vi(u), we need to compute fu(vi, v0), which may require the
computation of fu(v, v0) for all v ∈ V . By following arguments similar to those that led to Theorem 11, we find that the
optimal attack for vi is to point only to the vertex u that maximizes Vi(u).
Theorem 15. The optimal disguised attack for a single attacker vi is a single link to the vertex u, at distance ℓ−1 from v0, which
maximizes Vi(u).
Proof. See Section 4.2.2. �
Note that the vertex that maximizes Vi(u)may not be unique, however by Lemma 14, we know that at least one such vertex
exists in Uℓ−1.

Unfortunately, themaximizingnodeVi(u)neednot be the same for different attackers—thedisguise constraint introduces
dependences between attackers, i.e., the optimal attack for a particular attacker may depend on what the other attackers
do. In particular, it is no longer the case that each attacker using its optimal disguised individual attack will maximize the
magnitude of the disguised attack if the group of attackers act jointly. The following example with two attackers and ℓ = 2
illustrates the issue.

The optimal attack for v1 is to point to u, and for v2 it is to point to w (red dotted arrows in (a)). However, if both attackers
attack, then they should both point to u. Theorem 15 applies to attacker vi, independently of what the other attackers do. In
particular, we conclude that in the optimal joint attack, every attacker has a single link to a node in Uℓ−1. In fact, there is an
optimal attack in which every attacker links to the same node in Uℓ−1,
Theorem 16. There is an optimal joint attack in which every attacker points to the same node in Uℓ−1.
Proof. See Section 4.2.3. �
Theorem 16 ensures that an efficient algorithm to compute an optimal joint attack is to select the best attack among all the
attacks in which the attackers all link to a single node in Uℓ−1 (there are at most O(|V |) such attacks).
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4. Proofs

For our proofs, we will need some standardized notation for discussing sets of paths, and flow of pagerank along these
paths. A collection of paths P(w1w2; x1x2 · · · xk) contains all paths from w1 to w2 which do not contain the nodes x1, . . . , xk
as intermediate nodes. The fraction ofw1’s pagerank that flows tow2 along the paths in P(w1w2; x1x2 · · · xk)will be denoted
ρ(w1w2; x1x2 · · · xk). Since only positive flow flows along paths, we have the following useful lemma,

Lemma 17. If S1 ⊆ S2 are two sets of nodes, then ρ(w1w2; S1) ≥ ρ(w1w2; S2).

Consider cycles originating at a node w and not containing w as an intermediate node. Suppose that a fraction γ of w’s page
rank flows along these cycles back to w. Since this fraction can also flow back to w along the same cycles (attenuated by an
additional γ factor), by summing the resulting geometric series, we obtain the following useful lemma,

Lemma 18. Consider a nodew and a set of nodes S withw ∈ S. Let γ = ρ(ww; S). Then, the fraction ofw’s pagerank that flows

back of w through repeated use of the cycles in P(ww; S) is
1

1 − γ
.

4.1. Arbitrary graphs

4.1.1. Proof of Lemma 8
We prove the lemma by induction on l. When l = 1, if outdeg(vi) = 0 then δ(1) = 0 ≤ αpi. If outdeg(vi) > 0, then

δ(1) =


uj

α


(vi,uj)∈E

pi
outdeg(vi)

,

=
αpi

outdeg(vi)


uj


(vi,uj)∈E

1,

(a)
= αpi.

(a) follows because


uj


(vi,uj)∈E 1 = outdeg(vi). Thus, δ(1) ≤ αpi. Suppose that δ(L) ≤ αLpi, and consider l = L + 1.

δ(L + 1) =


uj∈NL+1(vi)

∆L+1
j ,

=


uj

α


(uk,uj)∈E
s.t. uk∈NL(vi)

∆L
k

outdeg(uk)
,

= α


uk∈NL(vi)
s.t. outdeg(uk)>0

∆L
k

outdeg(uk)


uj


(uk,uj)∈E

1,

(a)
= α


uk∈NL(vi)

s.t. outdeg(uk)>0

∆L
k,

(b)
≤ α


uk∈NL(vi)

∆L
k,

(c)
= αδ(L),

(d)
≤ αL+1pi.

(a) follows because


uj


(uk,uj)∈E 1 = outdeg(uk). Equality in (b) occurs only if all nodes uk ∈ NL(vi) have outdeg(uk) > 0.

(c) follows from the definition of δ(L), and (d) from the induction hypothesis. Equality in (d) occurs only if δ(L) = αLpi. Thus
the claim holds for all l > 0, which together with the conditions for equality concludes the proof of the theorem. �

Since every link in a path attenuates the pagerank flow by at least α, we have the following lemma, which will be useful
in the proof of Lemma 9.

Lemma 19. For any two nodes u and v, not necessarily distinct, and any set of nodes S containing v, ρ(uv; S) ≤ αℓ, where ℓ is
the length of the shortest path in P(uv; S). (Note, if u = v, then ℓ ≥ 2, otherwise ℓ ≥ 1.)



