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Abstract— This work considers a multi-hop sensor net-
work and addresses the problem of minimizing power
consumption in each sensor node locally while ensuring
two global (i.e., network wide) properties: (i) communica-
tion connectivity, and (ii) sensingcoverage. A sensor node
saves energy by suspending its sensing and communication
activities according to a Markovian stochastic process. We
show that a power level to induce a coverage radiusw(n)

n

is sufficient for connectivity provided that w(n) → ∞. The
paper presents a Markov model and its solution for steady
state distributions to determine the operation of a single
node. Given the steady state probabilities, we construct a
non-linear optimization problem to minimize the power
consumption. Simulation studies to examine the collective
behavior of large number of sensor nodes produce results
that are predicted by the analytical model.

Keywords: Stochastic processes/Queueing theory, Math-
ematical programming/Optimization, Simulations

I. INTRODUCTION

This work considers a multi-hop sensor network which
is comprised of a large number of sensor nodes commu-
nicating with RF links. We assume that sensor nodes
are deployed in an ad-hoc fashion tocover a specified
area with their sensing capabilities. Sensors monitor,
sense and collect data from a target domain, process
it and transmit the information back to the specific
sites (e.g., headquarters, disaster control centers). There
are many potential applications of sensor networks in-
cluding military, environmental and health related areas.
Although the sensor nodes communicate using wireless
links, there are fundamental differences between a sen-
sor network and other wireless ad-hoc networks. One
important property of a sensor network isredundancy.
Sensor nodes are usually densely deployed hence the
underlying network has high redundancy for sensing
and communications [1]. The high density can cause
significant inefficiency problems leading to excessive
power wastage. Sensor nodes may sense the same event

and try to report it, increasing collisions by redundant
data. Collisions require re–transmissions and increase the
energy consumption.

Increasing the lifetime of a sensor network is of pri-
mary importance. Although data aggregation techniques
[2] can help to reduce the traffic that propagates to
the control centers, they do not provide a complete
solution to the problem. Coordination among sensor
nodes requires synchronization based on either a global
time reference (e.g. GPS) or clock synchronization algo-
rithms. While equipping each sensor node with a GPS is
a possibility for the future, current solutions cannot as-
sume a global time reference. The clock synchronization
protocols are based on message (e.g., control packets)
exchange [3], [4] and they are costly for sensor networks.
Thus, coordination of sensor nodes must be done with
local and independent (asynchronous) decisions which
motivates the deployment of randomized protocols.

In this work we propose a general probabilistic
Markov model in which each sensor node makes an
independent decision regarding which state to be in at a
given time. We illustrate the general model using a three-
state model with atransmit, receive/senseandoff state.
The analysis we present can be extended to the general
setting with minor modifications. A node transitions
between states depending on the events that occur in
its vicinity. The transitions are governed by a set of
parameters. In the simplest case, every node’s parameters
are equal, however, this restriction can be relaxed in
order to accommodate a heterogeneous environment. We
are interested in determining the optimal parameters
governing the probabilistic transitions of a sensor node
so as to minimize power consumption locally while
ensuring connectivity and coverage globally.

A. Our Contributions

This work provides a rigorous analysis and optimiza-
tion of local decisions for the operation of a sensor node.
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The objective is to ensure both connectivity and coverage
in the network while minimizing energy consumption at
each node. The techniques presented in this work are
general and can be applied to other multi-hop ad-hoc
networks besides the sensor networks considered here.
Furthermore the methodology can be extended to model
several variants of the problem.

Overview of Our Approach. We model each sen-
sor node as a probabilistic finite state automaton that
transitions between various states. To illustrate, we con-
sider a three-state automaton (transmit, sense/receive and
off states). In this model a node transitions between
sense/receive and off states. While in the sense state,
if a sensing or receiving event occurs, then the node
transitions to the transmit state, attempts to transmit the
event and then transitions to the off or sensing state.
In a steady state, the node will visit each of its states
according to its steady state distribution. How often
every node is in the sensing state determines whether
the network is globally connected and whether the area
is covered, i.e., whether an arbitrary sensing event will be
sensed. We develop sufficient conditions under which the
network is connectedAND the area is covered. We define
connectivity and coverage jointly by requiring that an
event atANY location has a “feasible path” toANY other
location. Further, the energy consumption of the nodes
depends on their steady state distribution. We present a
methodology to minimize this power consumption while
still maintaining the global coverage and connectivity.
Our approach is to solve a constrained optimization
problem, whose solution defines the local behavior of a
node. We name this approach theConnectivity Assuring
Randomized Energy-Saving(CARES) algorithm.

