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Abstract— This work considers a multi-hop sensor net- and try to report it, increasing collisions by redundant
work and addresses the problem of minimizing power data. Collisions require re—transmissions and increase th
consumption in each sensor node locally while ensuring energy consumption.
two global (i.e., network wide) properties: (i) communica-  |ncreasing the lifetime of a sensor network is of pri-
tion connectivity, and (ii) sensingcoverage. A sensor node o imnartance. Although data aggregation techniques
saves energy by suspending its sensing and communlcatlorw[z] can help to reduce the traffic that propagates to

activities according to a Markovian stochastic process. We .
show that a power level to induce a coverage radiug(® the control centers, they do not provide a complete
n

is sufficient for connectivity provided that w(n) — co. The Solution to the problem. Coordination among sensor
paper presents a Markov model and its solution for steady nodes requires synchronization based on either a global
state distributions to determine the operation of a single time reference (e.g. GPS) or clock synchronization algo-
node. Given the steady state probabilities, we construct a rithms. While equipping each sensor node with a GPS is
non-linear optimization problem to minimize the power g possibility for the future, current solutions cannot as-
consu_mpt|on. Simulation studies to examine the collective g ;me a global time reference. The clock synchronization
behavior of Ia_\rge number of sensor nodes produce results protocols are based on message (e.g., control packets)
that are predicted by the analytical model.
Keywords: Stochastic processes/Queueing theory, Math- exchange [3]_, [4] and they are costly for sensor networkg
ematical programming/Optimization, Simulations Thus, coordination of sensor nodes must be done with
local and independent (asynchronous) decisions which
motivates the deployment of randomized protocols.
|. INTRODUCTION In this work we propose a general probabilistic
This work considers a multi-hop sensor network whicMarkov model in which each sensor node makes an
is comprised of a large number of sensor nodes comnigdependent decision regarding which state to be in at a
nicating with RF links. We assume that sensor nodg#/en time. We illustrate the general model using a three-
are deployed in an ad-hoc fashion ¢overa specified state model with daransmit, receive/sensand off state.
area with their sensing capabilities. Sensors monitdihe analysis we present can be extended to the general
sense and collect data from a target domain, processting with minor modifications. A node transitions
it and transmit the information back to the specifibetween states depending on the events that occur in
sites (e.g., headquarters, disaster control centersyeThts vicinity. The transitions are governed by a set of
are many potential applications of sensor networks iparameters. In the simplest case, every node’s parameters
cluding military, environmental and health related areaate equal, however, this restriction can be relaxed in
Although the sensor nodes communicate using wirelessler to accommodate a heterogeneous environment. We
links, there are fundamental differences between a seme interested in determining the optimal parameters
sor network and other wireless ad-hoc networks. Ogeverning the probabilistic transitions of a sensor node
important property of a sensor network risdundancy so as to minimize power consumption locally while
Sensor nodes are usually densely deployed hence @msuring connectivity and coverage globally.
underlying network has high redundancy for sensing o
and communications [1]. The high density can cauée Our Contributions
significant inefficiency problems leading to excessive This work provides a rigorous analysis and optimiza-
power wastage. Sensor nodes may sense the same elembf local decisions for the operation of a sensor node.



The objective is to ensure both connectivity and coveragralysis will change. For example, if the event distribu-
in the network while minimizing energy consumption ation is constant over two regions, then there will be three
each node. The techniques presented in this work #@ypes of steady state nodes, one for each region and one
general and can be applied to other multi-hop ad-héar the border between regions. Such complications do
networks besides the sensor networks considered hera change the general methodology, and so we focus
Furthermore the methodology can be extended to moadel the simple model for expository purposes.
several variants of the problem.

Overview of Our Approach. We model each sen-
sor node as a probatF))i[I:;stic finite state automaton th%?lated Work
transitions between various states. To illustrate, we condn one of the pioneering works on energy saving in
sider a three-state automaton (transmit, sense/receive witeless networks, the authors in [9] report that leaving
off states). In this model a node transitions betwedhe network interface (NI) idle consumes as much energy
senselreceive and off states. While in the sense st&g,reception. They argue that power aware MAC and
if a sensing or receiving event occurs, then the nodf@nsport level protocols should be used. Furthermore
transitions to the transmit state, attempts to transmit tf reports that it is not the number of packets but the
event and then transitions to the off or sensing stagyration of the sending period that correlates with the
In a steady state, the node will visit each of its stat@sergy usage. The authors also note that (i) most of the
according to its steady state distribution. How ofte@inergy is spent while idling, and (ii) in order to decrease
every node is in the sensing state determines whethie¢ energy consumption the NI should be turned off.
the network is globally connected and whether the arealn [10] the authors present two routing protocols
is covered, i.e., whether an arbitrary sensing event will BEECA and AFECA which have a Markov Model with
sensed. We develop sufficient conditions under which thteeping, listening and active states. In BECA the sojourn
network is connectednD the area is covered. We defindimes of the nodes are deterministic. In AFECA they are
connectivity and coverage jointly by requiring that aadaptive, the sleeping time being a random variable that
event atANY location has a “feasible path” tany other depends on the number of neighbors the node has. The
location. Further, the energy consumption of the nodasgthors show (using simulations) a 50% energy saving
depends on their steady state distribution. We presendwer naive ad-hoc routing algorithms. In the simulation
methodology to minimize this power consumption whilstudy (Section Ill) we compare our protocol to AFECA.
still maintaining the global coverage and connectivity. The GAF routing protocol in [6] aims to extend
Our approach is to solve a constrained optimizatidhe lifetime of the network by minimizing the energy
problem, whose solution defines the local behavior ofc@nsumption and preserving connectivity at the same
node. We name this approach t@ennectivity Assuring time. They present a 3-state transition diagram which
Randomized Energy-SavitGARES) algorithm. is a simplified version of ours, and is confined to