Author's personal copy

10 S. Adalı et al. / Theoretical Computer Science 437 (2012) 1–20

Proof. We prove the lemma by double induction on ℓ and L, the length of the longest path in P(uv; S). If L = ℓ, then
ρ(uv; S) ≤ δ(ℓ)/pu, and by Lemma 8, we have ρ(uv; S) ≤ αℓ.

Assume the claim true whenever ℓ ≤ k and L ≤ K and consider ℓ ≤ k + 1, L ≤ K + 1.

ρ(uv; S) =
α

outdeg(u)


(u,w)∈E

w∉S

ρ(wv; S),

(a)
≤

α · αk

outdeg(u)


(u,w)∈E

w∉S

1,

≤ αk+1.

(a) follows from the induction hypothesis because the shortest path length in P(wv; S) is at most k and the longest path
length is at most L. Therefore, the claim holds for all ℓ ≥ 1 and all L ≥ ℓ. �

4.1.2. Proof of Lemma 9
Consider a collection of paths Pt from vi to t where t is the terminal node for all the paths, and does not appear as an

intermediate node in any path. Let Pt(S) be the collection of distinct prefixes. For every path q ∈ Pt , let s(q) denote the
terminal node of its corresponding prefix in Pt(S). Let S = {s1, . . . , sk}. We can partition the paths in Pt into k disjoint sets
P1
t , . . . , P

k
t according to the terminal nodes of the prefixes, i.e., for every path q ∈ P i

t , s(q) = si. Let∆si be the total (summed)
flow of pagerank to si along the paths in P i

t .

I(S|Pt(S)) =


si∈S

∆si .

Each path in P i
t contains a suffix path from si to t in which t does not appear as an intermediate node. Consider the fraction

ρ of si’s pagerank that flows along the distinct such suffixes to t . Since these suffixes are a subset of the paths in P(sit; t), we
have that ρ ≤ ρ(sit, t). I(t|P i

t) can now be bounded as follows,

I(t|P i
t) = ρ∆si ,

≤ ρ(sit; t)∆si .

I(t|Pt) is the sum of the I(t|P i
t)’s, so we obtain

I(t|Pt) =

k
i=1

I(t|P i
t),

≤

k
i=1

ρ(sit; t)∆si ,

(a)
≤ α

k
i=1

∆si ,

= αI(S|Pt(S)),

where (a) follows from Lemma 19. �

4.1.3. Proof of Lemma 10
Partition the set of cycles containing v0 as initial and terminal node, but not as intermediate node, into two disjoint

sets C1 and C2. C1 contains the cycles which do not contain vi and C2 contains all the cycles which also contain vi. (Note
C1 = P(v0v0; v0vi).) Let Pv0,vi = P(v0vi; v0vi) and ρv0vi = ρ(v0vi; v0vi). (Note that ρv0vi ≤ α.) Every path in C2 is composed
of a path in Pv0,vi togetherwith a path from vi to v0 inwhich v0 appears only as a terminal node (i.e. a path in P = P(viv0; v0)).
The fraction of vi’s pagerank that flows to v0 along paths in P is by definition ∆/pi. Thus, the fraction of v0’s pagerank that
flows along cycles in C2 back to v0 is ρv0vi∆/pi. Let γv0 = ρ(v0v0; v0vi) be the fraction of v0 pagerank that flows along cycles
in C1 back to v0. Therefore the total fraction of v0’s page rank that flows back to v0 along paths in C1 ∪ C2 is γv0 + ρv0vi∆/pi.
This fraction will be amplified again by the cycles in C1 and C2. Thus,

∆pi0 = ∆ + amp(∆),

where amp(x) satisfies

amp(x) = φx + amp(φx),
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and φ = φ(∆) = γv0 + ρv0vi∆/pi < 1. The unique solution to this equation (which can be obtained by expanding amp(φx)
repeatedly to obtain a geometric series) is

amp(x) =
φx

1 − φ
.

Substituting into the expression for ∆pi0, we obtain

∆pi0(∆) =
∆

1 − γv0 − ρv0vi
∆

pi

.

To conclude, note that the right hand side is monotonically increasing in ∆. �

4.1.4. Proof of Theorem 13
Consider the attack by a single attacker vi. We will show that the direct attack is best for vi independent of the rest of the

graph, in particular what the other attackers do, from which the theorem will follow. For the direct individual attack not to
maximize the rank (and some other attack X to maximize it), there must be some vertex u for which p̄Iv0 ≤ p̄Iu and p̄Xv0 > p̄Xu .

First consider the case when there are no paths from v0 to u. Then, pv0 + ∆pIv0 ≤ pu + ∆pIu and pv0 + ∆pXv0 > pu + ∆pXu .
Since ∆pIu = 0 (no paths from v0 to u),

pu − pv0 ≥ ∆pIv0 , pu − pv0 < ∆pXv0 − ∆pXu ,

which is a contradiction because ∆pXv0 < ∆pIv0 (Theorem 11), and ∆pXu ≥ 0.
Now consider the case when there are paths from v0 to u. We introduce some definitions that will simplify the notation:

ρv0u = ρ(v0u; viu),
ρv0vi = ρ(v0vi; v0vi),

ρuvi = ρ(u, vi; viu),
γv0 = ρ(v0v0; v0vi),

γu = ρ(u, u; viu).