We assume that the sensor nodes are uniformly dis-
tributed in the unit torus and that each node has a
sensing radius,rS and a transmission radius,rT – usually
rT � rS . We also assume that the sensing events
are distributed according to a uniform distribution at
each time step. This means that the probability for a
node to sense an event is a constant, independent of
the node position. Thus, all the nodes will approach
the same steady state distribution. We develop the non-
linear equations that describe the steady state distribution
under the mean-field approximation. Using a fixed point
iterative algorithm, we solve these equations to obtain
the steady state distribution. Given this steady state
distribution, we can compute the energy consumption,
which is a function of the transition probabilities of the
Markov model. Minimizing the energy with respect to
the parameters, we obtain a local, energy minimizing
randomized protocol.

If the distribution of events is not uniform, then the

analysis will change. For example, if the event distribu-
tion is constant over two regions, then there will be three
types of steady state nodes, one for each region and one
for the border between regions. Such complications do
not change the general methodology, and so we focus
on the simple model for expository purposes.

Related Work

In one of the pioneering works on energy saving in
wireless networks, the authors in [9] report that leaving
the network interface (NI) idle consumes as much energy
as reception. They argue that power aware MAC and
transport level protocols should be used. Furthermore
[9] reports that it is not the number of packets but the
duration of the sending period that correlates with the
energy usage. The authors also note that (i) most of the
energy is spent while idling, and (ii) in order to decrease
the energy consumption the NI should be turned off.

In [10] the authors present two routing protocols
BECA and AFECA which have a Markov Model with
sleeping, listening and active states. In BECA the sojourn
times of the nodes are deterministic. In AFECA they are
adaptive, the sleeping time being a random variable that
depends on the number of neighbors the node has. The
authors show (using simulations) a 50% energy saving
over naive ad-hoc routing algorithms. In the simulation
study (Section III) we compare our protocol to AFECA.

The GAF routing protocol in [6] aims to extend
the lifetime of the network by minimizing the energy
consumption and preserving connectivity at the same
time. They present a 3-state transition diagram which
is a simplified version of ours, and is confined to
GAF (Geographic Adaptive Fidelity). Using GAF they
discover the locations of redundant nodes. GAF simply
imposes a virtual grid on the network. If in any of
the grid squares there are more than one node, the
redundant nodes are turned off. They also use a protocol
called CEC (Cluster-based Energy Conservation) which
further eliminates redundant nodes by clustering them.
The authors show 40-60% energy saving over other ad-
hoc routing algorithms.

While the above approaches address the power con-
trol problem at the network layer, the third class of
approaches aim to enhance the MAC layer [5], [11], [8].
For example, in [11] the authors propose a modification
of the 4-way handshake procedure in the IEEE802.11
protocol for power saving.

In [5] the authors present a MAC protocol PAMAS
which saves energy by powering off radios that overhear
transmission. PAMAS is a hybrid MAC protocol and
provides 10–50% savings.
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In [12] the authors propose a MAC protocol for sensor
networks in which nodes go into periodic listen and
sleep cycles so as to reduce the energy consumption. The
sleep and listen periods are implemented using timers.
Neighboring nodes listen and go to sleep at the same
time thus the scheme requires synchronization among
the neighbors. The authors show that the proposed MAC
protocol consumes 2-6 times less energy than IEEE
802.11.

In [7] the authors present a distributed randomized
algorithm SPAN where each node makes a decision on
its own, based on the amount of available energy and
the number of its neighbors. Each node either sleeps
(802.11 Power Saving mode) or becomes a coordinator
(part of the networking backbone). Coordinators forward
the messages they receive from the other nodes. A node
which has a message to send automatically becomes a
coordinator. SPAN is built on the top of 802.11 and
it uses both MAC and routing layer protocols to make
decisions.

While GAF [6] and SPAN [7] are distributed ap-
proaches with coordination among neighbors, in AS-
CENT a node decides locally whether to be on or off
[8].

The pioneering work in [13] provided the first asymp-
totic results relating the power level to the connectivity.
The authors showed, using percolation theory, that in
order to have connectivity in a network with randomly
placed nodes, the ratio of the number of neighbors to the
total number of nodes should be(log n + c)/n wherec
should go to infinity asymptotically.

In [14] the authors propose an algorithm to adjust
the power level in order to ensure a minimum de-
gree constraint on each node. In [15] a similar degree
constraint is enforced to ensure a bound on the end-
to-end throughput. In [16] COMPOW protocol and its
architecture are discussed.

In [17] the authors consider the coverage problem and
use Voronoi diagrams generated with delaunay triangu-
lation to calculate the coverage of the network.