We assume that the sensor nodes are uniformly dSAF (Geographic Adaptive Fidelity). Using GAF they
tributed in the unit torus and that each node hasdiscover the locations of redundant nodes. GAF simply
sensing radius;s and a transmission radius; — usually imposes a virtual grid on the network. If in any of
rr > rg. We also assume that the sensing evert® grid squares there are more than one node, the
are distributed according to a uniform distribution atdundant nodes are turned off. They also use a protocol
each time step. This means that the probability for called CEC (Cluster-based Energy Conservation) which
node to sense an event is a constant, independenfusther eliminates redundant nodes by clustering them.
the node position. Thus, all the nodes will approachhe authors show 40-60% energy saving over other ad-
the same steady state distribution. We develop the ndwc routing algorithms.
linear equations that describe the steady state diswibuti While the above approaches address the power con-
under the mean-field approximation. Using a fixed poittol problem at the network layer, the third class of
iterative algorithm, we solve these equations to obta@ipproaches aim to enhance the MAC layer [5], [11], [8].
the steady state distribution. Given this steady stdfer example, in [11] the authors propose a modification
distribution, we can compute the energy consumptionf the 4-way handshake procedure in the IEEE802.11
which is a function of the transition probabilities of thgrotocol for power saving.
Markov model. Minimizing the energy with respect to In [5] the authors present a MAC protocol PAMAS
the parameters, we obtain a local, energy minimizinghich saves energy by powering off radios that overhear
randomized protocol. transmission. PAMAS is a hybrid MAC protocol and

If the distribution of events is not uniform, then therovides 10-50% savings.



In [12] the authors propose a MAC protocol for sensaonnectivity.
networks in which nodes go into periodic listen and
sleep cycles_ SO as to.reduce the energy consumpthn. B}%anization of the Paper
sleep and listen periods are implemented using timers.

Neighboring nodes listen and go to sleep at the samdn the next section we present the model of the
time thus the scheme requires synchronization amo?@1sor network and analyze its steady state behavior
the neighbors. The authors show that the proposed MARgluding its global connectivity and coverage properties
protocol consumes 2-6 times less energy than IEEMe formulate power conservation as an optimization
802.11. problem. In Section Il we compare the theoretical

In [7] the authors present a distributed randomizednalysis with the simulation of sensor networks as well
algorithm SPAN where each node makes a decision 8h With AFECA. We end with some concluding remarks
its own, based on the amount of available energy afitiSection IV.
the number of its neighbors. Each node either sleeps
(802.11 Power Saving mode) or becomes a coordinator Il. ANALYSIS AND OPTIMIZATION

(part of the networking backbone). Coordinators forward There are four components to this section. First we

the_ messages they receive from the othgr nodes. A n%qsecuss the Markov chain that governs the behavior of an
which has a message to send automatically becomes

coordinator. SPAN is built on the top of 802.11 anlfﬂ

It uses both MAC and routing layer protocols to mak%e sensor network system. We then discuss optimizing

decisions. . :
While GAF [6] and SPAN [7] are distributed ap_wnh respect to the parameters of the Markov chain

. N . . §o as to maximize the life time of the sensor network
proaches with coordination among neighbors, in AS- : :
ﬁystem, or other parameters. Finally, extensions and

CENT a node decides locally whether to be on or o L . :
generalization of the presented approach are investigated

[8]. . :
The pioneering work in [13] provided the first asymp'—n more detail.

totic results relating the power level to the connectivity.
The authors showed, using percolation theory, that / The Markov Model

order to have connectivity in a network with randomly 5.1 node is a three-state Markov chain. The three
placed nodes, the ratio of the number of neighbors to thgias are theoff O. the senselreceiveS, and the

total number of nodes should g n + c)/n wherec  yansmit T, states. Consider a node. Its transition matrix
should go to infinity asymptotically. _  depends on the state of its environment. The environ-
In [14] the authors propose an algorithm to adjugfient of a node can be in one of two states: either
the power level in order to ensure a minimum dey gense/receive event is occurring or no such event is
gree constraint on each node. In [15] a similar degre@cyring. The Markov state diagram in each of these

constraint is enforced to ensure a bound on the endises is given below, along with the Markov transition
to-end throughput. In [16] COMPOW protocol and it$yrgpapility matricesM when there is an event ard
architecture are discussed. when there is no event.

In [17] the authors consider the coverage problem andystice that when a sensing event occurs, the node will

use Voronoi diagrams generated with delaunay triangtkyays transition to the transmit state. This requirement
lation to calculate the coverage of the network. can be relaxed. There is also an ambiguity if both sensing
Recently, in [18], the joint problem of coverage andp receiving events occur. In this case, we can require
connectivity is considered using a grid of sensors e t the node always attempts to transmit the sensed
of which can probabilistically fail. The authors find they ant rather than the received event. At timethere
necessary and_sufficient conditions for connectivity ar?_gl some probability that the node is in each of its three
coverage in this type of a sensor network. The Maliates Denoteys, ps, pr as the respective probabilities
result in [18] is that within the transmission radius thgy finding the node in the off, sensing/receiving and
number of active nodes should be a logarithm of the tofgl gt states, and collect these three probabilities int
number of nodes, for the network to have connectivity,, vectomp(t) = [po(t), ps(t), pr()]. Let P be the prob-

and coverage. They also show that the diameter of iy that there is an event. Then the state probabilities

network is of order/n/logn. They cover the network ¢,. the node at time +1 are given by
area with disks and use the argument that each disk

should contain at least one active node for coverage and p(t+1) = p(t)[PeM + (1 — P-)M]. (1)