(γv0 , ρv0vi are defined as in the proof of Lemma 10.) γv0 and γu are fractions that flow along cycles.
Let ∆v0 and ∆u be the pagerank flow from vi to v0 and u along the respective paths P(vi, v0; v0) and P(vi, u; u). Then,

p̄Iv0 = pv0 + ∆pIv0(∆
I
v0

), p̄Iu = pu + ∆pIu(∆
I
u),

p̄Xv0 = pv0 + ∆pXv0(∆
X
v0

), p̄Xu = pu + ∆pXu (∆
X
u ).

(I denotes the direct individual attack and X the other attack.) In the direct attack I , the only paths from vi to u are through
v0. In the attack X , there may be paths from vi to u that do not pass through v0. Therefore, we have

∆I
u = ρv0u∆

I
v0

, ∆X
u ≥ ρv0u∆

X
v0

.

As in the proof of Lemma 10, let

G(x; γ , ρ) =
x

1 − γ − ρ x
pvi

.

Then,

∆pIv0(∆
I
v0

) = G(∆I
v0

; γv0 , ρv0vi),

∆pXv0(∆
X
v0

) = G(∆X
v0

; γv0 , ρv0vi),

and,

∆pIu(∆
I
u) = G(∆I

u; γu, ρuvi),

= G(ρv0u∆
I
v0

; γu, ρuvi),

= ρv0uG(∆I
v0

; γu, ρv0uρuvi),

∆pXu (∆
X
u ) = G(∆X

u ; γu, ρuvi),

(a)
≥ G(ρv0u∆

X
v0

; γu, ρuvi),

= ρv0uG(∆X
v0

; γu, ρv0uρuvi).
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(a) follows becauseG ismonotonic in x, andwe have used the identityG(λx; γ , ρ) = λG(x; γ , λρ). u is such that p̄Iu−p̄Iv0 ≥ 0
and p̄Xu − p̄Xv0 < 0. Thus,

pu − pv0 ≥ G(∆I
v0

; γv0 , ρv0vi) − ρv0uG(∆I
v0

; γu, ρv0uρuvi),

pu − pv0 < G(∆X
v0

; γv0 , ρv0vi) − ρv0uG(∆X
v0

; γu, ρv0uρuvi).

Combining these two equations, we find that

F(∆X
v0

, ∆I
v0

; γv0 , ρv0vi) > ρv0uF(∆X
v0

, ∆I
v0

; γu, ρv0uρuvi),

where

F(x1, x2; γ , ρ) = G(x1; γ , ρ) − G(x2; γ , ρ),

=
(x1 − x2)(1 − γ )

1 − γ − ρ
x1
pvi

 
1 − γ − ρ

x2
pvi

 .

Since ∆X
v0

< ∆I
v0

(Theorem 11), we obtain

ρv0uF(∆X
v0

, ∆I
v0

; γu, ρv0uρuvi)

∆X
v0

− ∆I
v0

>
F(∆X

v0
, ∆I

v0
; γv0 , ρv0vi)

∆X
v0

− ∆I
v0

.

Let ρ00 = ρ(v0v0; v0viu), and let ρuu = ρ(uu; v0viu). Let Q = (1 − ρ00)(1 − ρuu). We will need the following lemmas to
complete the proof. We will prove the lemmas after the proof of the theorem.

Lemma 20. 1 − γv0 = Q · (1 − γu).

Lemma 21. ρv0vi ≥ Qρv0uρuvi .

By Lemma 21 and the monotonicity of F with respect to ρ, we have

ρv0uF(∆X
v0

, ∆I
v0

; γu, ρv0uρuvi)

∆X
v0

− ∆I
v0

>
F(∆X

v0
, ∆I

v0
; γv0 ,Qρv0uρuvi)

∆X
v0

− ∆I
v0

or that,

ρv0u(1 − γu)
1 − γu − ρv0uρuvi

∆X
v0

pvi

 
1 − γu − ρv0uρuvi

∆I
v0

pvi

 >
(1 − γv0)

1 − γv0 − Qρv0uρuvi
∆X

v0
pvi

 
1 − γv0 − Qρv0uρuvi

∆I
v0

pvi

 ,

(a)
=

Q (1 − γu)

Q 2


1 − γu − ρv0uρuvi

∆X
v0

pvi

 
1 − γu − ρv0uρuvi

∆I
v0

pvi

 ,

where (a) follows using Lemma 20. After some algebraic manipulations, we obtain

Qρv0u =
1 − ρ00

1 − ρuu
ρv0u > 1.