Recently, in [18], the joint problem of coverage and
connectivity is considered using a grid of sensors each
of which can probabilistically fail. The authors find the
necessary and sufficient conditions for connectivity and
coverage in this type of a sensor network. The main
result in [18] is that within the transmission radius the
number of active nodes should be a logarithm of the total
number of nodes, for the network to have connectivity
and coverage. They also show that the diameter of the
network is of order

√

n/logn. They cover the network
area with disks and use the argument that each disk
should contain at least one active node for coverage and

connectivity.

Organization of the Paper

In the next section we present the model of the
sensor network and analyze its steady state behavior
including its global connectivity and coverage properties.
We formulate power conservation as an optimization
problem. In Section III we compare the theoretical
analysis with the simulation of sensor networks as well
as with AFECA. We end with some concluding remarks
in Section IV.

II. A NALYSIS AND OPTIMIZATION

There are four components to this section. First we
discuss the Markov chain that governs the behavior of an
individual node. Then we discuss how the properties of
this Markov chain affect the connectivity and coverage of
the sensor network system. We then discuss optimizing
with respect to the parameters of the Markov chain
so as to maximize the life time of the sensor network
system, or other parameters. Finally, extensions and
generalization of the presented approach are investigated
in more detail.

A. The Markov Model

Each node is a three-state Markov chain. The three
states are theoff, O, the sense/receive, S, and the
transmit, T, states. Consider a node. Its transition matrix
depends on the state of its environment. The environ-
ment of a node can be in one of two states: either
a sense/receive event is occurring or no such event is
occurring. The Markov state diagram in each of these
cases is given below, along with the Markov transition
probability matrices,M when there is an event and̄M
when there is no event.

Notice that when a sensing event occurs, the node will
always transition to the transmit state. This requirement
can be relaxed. There is also an ambiguity if both sensing
and receiving events occur. In this case, we can require
that the node always attempts to transmit the sensed
event rather than the received event. At timet, there
is some probability that the node is in each of its three
states. DenotepO, pS, pT as the respective probabilities
of finding the node in the off, sensing/receiving and
transmit states, and collect these three probabilities into
the vectorp(t) = [pO(t), pS(t), pT(t)]. LetPE be the prob-
ability that there is an event. Then the state probabilities
for the node at timet + 1 are given by

p(t + 1) = p(t)[PEM + (1 − PE)M̄]. (1)
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Event No Event
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β

α
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O
β

p

δ

α





M: O S T

O p 1−p 0

S 0 0 1

T β γ α









M̄: O S T

O p 1−p 0

S δ 1−δ 0

T β γ α





α + β + γ = 1
0 ≤ α, β, γ, δ, p ≤ 1

Fig. 1. Markov state diagram and transition probability
matrices for CARES

Since an event can be either sensing or receiving, the
probability of an event will depend on the probability
that a single neighbor is transmitting. We now suppose
that the system has equilibrated to a steady state, in
which p(t + 1) = p(t) = ps. We also make the
mean field approximation that all the neighbors of the
node are in the same steady state and can be treated
as independent, in which case we can computePE as
follows. Let PSE be the probability of a sensing event
and letPRE be the probability of a receiving event.PSE

will be related to the sensing radius and the sensing
event density.PRE is the probability that exactly one of
the node’s neighbors is transmitting. We will assume to
a first order approximation that the state probabilities
for the neighbors are independent. In this case, if there
are K neighbors, thenrK = KpT(1 − pT)

K−1. Note
that if the transmit radius isrT, then assuming that the
disks are in the unit torus, the probability that a node
is within transmitting range of our node isπrT

2, andK
has a Binomial distributionP[K] = B(K;n − 1, πrT

2),
whereB(K;N, p) =

(

N
K

)

pK(1 − p)N−K . Multiplying

PRE by P[K] and summing overK, we finally arrive at
the following expression forPRE:

PRE = (n − 1)πrT
2pT(1 − πrT

2pT)
n−2. (2)

Notice that PRE is a function of pT. Since the sens-
ing and receiving events are independent,PE =
P[sense or receive] = PSE + PRE − PSEPRE. We can now
use this expression forPE to solve (1) for the steady
state probabilitiesps, which leads to the following set

of non-linearequations.

ps = ps[PEM + (1 − PE)M̄],

PE = PSE + (n − 1)(1 − PSE)c(1 − c)n−2,

1 = p · 1 = pO + pS + pT. (3)

where c = πrT
2pT and 1 is a vector of ones. HadPE

been a constant independent ofp, it is well known from
the theory of finite state Markov chains that a steady
state set of probabilities exists, [22]. It turns out that the
introduction of this non-linearity does not change the
situation.