§lvidual node. Then we discuss how the properties of
is Markov chain affect the connectivity and coverage of



Event No Event of non-linear equations.

p° = p’[EM+ (1 - F)M],
P. = Pye+(n—1)(1— Ps)e(l —c)" 2,
I = p-1=po+ps+pr )
wherec = nr:?p; and 1 is a vector of ones. Had:
been a constant independentmfit is well known from

the theory of finite state Markov chains that a steady
state set of probabilities exists, [22]. It turns out that th

M: O S T M: O S T ) . . : :

introduction of this non-linearity does not change the
o p 1-p O o p 1l-p O . .

situation.
S 0 1 S § 1-6 0 :

Theorem 1:The set of non-linear steady state equa-

T Jé] 0 o T Jé] 0 o . 5 . .

tions for p® given in (3) has at least one solution.

a+fB+y=1 -

Proof: Let Q(p) = [Fe(p)M + (1 — Fx(p))M] as

< < . . : " .o
0<a,f,7,0p<1 defined in (3).Q(p) is a transition matrix, i.e.Q;; > 0

Fig. 1. Markov state diagram and transition probabilityynd Ej Qq; =1 for all i. Let X be them-dimensional

X:{x:wiEO,Zwizl}.

Since an event can be either sensing or receiving, the. B T .
probability of an event will depend on the probabilit %els compact, and(p) = Q(p)” p maps' onto itself.

y : A . :
that a single neighbor is transmitting. We now suppoP (p) is a_polynorr_ual np. and_ hence is contlnug_us.
hus, f(p) is a continuous mapping. Thus the conditions

that the system has equilibrated to a steady state,,in : . o
which p(t + 1) = p(t) — p*. We also make the to apply the Brower fixed point theorem are satisfied for

mean field approximation that all the neighbors of t (p.) [23], and sof(p) has a fixed point. -
: rHIe we have hidden the dependence up to now, we
node are in the same steady state and can be treate

as independent, in which case we can compBteas expli_citly nqte hgre thap® is afunct'ion ofa, 5,6, p and
follows. Let P.. be the probability of a sensing even{:ontlnue with this dependence being understood.

and let Py be the probability of a receiving evenPs

will be related to the sensing radius and the sensifg Connectivity and Coverage

event density P is the probability that exactly one of Here we will discuss the coverage and connectivity
the node’s neighbors is transmitting. We will assume faroperties of the system of sensors. There are already
a first order approximation that the state probabilitiessome results regarding these issues in the literature, and
for the neighbors are independent. In this case, if these add one more that is appealing on account of its
are K neighbors, themry = Kp:(1 — p;)X~1. Note elementary probabilistic derivation. Existing results fo
that if the transmit radius is;, then assuming that thecoverage and connectivity have also dealt with various
disks are in the unit torus, the probability that a noderms of random graphs ranging from various types of
is within transmitting range of our node i8~2, and K disk graphs, [13], [18], [20], to Bernoulli graphs, [19],
has a Binomial distributio®[K] = B(K;n — 1,7r:2), to percolation processes, [21].

where B(K; N,p) = % pX(1 — p)N=K. Multiplying We assume that the sensors are well approximated
P by P[K] and summing ovefs, we finally arrive at PY points independently and uniformly distributed in the
the following expression foPxe: unit torus,T" = [0, 1] x [0, 1], where the opposite edges
are identified. We use a torus to avoid unnecessary com-
plications due to edge effects. Similar results would hold
for the square, with only minor additional technicalities.
Let s be the sensing radius and tetbe the transmitting
Notice that Py is a function of p;. Since the sens-radius.

ing and receiving events are independeit, = 1) Coverage:We first consider coverage. We assume
P[sense or receiye= P + Pre — PsePre. We can now that the system has equilibrated to its steady state, and
use this expression foP: to solve (1) for the steadythat every node can be treated as independent to first
state probabilitiegp®, which leads to the following setorder, with state probabilities given bp®. A point

PRE - (n - 1)7TTT2pT(]~ - WTszT)n_2. (2)



x € T is covered if there is a node in the sensinthis integral as a finite summation, and then bound the
state withinrg of x. In this case, an event that occursariance by bounding this summation. Once we have
at x will be detected. Thus, the probability that a givebound the variance, we can use the Markov inequality
node is sensing and withiry of x is 7rs%ps. Under the to bound the probability of a large deviation from the
independence assumption, the probability that no noebepected value, and this leads to the result claimaal.

can sense an event atis then given by(1 — 7rs?ps)?, w(n) can be interpreted as the expected total power
which is the probability thak is not covered. Define the expended by the sensing nodes. It should be no surprise

coverage function by, that as the total sensing power approaches infinity, the
, coverage approachdsnot only in expected value, but
Flx) = {1 x 1S not covered, (4) also with high probability. Theorem 3 also gives a lower
0 x is covered. bound on the rate at which it approaches oneu(lf) =

logn + loglogn + w'(n) wherew’(n) — oo, then it is
also the case th@[A = 0] — 1, [20]. The fasterw(n)
grows, the faster the convergence to complete coverage.
A— /dx £(x) ) However, this al_so means that the power consumption at
all the nodes will be larger.
and soE[A] = [dx P[f(x) = 1] = (1 — mreps)". 2) Conn'eptivity:We present here two pos_sible not_ions
of connectivity for a sensor network. The first considers
only the topology of the connectivity graph that can be
derived from the sensor network. The second is a more
stringent condition that also considers contention issues
in the network. The existing results use the first defi-
nition, which is the tradition we will continue with for

Then,P[f(x) = 1] = (1 — rs2ps)”. Let A be the area
that is not covered, then

Thus we see that the expected area covered iB[A] =
1—(1—mrs?ps)™, which, after using the fact thadg (1 —
x) < —zx for x < 1, leads to the following proposition:

Proposition 2: Let mrs?ps = w(n)/n. Then, the ex-
pected coverage is given by

(1 w(n)\" S 1 — e the most part, however we will present some heuristics
n - ’ for addressing the second requirement of connectivity.
(Note: w(n)/n < 1.) The goal of connectivity can be summarized as follows.