In any attack, v0’s pagerank flows to u with attenuation ρ(v0u; v0u) amplified by 1/(1 − ρ(uu; v0)). Since pu’s pagerank
cannot be smaller that what flows from v0, we have

pu ≥
ρ(v0u; v0u)
1 − ρ(uu; v0)

pv0 ,

(a)
≥

ρ(v0u; v0viu)
1 − ρ(uu; v0viu)

pv0 ,

(b)
=

(1 − ρ(v0v0; v0viu))ρ(v0u; viu)
1 − ρ(uu; v0viu)

pv0 ,

(c)
=

(1 − ρ00)ρv0u

1 − ρuu
pv0 ,

> pv0 .

(a) follows from Lemma 17; (b) follows because using Lemma 18,

ρ(v0u; viu) =
ρ(v0u; v0viu)

1 − ρ(v0v0; v0viu)
;
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and, (c) follows from the definitions of ρ00, ρuu, ρv0u. Thus, pu > pv0 for any attack, in particular, for the attack X , which
contradicts the fact that p̄Xv0 > p̄Xu . This contradiction implies that no such vertex u can exist, which concludes the proof of
the theorem. �

4.1.5. Proof of Lemma 20
We use the same notation as in the proof of Theorem 13. Let S = {v0, vi, u}. γ0 = ρ(v0v0; v0vi) is the fraction of v0’s

rank flow back to v0 along paths in P(v0v0; v0vi). The paths in P(v0v0; v0vi) can be partitioned into paths that contain u and
paths that do not. The paths that contain u are paths in P(v0u; S) concatenated with paths in P(uu; S) concatenated with
paths in P(uv0; S). Therefore, using Lemma 18,

γ0 = ρ(v0v0; S) +
ρ(v0u; S)ρ(uv0; S)

1 − ρ(uu; S)
.

Applying similar reasoning to γu, and using the definitions for ρ00, ρuu, we obtain

γ0 = ρ00 +
ρ(v0u; S)ρ(uv0; S)

1 − ρuu
,

γu = ρuu +
ρ(v0u; S)ρ(uv0; S)

1 − ρ00
.

Let A = ρ(v0u; S)ρ(uv0; S). We find that

1 − γ0 =
(1 − ρ00)(1 − ρuu) − A

1 − ρuu
,

1 − γu =
(1 − ρ00)(1 − ρuu) − A

1 − ρ00
.

It now follows that (1 − γ0) = Q (1 − γu). �

4.1.6. Proof of Lemma 21
We use the same notation as in the proof of Theorem 13. Let S = {v0, vi, u}. Then,

ρv0vi = ρ(v0vi; S) +
ρ(v0u; S)ρ(uvi; S)

1 − ρuu
,

ρv0u =
ρ(v0u; S)
1 − ρ00

,

ρuvi = ρ(uvi; S) +
ρ(uv0; S)ρ(v0vi; S)

1 − ρ00
.

Therefore, we find that

Qρv0uρuvi =
ρ(v0u; S)ρ(uvi; S)

1 − ρuu
+

ρ(v0u; S)ρ(uv0; S)ρ(v0vi; S)
(1 − ρuu)(1 − ρ00)

,

= ρv0vi − ρ(v0vi; S) +
ρ(v0u; S)ρ(uv0; S)ρ(v0vi; S)

(1 − ρuu)(1 − ρ00)
.

After rearranging terms, we obtain

ρv0vi − Qρv0uρuvi = ρ(v0vi; S) ·


1 −

ρ(v0u; S)
1 − ρuu

·
ρ(uv0; S)
1 − ρ00


,

(a)
= ρ(v0vi; S) · (1 − ρ(v0u; viu)ρ(uv0; v0vi)) .

(a) follows from Lemma 18. To conclude, note that ρ(v0u; viu)ρ(uv0; v0vi) ≤ α2 (Lemma 19), and so the right hand side is
≥ 0. �

4.2. The optimal disguised attack

For the optimal disguised attack, every path from an attacker to the victim must have length ≥ ℓ. We only consider the
case that such attacks are possible, in particular, Uℓ−1 is not empty.
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Consider the graph with the edge set Eu = E ∪ (vi, u). Let Pu(vw; x1, . . . , xk) and ρu(vw; x1, . . . , xk) be defined with
respect to the edge set Eu in exactly the sameway that P(vw; x1, . . . , xk) and ρ(vw; x1, . . . , xk)were defined in the previous
section. Note that

Vi(u) = fu(vi; v0) = ρu(viv0; v0),

and more generally,

fu(v, w) = ρu(vw; w).

Let ρmax(v) be the maximum forward rank (with respect to v0) of any 1-neighbor of v,

ρmax(v) = max
(v,w)∈Eu

ρu(wv0; v0).

From the forward equation, by replacing the summand by the largest term, we have,

Lemma 22. ρu(vv0; v0) ≤ αρmax(v), with equality iff ρu(w1v0; v0) = ρu(w2v0; v0) for all w1, w2 such that (u, w1), (u, w2)
∈ Eu.