Theorem 1:The set of non-linear steady state equa-
tions for ps given in (3) has at least one solution.

Proof: Let Q(p) = [PE(p)M + (1 − PE(p))M̄] as
defined in (3).Q(p) is a transition matrix, i.e.,Qij ≥ 0
and

∑

j Qij = 1 for all i. Let X be them-dimensional
probability simplex,

X = {x : xi ≥ 0,
∑

i

xi = 1}.

X is compact, andf(p) = Q(p)Tp mapsX onto itself.
PE(p) is a polynomial inp, and hence is continuous.
Thus,f(p) is a continuous mapping. Thus the conditions
to apply the Brower fixed point theorem are satisfied for
f(p) [23], and sof(p) has a fixed point.
While we have hidden the dependence up to now, we
explicitly note here thatps is a function ofα, β, δ, p and
continue with this dependence being understood.

B. Connectivity and Coverage

Here we will discuss the coverage and connectivity
properties of the system of sensors. There are already
some results regarding these issues in the literature, and
we add one more that is appealing on account of its
elementary probabilistic derivation. Existing results for
coverage and connectivity have also dealt with various
forms of random graphs ranging from various types of
disk graphs, [13], [18], [20], to Bernoulli graphs, [19],
to percolation processes, [21].

We assume that then sensors are well approximated
by points independently and uniformly distributed in the
unit torus,T = [0, 1] × [0, 1], where the opposite edges
are identified. We use a torus to avoid unnecessary com-
plications due to edge effects. Similar results would hold
for the square, with only minor additional technicalities.
Let rS be the sensing radius and letrT be the transmitting
radius.

1) Coverage:We first consider coverage. We assume
that the system has equilibrated to its steady state, and
that every node can be treated as independent to first
order, with state probabilities given byps. A point
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x ∈ T is covered if there is a node in the sensing
state withinrS of x. In this case, an event that occurs
at x will be detected. Thus, the probability that a given
node is sensing and withinrS of x is πrS

2pS. Under the
independence assumption, the probability that no node
can sense an event atx is then given by(1 − πrS

2pS)
n,

which is the probability thatx is not covered. Define the
coverage function by,

f(x) =

{

1 x is not covered,

0 x is covered.
(4)

Then,P[f(x) = 1] = (1 − πrS
2pS)

n. Let A be the area
that is not covered, then

A =

∫

dx f(x) (5)

and soE[A] =
∫

dx P[f(x) = 1] = (1 − πrS
2pS)

n.
Thus we see that the expected area covered is1−E[A] =
1−(1−πrS

2pS)
n, which, after using the fact thatlog(1−

x) ≤ −x for x < 1, leads to the following proposition:
Proposition 2: Let πrS

2pS = ω(n)/n. Then, the ex-
pected coverage is given by

1 −
(

1 − ω(n)

n

)n

≥ 1 − e−ω(n),

(Note: ω(n)/n ≤ 1.)
Thus, as long asω(n) → ∞, the expected coverage
approaches1. ω(n) can be interpreted as the expected
power used by the sensing nodes. In order to get a
concentration result on the coverage, we will use a
second moment method, and computevar(A), to which
end we would needE[A2]. We use the mean field
approximation that our nodes are acting independently
in the mean field environment of the neighbors. Then,
using a second moment method, we have that

Theorem 3:Let rS ≤ 1
2
√

2
. Then, for anyε > 0.

P[A ≥ 2e−
(1−ε)

10π
ω(n)] <

2πexp
(

− εω(n)
5π + Θ( 1

ω(n))
)

ω(n)
(

1 + Θ( 1
ω(n))

) ,

whereω(n) = nπrS
2pS.

Proof: We give a proof sketch, and the proof in
the appendix. First we observe that the coverage by
squares inscribed in the disks cannot be more than the
coverage by the disks. Thus it will suffice to show
that the coverage by these inscribed squares is large.
Proposition 2 gives the expected coverage. We will show
that the variance of this coverage goes to zero sufficiently
fast so that the actual coverage will not deviate too much
from the expectation. The variance is given by a double
integral over two two dimensional variables. We compute

this integral as a finite summation, and then bound the
variance by bounding this summation. Once we have
bound the variance, we can use the Markov inequality
to bound the probability of a large deviation from the
expected value, and this leads to the result claimed.
ω(n) can be interpreted as the expected total power
expended by the sensing nodes. It should be no surprise
that as the total sensing power approaches infinity, the
coverage approaches1 not only in expected value, but
also with high probability. Theorem 3 also gives a lower
bound on the rate at which it approaches one. Ifω(n) =
log n + log log n + ω′(n) whereω′(n) → ∞, then it is
also the case thatP[A = 0] → 1, [20]. The fasterω(n)
grows, the faster the convergence to complete coverage.
However, this also means that the power consumption at
all the nodes will be larger.