Thus, as long ass(n) — oo, the expected coverageSUppose a sensing event fires at some positian 7T,

approaches. w(n) can be interpreted as the expecte?jnd we wish to transmit this occurrence of this event to

power used by the sensing nodes. In order to getyae T'. We would like to be able to successfully transmit

concentration result on the coverage, we will use tg's occurrence with high probability for any, y. The

second moment method, and compude (A), to which situation is illustrated below.

end we would needE[A?]. We use the mean field

approximation that our nodes are acting independently

in the mean field environment of the neighbors. Then, R N ’ ’

using a second moment method, we have that - SN
Theorem 3:Let rg < ﬁ Then, for anye > 0.

27rexp<—€°g¥ + @(L))

o)
w(n) (1 + @(ﬁ))

wherew(n) = nrrsps.
Proof: We give a proof sketch, and the proof in

the appendix. First we observe that the coverage Bypathexists fromx toy if there is a sequence of nodes

squares inscribed in the disks cannot be more than iRgthe receiving state (which is the same as the sensing

coverage by the disks. Thus it will suffice to shovgtate for us) at locationsy, sy, ... sk such that

that the coverage by these inscribed squares is largePl: |x —sg| < rs (x can be sensed);

Proposition 2 gives the expected coverage. We will showP2: |s; —s;—1 | < rr for i = 1... K, hence the

P[A > 2¢ 5 (V)] <

that the variance of this coverage goes to zero sufficiently event can be transmitted fros)_; to s;, and
fast so that the actual coverage will not deviate too much it will be received sinces; is in the receiving
from the expectation. The variance is given by a double state); and

integral over two two dimensional variables. We compute P3: | sx —y | < rr (sx can transmit toy).



We will say that the path above is /&-hop path. The number of sensing nodess. Thus we have the following
network ispath connectedf for any x,y, there exists theorem,

such a path connectingto y. Notice that while we have  Theorem 6:Let r(n) = min{rs(n),r(n)}, and for

required the existence of this path, we have not requirgly 0 < ¢ < 1, let ns(€) = (1 — €)nps. Let C be the

that the path be contention free. In other words, wheflea that is path connected. If

sp transmits tos;, it must be thats; is in the sensing (i) mr?(n)nps — oo, and
stateand no other node that is within transmission range (ii) 7r2(n)ns(e) = log(ns(€)) + c(ns(e));
of s; is also attempting to transmit, and similarly for lim ¢(m) = oo,

every link s;_1,s; in the path. If there exists such anen for anyy > 0, lim P[|C| > 1 — 5] = 1.
contention free path for any,y, then we say that the (Note: o0 .
sensor network isransmission connectetlote that our
notions of connectivity implicitly embed the fact that the
network covers the area as well. We will focus mostl
on path connectivity.

We see that in order to hawe covered, the sensing )
nodes need to cover the area with respecttelowever, !ndependence of the nodes (the mean field theory approx-

to guarantee thag can be reached, it is necessary thdpation). This is not strictly true, since the probability
the sensing nodes cover the area with respeat tas that a node is in the transmit state (say) will be dependent

well. Thus it suffices to apply the results of the previou? Whether one of its neighbors was in the transmit state
section on coverage with, replaced by- = min{rs, -} one time step earlier, and so the current state of neigh-
This leads to the following result. ’ boring nodes will exhibit a weak dependence which we

Proposition 4:Let A’ be the area that cannot b@ave ignored. The extent to which this dependence will

transmitted to and letl be the area not covered Thenaffect the analysis will be investigated in the simulations
for anye > 0 ' The second limitation is of course that while there may

exist a path, it may not be usable due to contention.
e‘%“"(")> To address the contention, we need to look at the

(1) implies thatnps — o0.)
Proof: We give the proof in the appendix. =

hile we can provide sufficient conditions under which
he graph is path connected, let us note here some of the
limitations of this result. The first is the assumption of

transmission connectivity of the network. However, in-
troducing the constraint that there is no contention along
wherew’(n) = nrrips. the path introduces significant dependence among the
Proof: The claim follows from Theorem 3 and thenodes. As a result, analysis is difficult, and we present a

observation that if-s < rr, thenA U A’ C A, otherwise heuristic which we refer to asflooding We require that
AUA C A m in the event that a node needs to transmit a message, the
Thus, we see that the coverage results should imgypected number of recipients will be given py> 1.
conditions P1 and P3 of path connectivity. We now In such a scenario, it is easy to see that the particular
consider requirement P2. For this requirement, it igessage will rapidly flood through the network. In fact,
sufficient that the disk graph obtained by taking diskg§e can expect the message to spread exponentially fast.
with radii 7+ centered at the sensing nodes be connectSihce there ares nodes, we can expect that in order of
Such results were developed in [13] for the case wherdog ns/log p time steps, every member in the network
nodes are uniformly scattered @i each having radius will have received the message. If we simply use
r(n). The minor complication here is that whitenodes flooding, the contention in the network will become un-
are scattered in our situation, only abaut of them are controllable. To alleviate this problem, we would need to
sensing. In [13], the following result is proved. also implement a safety mechanism to prevent such over

Theorem 5 ([13]): The probability that the randomflooding — one approach might be to bound the maximum
disk graph is connected asymptotically approachéls number of hops a packet is allowed to make. This can
and only ifrr?(n) = (logn+c(n))/n wherec(n) — co. be implemented in practice by adding to each packet

It is also known that in grid-disk graphs, with unrea hop counter, and setting its maximum allowed value
liable nodes, the results are very similar to the randoappropriately. Two possibilities afdeg E[ng]/ log p, the
node placement [18], and in this case it is known that thiene we expect it takes to flood the whole network,
number of hops required (or the diameter of the graph)as /ns/ log ns, the expected diameter of the network,
of order \/n/logn. We expect that such results shoulfl8]. The requirement op-flooding sets constraints on
hold in our case as well. For our case, the intuition ibe allowable parameters in the Markov model, which is
that we can apply these results withreplaced by the what we derive here.