Lemma 23. There is at least one vertex w∗
∈ Uℓ−1 with ρu(uv0; v0) ≤ ρu(w

∗v0; v0).

Proof. Consider ρu(uv0; v0). We can assume that ρu(uv0; v0) > 0 (i.e., d(u, v0) < ∞), and that d(u, v0) > ℓ − 1, as
otherwise there is nothing to prove. Choosew1 in the 1-neighborhood of u such that ρu(wv0; v0) = ρmax(u). If there is more
than one possible choice for w1, select the choice for which d(w1, v0) is minimized, breaking any further ties arbitrarily.
If d(w1, v0) = ℓ − 1 then we stop, otherwise we define w2 in a similar way to w1: w2 is a vertex in N1(w1) such that
ρu(w2v0; v0) = ρmax(w1). In general, wi+1 = argmax

(wi,wi+1)∈Eu
ρu(wi+1v0; v0), breaking ties according to distance. By Lemma 22,

since α ≤ 1, for the sequence u, w1, w2, . . . ,

ρu(uv0; v0) ≤ ρu(w1v0; v0) ≤ ρu(w2v0; v0) ≤ · · · .

Further, if ρu(wiv0; v0) = ρu(wi+1v0; v0) (which can only happen if α = 1 and all neighbors have the same ρ), then, since
the tieswere broken by distance, d(wi, v0) > d(wi+1, v0). Thus, there are no repetitions in the sequence u, w1, w2, . . .. Since
there is a path from u to v0 and d(u, v0) > ℓ − 1, by the pigeon hole principle, we conclude that at least one vertex w∗ in
this sequence is distance ℓ − 1 from v0. �

Note that equality in the Lemma can only occur if α = 1, thus for α < 1, it is strictly better to be in Uℓ−1 than not. To prove
Lemma 14, we will show that Vi(w

∗) ≥ Vi(u).

4.2.1. Proof of Lemma 14
Suppose that the maximum is attained for a vertex u with d(u, v0) > ℓ − 1. Let w∗

∈ Uℓ−1 be such that ρu(w
∗v0; v0) ≥

ρu(uv0; v0) (Lemma 23 guarantees the existence of such a vertex). We show that Vi(u) ≤ Vi(w
∗). From the definitions of

Vi(u) and Vi(w
∗), we have that

Vi(u) = ρu(viv0; v0),

= αρu(uv0; v0),

(a)
≤ αρu(w

∗v0; v0);

Vi(w
∗) = ρw∗(viv0),

= αρw∗(w∗v0; v0).

(a) follows from the definition of w∗. By considering the paths which reuse vi and those which do not, we have that

ρu(w
∗v0; v0) = ρu(w

∗v0; viv0) + ρu(w
∗vi; viv0)ρu(viv0; v0),

(a)
= ρu(w

∗v0; viv0) + αρu(w
∗vi; viv0)ρu(uv0; v0),

(b)
≤ ρu(w

∗v0; viv0) + αρu(w
∗vi; viv0)ρu(w

∗v0; v0),

(c)
= ρw∗(w∗v0; viv0) + αρw∗(w∗vi; viv0)ρu(w

∗v0; v0);

ρw∗(w∗v0; v0) = ρw∗(w∗v0; viv0) + ρw∗(w∗vi; viv0)ρw∗(viv0; v0),

(d)
= ρw∗(w∗v0; viv0) + αρw∗(w∗vi; viv0)ρw∗(w∗v0; v0).

(a) follows because the only edge from vi in Eu is (vi, u), and similarly for (d). (b) follows from the definition ofw∗. (c) follows
because only difference between Eu and Ew∗ is that the edge (vi, u) in Eu is replaced by the edge (vi, w

∗) in Ew∗ . Therefore
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all paths that do not include vi as an intermediate node are identical in Eu and Ew , and so the corresponding ρ’s are equal.
Since ρw∗(w∗v0; viv0) > 0, ρw∗(w∗vi; viv0) < 1, solving for ρw∗(w∗v0; v0) and ρu(w

∗v0; v0), we get

ρw∗(w∗v0; v0) =
ρw∗(w∗v0; viv0)

1 − αρw∗(w∗vi; viv0)
,

ρu(w
∗v0; v0) ≤

ρw∗(w∗v0; viv0)

1 − αρw∗(w∗vi; viv0)
,

= ρw∗(w∗v0; v0).

Thus, Vi(u) ≤ Vi(w
∗). �

4.2.2. Proof of Theorem 15
Let us consider an arbitrary attack X in which vi has links to w1, w2, . . . , wm, where d(wj, v0) ≥ ℓ − 1 for j ∈ [1,m].

Suppose that vi has kj links towj. Let EX = E∪{(vi, wj)kj}
m
j=1 be the augmented edge set, where (vi, wj)kj represents kj copies

of (vi, wj). Let ρX (viv0; v0) be the fraction of vi’s rank that flows to v0 along paths in PX (viv0; v0),

∆X
v0

= ρX (viv0; v0)pvi .