2) Connectivity:We present here two possible notions
of connectivity for a sensor network. The first considers
only the topology of the connectivity graph that can be
derived from the sensor network. The second is a more
stringent condition that also considers contention issues
in the network. The existing results use the first defi-
nition, which is the tradition we will continue with for
the most part, however we will present some heuristics
for addressing the second requirement of connectivity.
The goal of connectivity can be summarized as follows.
Suppose a sensing event fires at some positionx ∈ T ,
and we wish to transmit this occurrence of this event to
y ∈ T . We would like to be able to successfully transmit
this occurrence with high probability for anyx,y. The
situation is illustrated below.

s3

s2

s1

s0

y

x

rT

rS

A pathexists fromx to y if there is a sequence of nodes
in the receiving state (which is the same as the sensing
state for us) at locationss0, s1, . . . , sK such that

P1: ||x − s0 || ≤ rS (x can be sensed);
P2: || si − si−1 || ≤ rT for i = 1 . . . K, hence the

event can be transmitted fromsi−1 to si, and
it will be received sincesi is in the receiving
state); and

P3: || sK − y || ≤ rT (sK can transmit toy).
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We will say that the path above is aK-hop path. The
network is path connectedif for any x,y, there exists
such a path connectingx to y. Notice that while we have
required the existence of this path, we have not required
that the path be contention free. In other words, when
s0 transmits tos1, it must be thats1 is in the sensing
stateand no other node that is within transmission range
of s1 is also attempting to transmit, and similarly for
every link si−1, si in the path. If there exists such a
contention free path for anyx,y, then we say that the
sensor network istransmission connected. Note that our
notions of connectivity implicitly embed the fact that the
network covers the area as well. We will focus mostly
on path connectivity.

We see that in order to havex covered, the sensing
nodes need to cover the area with respect torS. However,
to guarantee thaty can be reached, it is necessary that
the sensing nodes cover the area with respect torT as
well. Thus it suffices to apply the results of the previous
section on coverage withrS replaced byr = min{rS, rT}.
This leads to the following result.

Proposition 4: Let A′ be the area that cannot be
transmitted to and letA be the area not covered. Then,
for any ε > 0.

P[A ∪ A′ ≤ 2e−
(1−ε)
10π ω′(n)] ≥ 1 − O

(

e−
ε

5π ω′(n)

ω′(n)

)

,

whereω′(n) = nπr2pS.
Proof: The claim follows from Theorem 3 and the

observation that ifrS ≤ rT, thenA ∪ A′ ⊆ A, otherwise
A ∪ A′ ⊆ A′.
Thus, we see that the coverage results should imply
conditions P1 and P3 of path connectivity. We now
consider requirement P2. For this requirement, it is
sufficient that the disk graph obtained by taking disks
with radii rT centered at the sensing nodes be connected.
Such results were developed in [13] for the case wheren
nodes are uniformly scattered onT , each having radius
r(n). The minor complication here is that whilen nodes
are scattered in our situation, only aboutnpS of them are
sensing. In [13], the following result is proved.

Theorem 5 ([13]): The probability that the random
disk graph is connected asymptotically approaches1 if
and only ifπr2(n) = (log n+c(n))/n wherec(n) → ∞.

It is also known that in grid-disk graphs, with unre-
liable nodes, the results are very similar to the random
node placement [18], and in this case it is known that the
number of hops required (or the diameter of the graph) is
of order

√

n/ log n. We expect that such results should
hold in our case as well. For our case, the intuition is
that we can apply these results withn replaced by the

number of sensing nodes,nS. Thus we have the following
theorem,

Theorem 6:Let r(n) = min{rS(n), rT(n)}, and for
any 0 < ε < 1, let nS(ε) = (1 − ε)npS. Let C be the
area that is path connected. If

(i) πr2(n)npS → ∞, and
(ii) πr2(n)nS(ε) = log(nS(ε)) + c(nS(ε));

lim
m→∞

c(m) = ∞,

then for anyη > 0, lim
n→∞

P[|C| ≥ 1 − η] = 1.

(Note: (i) implies thatnpS → ∞.)

Proof: We give the proof in the appendix.

While we can provide sufficient conditions under which
the graph is path connected, let us note here some of the
limitations of this result. The first is the assumption of
independence of the nodes (the mean field theory approx-
imation). This is not strictly true, since the probability
that a node is in the transmit state (say) will be dependent
on whether one of its neighbors was in the transmit state
one time step earlier, and so the current state of neigh-
boring nodes will exhibit a weak dependence which we
have ignored. The extent to which this dependence will
affect the analysis will be investigated in the simulations.
The second limitation is of course that while there may
exist a path, it may not be usable due to contention.