1—¢) ,
PAUA <2 T02% M) > 1_ 0
w'(n)



Let's consider the situation when a node is in theode in steady state is then given By = A\opo +
transmission state, and letbe any one of the other—1  Agps + Arpr. In order to guarantee path connectivity
nodes. Let@) be the probability that you successfullyand coverage, it is sufficient to enforce the conditions in
transmit the packet te given thato is within transmis- Theorem 6. We are thus led to the following optimization
sion range. LetP,,. be the probability to successfullyproblem:

transmit the packet tar, then P, = nr:*Q. To  OPT1:Let fi(n), fo(n) be any two functions that

achieve successful transmission given thais within approach infinity in the asymptotic limit, for
transmission range, either the first try was successful, examplelogn or n%. Let0 < e < 1.

or the first try was not successful, and some try after o

the first try was successful. Since the process is Markov mc'f'fﬂ'ze%po + Asps + Arpr,

and since the nodes are independent, the probability that

some try after the first one is successful (given that subject to the constraints

you remain in the transmit state) is al€p. Let @, 0<a,pB,pd<1
be the probability that you were successful on the first at+p<1
try given thato is within transmission range. Since the 9 N
probability to remain transmitting is, we have that mrinps 2 fi(n)
Q= Q1+ (1—Q1)aQ, or that mrns(e) = log(ns(e)) + fa(ns(e))
0= Q1 ©) wherer = min{rs, 71} andng(e) = (1 —¢)nps.
T l-—a+aQ Heren and the sensing event density are given,

from which P, the probability of sensing
an event can be calculateg,, ps, pr are the
solutions to the steady state equations, (3),
which depend on the parameters.

fi(n) and f2(n) can chosen so that the connectivity
and coverage converge 1oat the desired rate. In order

Since there are — 1 nodes to whom you could transmit to enforce transmission connectivity, one can incorporate

the expected number of successful transmissions is gifBf additional constraint given in Proposition 7. After

by (n — 1)Py,.. Requiring that the expected number OtthS co_nstra!n'F hgs been incorporated, and_ 'Fhe power con-

successful transmissions isthen leads to the following SUMPtion minimized, one can use the additional heuristic

constraint, of a maximum number of hops to avoid over-flooding the
Proposition 7:In order to achievep-flooding, the sensor network.

following condition must be satisfied,

Suppose that hasK neighbors. Then you are successful
on the first try if o is in the sensing state and no
other neighbor ofr is transmitting, which occurs with
probability ps(1 —p:)%. Multiplying by P(K), summing
over K using the fact thafl has a Binomial distribution
B(K;n—2,mr%), we arrive atQ; = ps(1 —mr2pr)" 2.

D. Extensions

(7)  There are a number of ways in which the general
methodology we have presented may be extended, the
most immediate is to consider different Markov models.
We have presented a relatively simple Markov model

The main goal of this paper is to develop a systemafor the state diagram of a single sensor node. We list
approach for power conservation in sensor networks. Thelow several other interesting models. The analysis
idea is to select the available parameters in the Marko¥ these models follows virtually identical lines to the
model so as to minimize the power consumption, whil@model we have presented, the main difference being
at the same time guaranteeing coverage and connediie introduction of additional parameters and/or states
ity. Accomplishing this involves solving a constraineéh the Markov chain of a sensor. The only change in the
optimization problem, which we solve numerically, théorm of the steady state equations (3) may be a change
details being given in the Simulation section. in the dimensionality of the system and the constant

We assume that the power consumption in each wiatricesM and M. Otherwise, the entire methodology
the three states is given by, As, A\r. Suggested valuesremains intact, including the constraints for connedtivit
for these parameters have been given in the literatuasd coverage. Thus we will not follow through on most

[9]. For our purposes, we assume that these are exiarthe details, and we leave the further theoretical devel-

nally supplied parameters, or functional forms that maypment and experimental investigation of these models

depend orvg, ;. The expected power consumption peais avenues for future work.

(n — Dmre2ps(1 — mre2pr )2

1 —a+ aps(l — wre?pr)n—2

p:

C. Optimizing The Power Consumption



a) Off/Sensing—Receive—Transnlit: the state dia-
gram for this Markov model, we combine the off state
with the sensing state, and receiving occurs in a separate
state. Otherwise, it is very similar to the model we have
been describing. This model is basically the model that
was used in [10]. We mention it here to demonstrate how
their model fits within the general methodology we have
developed here. While in [10], the authors develop some
reasonably good parameters for the latency times in each
state, in the present framework, one can optimize these
parameters while at the same time enforcing connectivity
and coverage. Figure 2 illustrates the model.