For the single attack I , vi has only one link to w∗
∈ Uℓ−1, where w∗ is such that Vi(w

∗) ≥ Vi(u) for all u such that
d(u, v0) ≥ ℓ − 1.

∆I
v0

= ρw∗(viv0; v0)pvi .

By Lemma 10, it suffices to show that ∆I
v0

≥ ∆X
v0
, i.e. that ρw∗(viv0; v0) ≥ ρX (viv0; v0). Let K =

m
j=1 kj. Using (3),

ρX (viv0; v0) =
α

K

m
j=1

kjρX (wjv0; v0),

(a)
=

α

K

m
j=1

kj

ρX (wjv0; viv0) + ρX (wjvi; viv0)ρX (viv0; v0)


,

(b)
=

α

K

m
j=1

kj

ρwj(wjv0; viv0) + ρwj(wjvi; viv0)ρX (viv0; v0)


,

(c)
=

α
K

m
j=1 kjρwj(wjv0; viv0)

1 −
α
K

m
j=1 kjρwj(wjvi; viv0)

,

≤
αρw̄(w̄v0; viv0)

1 − αρw̄(w̄vi; viv0)
,

(d)
= ρw̄(viv0; v0),

where w̄ = argmaxwj
ρwj(wjv0; viv0). (a) follows by partitioning the paths from wj to v0 into those that use vi and those

that do not; (b) follows because the paths that do not use vi are identical in both EX and Ewj ; (c) follows after solving for
ρX (viv0; v0); and (d) follows after solving for ρwj(viv0; v0) in

ρwj(viv0; v0) = α

ρwj(wjv0; viv0) + ρwj(vi; viv0)ρwj(viv0; v0)


.

To conclude, note that by the definition of w∗, ρw∗(viv0; v0) ≥ ρw̄(viv0; v0). �

4.2.3. Proof of Theorem 16
Let X be an optimal attack in which each attacker’s only link is to a node in Uℓ−1 (not necessarily the same node for each

attacker). By Theorem 15, such an optimal attack exists. Suppose that attacker vi points to node wi ∈ Uℓ−1. Then,

ρ(viv0; v0) = αρ(wiv0; v0).

Let A = {v0, v1, . . . , vK } denote the set containing the attackers and the victim. We use the notation ρuv = ρ(uv; A) to be
the fraction of rank flowing from u to v along paths that do not contain a node of A as an intermediate node. Let v∗ be the
attacker satisfying

ρ(v∗v0; v0) ≥ ρ(viv0; v0),

where v∗ and vi are attackers, and denote the node that v∗ points to asw∗. Then, ρ(w∗v0; v0) ≥ ρ(wiv0; v0) for all i ∈ [1, K ].
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Wenow consider the attack X̄ inwhich every attacker only points tow∗.Wewill show that for every node v, ρ̄(vv0; v0) ≥

ρ(vv0; v0), where ρ (resp. ρ̄) is the fraction of v’s rank that propagates to v0 under attack X (resp. X̄). First consider w∗.
We have

ρ(w∗v0; v0) = ρw∗v0 + α

K
i=1

ρw∗viρ(wiv0; v0),

(a)
≤ ρw∗v0 + α

K
i=1

ρw∗viρ(w∗v0; v0),

(b)
≤

ρw∗v0

1 − α
K

i=1 ρw∗vi

.

(a) follows because ρ(wiv0; v0) ≤ ρ(w∗v0; v0), and (b) after solving for ρ(w∗v0; v0). Paths that do not pass through an
attacker are identical in the attack X̄ and X . Thus, ρ̄uv = ρuv and so

ρ̄(w∗v0; v0)
(a)
= ρw∗v0 + α

K
i=1

ρw∗vi ρ̄(w∗v0; v0),

(b)
=

ρw∗v0

1 − α
K

i=1 ρw∗vi

.

(a) follows because every attacker in X̄ points to w∗ and (b) after solving for ρ̄(w∗v0; v0). Thus we conclude that
ρ(w∗v0; v0) ≤ ρ̄(w∗v0; v0). Now consider an arbitrary node v.

ρ(vv0; v0) = ρvv0 +

K
i=1

ρvviρ(viv0; v0),

= ρvv0 + α

K
i=1

ρvviρ(wiv0; v0),

(a)
≤ ρvv0 + α

K
i=1

ρvviρ(w∗v0; v0),

(b)
≤ ρvv0 + α

K
i=1

ρvvi ρ̄(w∗v0; v0),

= ρ̄(vv0; v0).

(a) follows by definition of w∗, and (b) because ρ(w∗v0; v0) ≤ ρ̄(w∗v0; v0), thus the magnitude of X̄ is at least as large as
the magnitude of X . �

5. Experimental results

In this section, we give some preliminary experimental results that quantify the effectiveness of link bombs in various
environments. There are four main degrees of freedom we explore: the nature of the graph, including its connectivity or
edge density; the prominence (pagerank) of the attackers; the prominence of the victim; and, the value of α.