To address the contention, we need to look at the
transmission connectivity of the network. However, in-
troducing the constraint that there is no contention along
the path introduces significant dependence among the
nodes. As a result, analysis is difficult, and we present a
heuristic which we refer to asρ-flooding. We require that
in the event that a node needs to transmit a message, the
expected number of recipients will be given byρ > 1.

In such a scenario, it is easy to see that the particular
message will rapidly flood through the network. In fact,
we can expect the message to spread exponentially fast.
Since there arenS nodes, we can expect that in order of
log nS/ log ρ time steps, every member in the network
will have received the message. If we simply useρ-
flooding, the contention in the network will become un-
controllable. To alleviate this problem, we would need to
also implement a safety mechanism to prevent such over
flooding – one approach might be to bound the maximum
number of hops a packet is allowed to make. This can
be implemented in practice by adding to each packet
a hop counter, and setting its maximum allowed value
appropriately. Two possibilities arelog E[nS]/ log ρ, the
time we expect it takes to flood the whole network,
or
√

nS/ log nS, the expected diameter of the network,
[18]. The requirement ofρ-flooding sets constraints on
the allowable parameters in the Markov model, which is
what we derive here.
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Let’s consider the situation when a node is in the
transmission state, and letσ be any one of the othern−1
nodes. LetQ be the probability that you successfully
transmit the packet toσ given thatσ is within transmis-
sion range. LetPsuc be the probability to successfully
transmit the packet toσ, then Psuc = πrT

2Q. To
achieve successful transmission given thatσ is within
transmission range, either the first try was successful,
or the first try was not successful, and some try after
the first try was successful. Since the process is Markov
and since the nodes are independent, the probability that
some try after the first one is successful (given that
you remain in the transmit state) is alsoQ. Let Q1

be the probability that you were successful on the first
try given thatσ is within transmission range. Since the
probability to remain transmitting isα, we have that
Q = Q1 + (1 − Q1)αQ, or that

Q =
Q1

1 − α + αQ1
. (6)

Suppose thatσ hasK neighbors. Then you are successful
on the first try if σ is in the sensing state and no
other neighbor ofσ is transmitting, which occurs with
probabilitypS(1−pT)

K . Multiplying by P (K), summing
overK using the fact thatK has a Binomial distribution
B(K;n−2, πrT

2), we arrive atQ1 = pS(1−πrT
2pT)

n−2.
Since there aren−1 nodes to whom you could transmit,
the expected number of successful transmissions is given
by (n − 1)Psuc. Requiring that the expected number of
successful transmissions isρ then leads to the following
constraint,

Proposition 7: In order to achieveρ-flooding, the
following condition must be satisfied,

ρ =
(n − 1)πrT

2pS(1 − πrT
2pT)

n−2

1 − α + αpS(1 − πrT
2pT)n−2

(7)

C. Optimizing The Power Consumption

The main goal of this paper is to develop a systematic
approach for power conservation in sensor networks. The
idea is to select the available parameters in the Markov
model so as to minimize the power consumption, while
at the same time guaranteeing coverage and connectiv-
ity. Accomplishing this involves solving a constrained
optimization problem, which we solve numerically, the
details being given in the Simulation section.

We assume that the power consumption in each of
the three states is given byλO, λS, λT. Suggested values
for these parameters have been given in the literature,
[9]. For our purposes, we assume that these are exter-
nally supplied parameters, or functional forms that may
depend onrS, rT. The expected power consumption per

node in steady state is then given byE = λOpO +
λSpS + λTpT. In order to guarantee path connectivity
and coverage, it is sufficient to enforce the conditions in
Theorem 6. We are thus led to the following optimization
problem:

OPT1: Let f1(n), f2(n) be any two functions that
approach infinity in the asymptotic limit, for
examplelog n or na. Let 0 < ε < 1.

minimize
α,β,p,δ

λOpO + λSpS + λTpT,

subject to the constraints

0 ≤ α, β, p, δ ≤ 1

α + β ≤ 1

πr2npS ≥ f1(n)

πr2nS(ε) = log(nS(ε)) + f2(nS(ε))

wherer = min{rS, rT} andnS(ε) = (1−ε)npS.
Heren and the sensing event density are given,
from which PSE, the probability of sensing
an event can be calculated.pO, pS, pT are the
solutions to the steady state equations, (3),
which depend on the parameters.

f1(n) and f2(n) can chosen so that the connectivity
and coverage converge to1 at the desired rate. In order
to enforce transmission connectivity, one can incorporate
the additional constraint given in Proposition 7. After
this constraint has been incorporated, and the power con-
sumption minimized, one can use the additional heuristic
of a maximum number of hops to avoid over-flooding the
sensor network.