M: O S R T M O S R T

Event No Event O | p p2 ps O O | v P2 ps O
S 0 0 0 1 S b, 6 85 O

R 0 0 0 1 R & & & 0

T B kK v « T B kK v «

pr+p2t+p3=1
014+ 02 +d3=1
§1+&+8=1
a+fB8+rk+y=1
Oga,ﬁ,'y,/@,éi,pi,fi < 1

M OS R T M: OS R T Fig. 3. Off-Sensing—Receive—Transmit.
OS 0 0 1 OS P 1-p O
R 0 0 1 R o 0 1
T B v « T Br also allows transmission to “pause” or back-off into
at+f+y=1 the back-off state where the node holds the item to be
0<a,B,7,p<1 transmitted, but is not creating contention. Such a model
Fig. 2. Off/Sensing—Receive—Transmit may allow for better contention management. Figure 4

illustrates the model.

b) Off-Sensing—Receive—Transniitere, we have
a separate state for each of the four possible activi-
ties. One possible advantage of this setup is that then this section we basically verify our theoretical anal-
asymmetry between sensing and receiving may allgsis by a simulation study. We first describe our method-
one to preferentially treat one of these events and palpgy to numerically solve the optimization problem,
less attention to the other. In fact one could have twoPT1, given in section II-C. Having solved OPT1 for
classes of nodes, those with a preference Soover a given set of parameters, we obtain the optimal values
R and those with a preference f@& over S. In this for «, 3, p,d, which we then feed into the simulation.
way, one could have “separately” functioning sensiriphe simulation program basically takes these transition
and listening networks. While the analysis to take inorobabilities as input and then simulates the behavior
account two types of nodes in the ensemble of nodeseach node using our Markov model. We describe the
is slightly more complex, it follows the same generaimulation program in more detail later in this section.
approach. The main difference is that the connectivitg the last part of this section we present the numerical
would be defined with respect to the “listening” networkiesults; first demonstrating that the simulation results
and the coverage would be defined with respect to thenform to those of theory regarding the steady-state
“sensing” network. Figure 3 illustrates the model. probabilities, and then showing that the connectivity and

¢) Back-off: This is a technique that can be usedoverage is still maintained throughout the network while
with any of the previous models and we illustrate thisodes save energy by turning themselves off according
concept here with our original model. The idea is t our Markov model. We also compare our CARES
allow the transmit state one more alternative rather thprotocol to the similar AFECA protocol in terms of
simply continue transmitting or exit transmitting. Onenergy savings.

I1l. SIMULATION STUDY



which is the probability of having at least one active
event node in a circle of radius. Hence givenPs, we
solve for ¢ to obtain the event firing probability to be
used for the simulation;

11— (1-Py)lim

q =
T2

If an event node fires at some time step, we say that
the event node isctive All sensor nodes that are in
the vicinity of (at mostr units away from) an active
event node and that are in tlsense/receivetate sense
this event. A node which senses some event at time
stept broadcasts a packet at time step- 1 (after a

M: O S T B M: O S T B " _ ,
~ ~ transition to thetransmit state). Instead of assuming a
O p p 0 0 (o) p p 0 0 )
S o o0 1 o S 5 5 0 o routing protocol on the top, we let each node forward
an event that it receives —either a sensing event, or a
T B Kk £ « T B & & « . . .
N N message received from a neighbor. However, if a node
B 0O 0 7 v B 0o 0 5 v . .
L1 u receives messages from two or more neighbors at the
§+ 51 same time, we assume that those destructively interfere
A= and v does not forward any messages. Hence some of

the packets may be dropped out. This way, we mimic the
travelling of packets throughout the network, and ensure
that the network does not get heavily loaded with the
generation of new events.

Each sensor node follows the Markov model given
in figure 1 where the transition probabilities 3, p, §

In order to solve the optimization problem describedre obtained by the solution of OPT1 and fed into the
in Section 1I-C, we first need to solve the Markov modedimulation program. We expect that after certain amount
formulation, i.e. find the steady-state probabilitiesegiv of time, the ratio of the time a node spends in each state
transition parametexs, 3, p, 6. We use a numerical tech-will be roughly the same as the steady-state probabilities
nique to do so since it is hard to get an exact algebraibtained by theoretical analysis. Moreover, we expect —
solution to the Markov formulation. Starting from arwith high probability— that the connectivity and coverage
arbitrary initial state, we iteratively apply equation (8) throughout the network will be maintained at each time
find the steady-state probabilities. Next, we use Matlalsgep.
constrained minimization functioimincon (available in ~ We run the simulation for 10,000 discrete time steps
Matlab optimization toolbox [25] as our optimizer —tcand collect statistics at every 100th time step, which we
solve OPTL1. Given a specific network scenario, with arall abreakpoint The statistics collection at each break-
instantiation ofn, ;, s and Psg, the optimizer returns the point consists of updating the steady-state probabilities
Markov model design which minimizes per node powemd checking for coverage and connectivity. We use a
consumption. sliding window of size 500 time steps for the steady

The simulation is implemented as follows. We placstate-probabilities, which is slid by 100 time steps at
n sensor nodes ana event nodes uniformly at randomevery breakpoint. The steady-state probability for each
in a unit torus. The number of event nodes could state is calculated as the percentage of time spent in that
some value sufficiently large so that they represent masate throughout the 500 time steps in the window. The
of the coverage area as possible event locations. Foralerageat breakpoint is calculated as the percentage
results presented throughout this section, werset of event nodes that are covered by a sensor node in
1000. Moreover, for the simplicity of presentation, wesense/receivstate. In other words, at timeg we check
use a common value for the transmission and sensindor each event node if there is at least one sensor node in
radius, i.e. we set; = rs = r. At each time step, eachits neighborhood that is in theense/receivetate. The
event node independently fires an event with probabiligverall coverage value is an average over all coverage
g. Note that givery, the probability that a node sensepercentages calculated at every breakpoint. On the other
an event can be calculated &: = 1 — (1 — ¢nrs?)™, hand, theconnectivityat time ¢ can be either 0 or 1.

a—l—ﬂ—i—ﬁ_—l—f: 1
O §a7/87ﬁ7£’5’57p7ﬁ777’7 S 1
Fig. 4. Back-off
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At each breakpoint, we construct a graph induced or
the vertices corresponding to all nodes that are in t
sense/receivetate att. Then we check if the resulting
graph is connected; if so, the connectivity iats 1,
and 0 otherwise. The overall connectivity value is th
average over all these instantaneous connectivity valu
i.e. the percentage of breakpoints at which the netwc
is connected.
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Fig. 6. The connectivity and coverage figures obtained
by simulation on networks of different sizes. The transmis-
sion/sensing radius is kept constani-at 0.2 and the sensing
event probability atPsg = 0.1.