We ran our experiments on three types of graphs: Random is an Erdös–Reyni type (G(n, p)) random graph with edge
probability p; BA (Barabási-Albert) is a preferential-attachment random graph with 5 outgoing edges per vertex [3]; (Such
graphs are known to have power-law in-degree distributions, and sincewe add the vertices sequentially, there are no cycles.)
MWDTA is a modified ‘‘Winner’s do not take all’’ random graph in which every node has at least one out-going edge [19].
(Such graphs are known to model certain characteristics of the world wide web graph such as power-law in and out-degree
distributions.). The main difference between MWDTA and BA random graphs is that in MWDTA, a larger number of nodes
will have significant in-degree, whereas in BA a few nodes have very large in-degrees. In order to make fair comparisons,
we normalize graphs from different random graph models (Random, BA or MWDTA) to have the same expected number of
edges.

First, we generate a random graph with 1000 nodes, and randomly select 10 attackers and a victim. We then remove
outgoing edges from the attackers and perform a pagerank computation, obtaining:

p0: the page rank of the victim;
pA: the average pagerank of the attackers;

fp(p): the pagerank distribution in the graph;
σp: the std. dev. of the pagerank distribution.



Author's personal copy

S. Adalı et al. / Theoretical Computer Science 437 (2012) 1–20 17

Fig. 1. Pagerank distributions of different graphs.

We only show results for two of the attacks described in Section 3.1: the optimal direct individual attack I , and the
cycle attack C (the results for other suboptimal attacks are similar). Each attack is repeated a number of times on randomly
generated graphs to increase the statistical significance of the results. We use the following measures of success for
attack X ,

G(X) = Gain =
∆pX0
p0

,

Ḡ(X) = Normalized Gain =
∆pX0
σp

,

D(X) = Discrepancy Factor =
G(I)
G(X)

,

D̄(X) = Normalized Discrepancy = Ḡ(I) − Ḡ(X).

The pagerank distribution fp(p) generally affects the effectiveness of an attack. Fig. 1 shows pagerank distributions for the
various random graphs. As can be seen, Random has a (near) Normal distribution, compared with BA and MWDTA which
have power-law type distributions in whichMWDTA appears to have a slightly fatter tail than BA.

Some detailed results on the effectiveness of the attacks are shown in Fig. 2: (a) shows how connectivity (number
of edges) in Random graphs with different p affects the attack; (b) shows different graph types; (a) and (b) show the
dependence on the prominence of the attackers, and (c) shows the dependence on the prominence of the victim; (f) shows
the dependence on α. Fig. 3 shows some results for the rank (as opposed to the pagerank). We give a summary of the results
below.

Higher Density: All attacks decrease in magnitude (new edges have little additional effect when the graph is already
dense).
Graph type: Prominence of attackers has (by far) the largest impact in Random graphs, as compared to BA and MWDTA.
(Pageranks in Random graphs are ‘‘concentrated’’ around the mean, so any bias in the victim’s pagerank results in it
becoming extreme. This is less so for BA and even less so forMWDTA.).
Higher Prominence of Attackers: Stronger attack.
Higher Prominence of Victim: Attacks become less effective and D(C) decreases (diminishing returns).
Lower α: D(C) increases (it is more costly to divert from the individual attack).
Rank: For random graphs, an attack usually results in a top ranking for the victim, which is not usually the case for BA
and MWDTA graphs.

6. Discussion

We have shown that the best attack is the direct individual attack, in particular: any organized structure among the
attackers reduces the impact of the attack; links that cycle back to attackers in an attempt to boost their pageranks
are detrimental. The discrepancy between the optimal individual attack and suboptimal attacks can strongly depend on
the graph type through the initial pagerank distribution. Our results indicate conditions that offer resistance to rank
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(a) Graphs with different edge densities. (b) Attacks in different graph types.

(c) Dependence on victim’s pagerank. (d) Dependence on α (MWDTA).

Fig. 2. Experimental results on pagerank.

manipulation: dense, power-law type graphs in which victims already have high rank, attackers have low rank and α is
small. Our analysis has been focused on increasing a page’s rank (pagerank manipulation) in the entire graph, i.e., the
victims rank is increased for every query. The underlying model is that the query identifies a set of nodes (based on text
and anchor text), which defines an induced subgraph of the original graph. However, the nodes are ranked according to
pagerank in the original graph. This model has the feature that pageranks do not need to be recomputed for the specific
query. An alternative approach is to order the nodes with respect to the pageranks in the induced subgraph (hence these
pageranks would need to be recomputed for every query). Such a model would mean that one attempts to boost the
pagerank with respect to a specific query and not others. Our analysis does not apply to this model, and it is no longer
true that the optimal attack is the direct individual attack. The following example (with a single attacker) illustrates:



Author's personal copy

S. Adalı et al. / Theoretical Computer Science 437 (2012) 1–20 19

Fig. 3. Experimental results on rank.