D. Extensions

There are a number of ways in which the general
methodology we have presented may be extended, the
most immediate is to consider different Markov models.
We have presented a relatively simple Markov model
for the state diagram of a single sensor node. We list
below several other interesting models. The analysis
of these models follows virtually identical lines to the
model we have presented, the main difference being
the introduction of additional parameters and/or states
in the Markov chain of a sensor. The only change in the
form of the steady state equations (3) may be a change
in the dimensionality of the system and the constant
matricesM andM̄. Otherwise, the entire methodology
remains intact, including the constraints for connectivity
and coverage. Thus we will not follow through on most
of the details, and we leave the further theoretical devel-
opment and experimental investigation of these models
as avenues for future work.
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a) Off/Sensing–Receive–Transmit:In the state dia-
gram for this Markov model, we combine the off state
with the sensing state, and receiving occurs in a separate
state. Otherwise, it is very similar to the model we have
been describing. This model is basically the model that
was used in [10]. We mention it here to demonstrate how
their model fits within the general methodology we have
developed here. While in [10], the authors develop some
reasonably good parameters for the latency times in each
state, in the present framework, one can optimize these
parameters while at the same time enforcing connectivity
and coverage. Figure 2 illustrates the model.

Event No Event

OS

R T
α

β

TR

OS
β

p

δ

α





M: OS R T

OS 0 0 1

R 0 0 1

T β γ α









M̄: OS R T

OS p 1−p 0

R 0 0 1

T β γ α





α + β + γ = 1
0 ≤ α, β, γ, p ≤ 1

Fig. 2. Off/Sensing–Receive–Transmit

b) Off–Sensing–Receive–Transmit:Here, we have
a separate state for each of the four possible activi-
ties. One possible advantage of this setup is that the
asymmetry between sensing and receiving may allow
one to preferentially treat one of these events and pay
less attention to the other. In fact one could have two
classes of nodes, those with a preference forS over
R and those with a preference forR over S. In this
way, one could have “separately” functioning sensing
and listening networks. While the analysis to take into
account two types of nodes in the ensemble of nodes
is slightly more complex, it follows the same general
approach. The main difference is that the connectivity
would be defined with respect to the “listening” network,
and the coverage would be defined with respect to the
“sensing” network. Figure 3 illustrates the model.

c) Back-off: This is a technique that can be used
with any of the previous models and we illustrate this
concept here with our original model. The idea is to
allow the transmit state one more alternative rather than
simply continue transmitting or exit transmitting. One

Event No Event

T

O

R

S

p2

γ

p1

β

α

O

TS

R

α

β

p1

γ

δ1

ξ1

δ2

ξ2

p2









M: O S R T

O p1 p2 p3 0

S 0 0 0 1

R 0 0 0 1

T β κ γ α

















M̄: O S R T

O p1 p2 p3 0

S δ2 δ1 δ3 0

R ξ3 ξ2 ξ1 0

T β κ γ α









p1 + p2 + p3 = 1
δ1 + δ2 + δ3 = 1
ξ1 + ξ2 + ξ3 = 1

α + β + κ + γ = 1
0 ≤ α, β, γ, κ, δi, pi, ξi ≤ 1

Fig. 3. Off–Sensing–Receive–Transmit.

also allows transmission to “pause” or back-off into
the back-off state where the node holds the item to be
transmitted, but is not creating contention. Such a model
may allow for better contention management. Figure 4
illustrates the model.

III. S IMULATION STUDY

In this section we basically verify our theoretical anal-
ysis by a simulation study. We first describe our method-
ology to numerically solve the optimization problem,
OPT1, given in section II-C. Having solved OPT1 for
a given set of parameters, we obtain the optimal values
for α, β, p, δ, which we then feed into the simulation.
The simulation program basically takes these transition
probabilities as input and then simulates the behavior
of each node using our Markov model. We describe the
simulation program in more detail later in this section.
In the last part of this section we present the numerical
results; first demonstrating that the simulation results
conform to those of theory regarding the steady-state
probabilities, and then showing that the connectivity and
coverage is still maintained throughout the network while
nodes save energy by turning themselves off according
to our Markov model. We also compare our CARES
protocol to the similar AFECA protocol in terms of
energy savings.
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Event No Event