0.5

Steady State Probabilities

0.7r

theory
— — — simulation

2 . . . . . . . . )
100 200 300 400 500 600 700 800 900 1000
Number of Nodes n 0.65

Fig. 5. The steady-state probabilities for different networ
sizes. The transmission/sensing radius is kept constant
r = 0.2 and the sensing event probability &g = 0.1.
The probabilities foroff state fo) andsense/receivstate fs)
are shown only, since thigansmitstate probability is simply
pr=1—po—ps.

Minimized power per node (W)

Figure 5 compares the steady-state probabilities c
culated by theoretical analysis and simulation stud 00 e e o s se 7os e e 1o
The network size is varied from 100 to 1000, an Number of Nodes n
the transmission/sensing radius and the sensing event
probability are kept constant as= 0.2 and Psc = 0.1, Fig. 7. Minimized power per node, computed using the steady-
respectively. These results show that the mean field tifate probabilities from Figure 5. The transmission/sepsi
ory and independence assumptions work well in practid@91us is kept constant at = 0.2 and the sensing event
It is not surprising to observe that the sensor nodB%Obab'“ty athee =0.1.
remain more and more in theff state as the network
gets denser —i.e. as the number of nodes increases for a
fixed r. bility —asymptotically with probability 1. This theoretit

Figure 6 presents the simulation results for the comxpectation is justified by the simulation results of Figure
nectivity and coverage figures using the same set @f
parameters as in Figure 5. We observe that the overalFigure 7 demonstrates the power savings by the op-
connectivity and coverage is well maintained especiallynized Markov model. As the network gets denser, in-
with the increasing number of nodes. Note that th@easingly many nodes may be in thiéstate at any time,
number of nodes in theff state increases as the networknd hence the power expended per node decreases. The
size increases (see Figure 5). However the Markov mode¢oretical and experimental results agree on supporting
parameters obtained by the optimizer ensures that thés argument.
number of sensingnodes is high enough so that the We also compare the steady state probabilities of
connectivity and coverage is maintained with high prob&ARES for theory and simulation by varying the sens-
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Fig. 9. States and transitions in AFECA

0.2

. . . . .
0.02 0.04 0.06 0.08 0.1
Probability of a Sensing Event (pg.)

Ts, seconds, then it transitions to tHistening state,
Fig. 3. The steady-st_a_\te probabilities for different values QX/hereTsa depends on the number of neighborsi efto
sensing event probability, for a network ef= 500 nodes and a6 advantage of higher node density for more energy
transmission/sensing radius= 0.2. savings. More specifically]y, =Randontl, N;) x T,

where N; is the number of neighbors af and T} is

a global parameter of AFECA. While ilistening state,
ing event probability, and keeping the network sizecan sense events and forward any received traffic, in
and density constant. In Figure 8, it may first seemhich case it transitions to thactive state. If no such
interesting to note that CARES does not react mu@vent happens iff; seconds then it transitions to the
to the changes in the event density. The reason is tefepingstate. Wheneveir goes into theactive state, it
the constrained optimization ensures that enough nodgsys so for at least,, seconds; if at any time it has
are in the sense/receivestate to ensure connectivitynot sent or forwarded data in timg,, it transitions to
and coverage, regardless of the event density. Thus, the sleepingstate. Clearly, the performance of AFECA
steady state probabilities for tlsense/receivstate does depends on the parametérs 7; andT,.
not change much, but as more events are generatedn order to compare with our CARES protocol, we
nodes will spend more time in theansmitstate, hence also implement AFECA with the optimal parameters
less time in theoff state. (Ts = 10 sec,T; = 10 sec andT, = 60 sec) given in

We now compare our approach to a similar wor10]. Note that by varying the event firing probability and
the AFECA protocol [10], in terms of energy savingsallowing the packets to be forwarded and occasionally
AFECA is proposed as an add-on for any underlyindropped as described earlier, we mimic the behavior of
routing protocol, and its energy-savings is presented same random routing protocol each time we run the
the AODV protocol by a simulation study in [10]. Insimulation. Similar to the approach we take for the
AFECA nodes are in one of the three statsieeping evaluation of CARES, we compute the ratio of time a
listening and active In the sleeping state, the radio node spends in each state of AFECA. We then compute
of a node is turned off for energy savings, but th#he power consumption per node using these ratios. In
sensors or other parts of the node may be on. TAEECA protocol, a node does not transmit for most of
listening state corresponds to owgense/receivestate, the time it is in theactivestate since it stays in thective
i.e. the node can sense events and receive messagise forT, more seconds after the last traffic. Hence we
The active state is used to transmit any available dataimply use 1.1W as the average power consumed in the
The main difference of AFECA is that instead of usingctive state of AFECA, which is a lower bound on the
probabilistic transitions, a node stays in a state foragtual value. (Actual value is between 1.1W and 1.6W,
certain duration and then transitions to another state,arsd much closer to 1.1W.)
long as there is no interrupt in this duration, such as aWe observe that the AFECA protocol has more energy
sensing event. savings for very low event densities, hence we provide
The state diagram for AFECA is shown in Figuréhe results for a wide range of values for the sensing