In (a) we show the original graph, where X will be the query text and the attacker wants to boost the rank of v0 with respect
to X . In (b) we show the subgraph induced by the direct attack, where the attacker places X in its page as well as in the
anchor text of the link. In the resulting induced subgraph, the rank of v0 is not the highest. The benefit of the non-direct
attack in (c) is that other nodes that point to v0 get included into the induced subgraph. Thus while the flow of rank from v1
to v0 is decreased, this is more than compensated for by the additional rank contribution from the newly included nodes. A
better attack would arise if v1 added another link to v0. In fact for any attack in which v1 has k links to v0, a strictly better
attack with k + 1 links is possible. In this example, there is no optimal attack. In general, we can formulate this notion by
saying that the attacker should add theminimum number of links to all nodes with paths to the victimwhich do not contain
the query text, and hence would not be included in the subgraph. The attackers should then place as many parallel direct
links to v0 as is feasible. The end effect is to include all nodes with paths to the victim with a minimum diversion of page
rank. Of course, such a huge attack is not very practical, and an interesting question is to consider the optimal attack under
this model when each attacker has a fixed budget of links.

The PageRank algorithm favors attacks from groups that are not well connected, which makes it harder to detect the
attack, and accountability in such an attack formation becomes an issue: who is responsible for the attack? Different
variations of the PageRank algorithmmay suffer a similar fate if they propagate the pagerank in a similar way (for example
Topic-Sensitive PageRank [15], provided that the attacking group is considered relevant to the query). In order to avoid
such a fate (a dilemma faced by any ranking method open to manipulation by small groups), either one must change the
ranking function or somehow exclude the attacking group from the search engine’s database. While such an approach is a
reasonable way to deal with private companies attempting to manipulate rankings based on their own views, it is not very
democracy-friendly to arbitrarily remove certain pages from a search engine.

As discussed in [12], the PageRank algorithm makes certain assumptions about the user navigation patterns and the
web structure that may not apply to the Web anymore. [12] considers the effect of dangling nodes in the pagerank
computation and provides methods to adjust for them. They also point out that users will rarely (if ever) navigate to
one of several billion pages uniformly—they may not even know that these pages exist. In fact, users generally start
from known sites and navigate from there. Hence, random navigation is more likely to bring them to one of these
‘‘anchor’’ sites. The HostRank algorithm [12] uses this assumption to choose a set of anchor sites, and they show that
such an approach is more resistant to attacks. Trustrank algorithm [14] uses a set of trusted pages to bias the random
jump probability. An interesting problem would be to check whether the selection algorithm for trusted pages can be
manipulated (if it is not fully manual). For example, pages can exhibit trustworthy behavior to gain trust and then
sell this influence for spam links. It would be interesting to study the sensitivity of the algorithm to various types
of attacks.

A related issue is that of navigation along links from a site. One is more likely to trust a link on a highly ranked page, and
one is more likely to follow a link to a highly ranked page. For example, it might be much more probable to follow one of
the links from a search engine or a news Web site than a regular web page. The probability to navigate from a page in the
PageRank algorithm is independent of a page’s rank, and the link one selects to navigate is random. A plausible alternative
is that the probability to navigate from a page should be proportional to the page’s pagerank, and the probability to use a
particular outgoing link is proportional to the pagerank of the destination page. Such a navigation model would lead to an
equation (analogous to (1)) of the form
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pi = καpi


(vj,vi)∈E

p2j
(vj,vk)∈E

pk
+

1 − α

N
.

More effort could be spent on how the transition probabilities generally affect the pageranks and their manipulability. [12]
discusses such issues for nodes with unknown outgoing links and [21] uses the amount of traffic flow through the nodes
to model the transition probabilities. It would be interesting to see what the optimal attack with such ranking algorithms
is. In short, objective methods for the selection of the anchor sites or more plausible navigation models deserves closer
examination. One must also bear in mind (see for example [12]) that the computational complexity of the algorithm is also
an important practical consideration for any ranking algorithm.

Other factors, which we do not study here, might be significant to the success of an attack. [11] argues that anchor text
pointing to a page gives information regarding the subject matter of that page, and relationships between different pages.
For example, Google may consider both the pagerank and the frequency of keywords in links pointing to a page when
computing the score of the page. Google bombs in the past used the same keywords when pointing to the attacked page, i.e.,
the bombing links were correlated in that they all had the same keywords, whereas in general, links pointing to a website
would not display such a correlation. If some linear combination of these two factors is then used in the final score, it will
favor attacks over the natural Web behavior. If some small group of sites use a specific keyword to point to a victim, it is
unlikely that these groups’ sites are unrelated, and one could (for example) add pseudo-links among these sites, since the
expectation would be that they participate in some group structure. As our results show, these pseudo-links will reduce
the magnitude of the attack. One could go so far as to say that if after the addition of such pseudo-links in the graph, the
pagerank distribution does not change significantly, then the ranking algorithm should be more resistant to manipulation.

The analysis of the optimal attack structure provides a new tool for looking at resistance to link manipulation. Such
metrics and an understanding of optimal attack formations for other algorithms should be fruitful directions for future
work.
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