9. Starting in thesleepingstate, node may transition event probability. For this purpose we exponentially
into the active state if there is a sensing event to bacreasePs: from 1076 to 0.1, and plot the power values
transmitted. Otherwise, if no such event happens against a logarithmicz-axis representing the sensing



12

) be optimized in a well defined way for any given settings;
—caRes 7 the constrained optimization problem OPT1 is solved
p for a given network size, transmission radius, sensing
/ radius and event sensing probability. The sensing event
)/ probability can be approximated for a given application
, scenario. Then each sensor node can be programmed
’ to follow the Markov model with the optimal transition
. parameters given as the solution of OPT1.
- We also compare the energy savings of the two
protocols for various network sizes and a fixecand
Psg, in Figure 11. As expected, both CARES and AFECA
can save more energy as the network gets denser, how-
s e ) 3 > l ever CARES has about two times more energy savings
Log Scale - Probability of a Sensing Event (log pg) than AFECA on average. On the other hand, CARES

_ maintains the connectivity and coverage throughout the
Fig. 10. Power savings for CARES and AFECA for a networlganvork as well as AFECA does.

of n = 1000 nodes, and transmission/sensing radius 0.2.
The probability of a sensing event is varied betwéen® and
101, IV. CONCLUSIONS

=
N
1
|
|
|
|

Minimized power per node (W)
o o o o o
(9] o ~ o] © -

T T T T

\

N
~
N
N

o
IS
T

In this work we presented CARES, a randomized

algorithm which is run locally at a sensor node to
11

CARES govern its operation. Each node conserves energy by
T — — _AFECA asynchronously and probabilistically turning itself off.
AN The probabilities for staying in off, sense/receive, and

o
©
T
7

R transmit states ensure connectivity and coverage in the
network. The problem of finding probabilities to max-
imize energy saving while ensuring both connectivity
and coverage is expressed as an optimization problem
defined by node parameters. In the simulation study,
we also show that the power savings of our protocol
outperforms that of the previously known protocols, by
as much as an order of magnitude in some cases. In our

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ theoretical analysis we used mean-field theory approxi-
10000 A0 mberof Nodes n 0 1000 mations which have been justified by our simulations.
Future work includes extending the analysis to non-

Fig. 11. Power savings for CARES and AFECA for differenfhtomogeneous settings.

network sizes, with the transmission/sensing radius 0.2
and sensing event probabilityse = 0.001.
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Let F(i) = (") (Zj—l)Q then we can bound the sum by
nmax; F'(i), so we boundF'(i). F(:) is a very sharply
peaked function of. Its maximum occurs at for which
Proof of Theorem 3. We can inscribe a square ofF'(i*)/F(i* —1) > 1 and F(i* + 1)/F(i*) < 1. Since
side A = 752 in a circle of radiusrs. The coverage F(i+1)/F(i) = A(i+1)(n—14)/(i+1)2, this condition
by the disks will then be no less than the coveragan be solved foi* to givei* = n\/(1+\)+60(1/n\).
by the squares. Lef be the area not covered by thdJsing the fact that(]!) < (en/i*)", we get the

APPENDIX



following bound,

1+A
1+)\ (1 + Q(n)\))

Noting that forr < 1/2v/2, A < 1, hence,(1+log(1+
M) /(1 — psA?) < 9/10, we get that

4eXp<_ nAlOpS + @(nA12PS)>
SincenA?ps = 2w(n), we have that

27rexp( ()+®(wn ))
w(n) (1+6(4))

SinceE[S] < e~ 7¢™ < ¢~ 5™ we can now apply
the Markov inequality toS to get
2mexp (—E“g(") + @(L)>

T w(n)

wn) (1+6(zt))

Noting thatP[A > z] < P[S > 2| for any z, we get the
required bound. [

Proof of Theorem 6. Conditions P1 and P3 of path
connectivity for a large enough area (of sizel —n) are
implied by condition() in the theorem and Proposition
4. It remains to show that the disk graph obtained from
nodes in the sensing state is connected with probability
1 in the limit. Letns be the number of sensing nodes
(randomly scattered). Then, on account of the indepen-
dence assumptioms is a binomial random variable,
B(ng;n, ps). E[ns] = nps, and so the Chernoff bound,
[24], givesP[ns < (1 —e)nps] < exp(—npse?/2). Since
nps — oo, we have thaP[ns > (1 — e)u] — 1. Let
P[P2] be the probability that condition P2 holds, and
let ns(e) = (1 — €)nps. Then,

P[P2] > P[P2|ns > ng(€)|P[ns > ng(e)],

4psA26Xp(—2nA2pS 4 AN 4 6 1))

var(S) <

var(S) <

P[S > 2¢ 5] <

c(ns) = mr’ng — logns — oo, becauseis > (1 — €)nps

and nps — oo, and so from Theorem 5, we have
that P[P2|ns > ns(e)] — 1. Since we also have that
P[ns > ns(e)] — 1, we then have thaP[P2] — 1. So
there is a sufficiently large area for which we have that
P[P1] = 1—e;(n) for that areaP[P2] = 1 —ez(n) and
P[P3] = 1 — e3(n) for that area, where;(n) — 0.

By the union boundP[~ PlV ~ P2V ~ P3| <
e1(n) + e2(n) + e3(n) — 0, hence we conclude that
P[P1A P2/ P3] — 1 for a sufficiently large area, prov-
ing that the network is path connected on a sufficiently
large area, with probability 1 in the asymptotic limit.
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