T

O

B

S ξ

γ

α

p

β

T

O

B

S ξ

δ

γ

α

p

β









M: O S T B

O p p̄ 0 0

S 0 0 1 0

T β κ ξ α

B 0 0 γ̄ γ

















M̄: O S T B

O p p̄ 0 0

S δ δ̄ 0 0

T β κ ξ α

B 0 0 γ̄ γ









p + p̄ = 1
δ + δ̄ = 1
γ + γ̄ = 1

α + β + κ + ξ = 1
0 ≤ α, β, κ, ξ, δ, δ̄, p, p̄, γ, γ̄ ≤ 1

Fig. 4. Back-off

In order to solve the optimization problem described
in Section II-C, we first need to solve the Markov model
formulation, i.e. find the steady-state probabilities, given
transition parametersα, β, p, δ. We use a numerical tech-
nique to do so since it is hard to get an exact algebraic
solution to the Markov formulation. Starting from an
arbitrary initial state, we iteratively apply equation (3)to
find the steady-state probabilities. Next, we use Matlab’s
constrained minimization functionfmincon (available in
Matlab optimization toolbox [25] as our optimizer –to
solve OPT1. Given a specific network scenario, with an
instantiation ofn, rT, rS andPSE, the optimizer returns the
Markov model design which minimizes per node power
consumption.

The simulation is implemented as follows. We place
n sensor nodes andm event nodes uniformly at random
in a unit torus. The number of event nodes could be
some value sufficiently large so that they represent most
of the coverage area as possible event locations. For all
results presented throughout this section, we setm =
1000. Moreover, for the simplicity of presentation, we
use a common valuer for the transmission and sensing
radius, i.e. we setrT = rS = r. At each time step, each
event node independently fires an event with probability
q. Note that givenq, the probability that a node senses
an event can be calculated asPSE = 1 − (1 − qπrS

2)m,

which is the probability of having at least one active
event node in a circle of radiusrS. Hence givenPSE, we
solve for q to obtain the event firing probability to be
used for the simulation;

q =
1 − (1 − PSE)

1/m

πrS
2

.

If an event node fires at some time step, we say that
the event node isactive. All sensor nodes that are in
the vicinity of (at mostr units away from) an active
event node and that are in thesense/receivestate sense
this event. A node which senses some event at time
step t broadcasts a packet at time stept + 1 (after a
transition to thetransmit state). Instead of assuming a
routing protocol on the top, we let each node forward
an event that it receives –either a sensing event, or a
message received from a neighbor. However, if a node
u receives messages from two or more neighbors at the
same time, we assume that those destructively interfere
and u does not forward any messages. Hence some of
the packets may be dropped out. This way, we mimic the
travelling of packets throughout the network, and ensure
that the network does not get heavily loaded with the
generation of new events.

Each sensor node follows the Markov model given
in figure 1 where the transition probabilitiesα, β, p, δ
are obtained by the solution of OPT1 and fed into the
simulation program. We expect that after certain amount
of time, the ratio of the time a node spends in each state
will be roughly the same as the steady-state probabilities
obtained by theoretical analysis. Moreover, we expect –
with high probability– that the connectivity and coverage
throughout the network will be maintained at each time
step.

We run the simulation for 10,000 discrete time steps
and collect statistics at every 100th time step, which we
call a breakpoint. The statistics collection at each break-
point consists of updating the steady-state probabilities,
and checking for coverage and connectivity. We use a
sliding window of size 500 time steps for the steady
state-probabilities, which is slid by 100 time steps at
every breakpoint. The steady-state probability for each
state is calculated as the percentage of time spent in that
state throughout the 500 time steps in the window. The
coverageat breakpointt is calculated as the percentage
of event nodes that are covered by a sensor node in
sense/receivestate. In other words, at timet, we check
for each event node if there is at least one sensor node in
its neighborhood that is in thesense/receivestate. The
overall coverage value is an average over all coverage
percentages calculated at every breakpoint. On the other
hand, theconnectivityat time t can be either 0 or 1.
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At each breakpointt, we construct a graph induced on
the vertices corresponding to all nodes that are in the
sense/receivestate att. Then we check if the resulting
graph is connected; if so, the connectivity att is 1,
and 0 otherwise. The overall connectivity value is the
average over all these instantaneous connectivity values,
i.e. the percentage of breakpoints at which the network
is connected.
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Fig. 5. The steady-state probabilities for different network
sizes. The transmission/sensing radius is kept constant at
r = 0.2 and the sensing event probability atPSE = 0.1.
The probabilities foroff state (pO) andsense/receivestate (pS)
are shown only, since thetransmitstate probability is simply
pT = 1 − pO − pS.

Figure 5 compares the steady-state probabilities cal-
culated by theoretical analysis and simulation study.
The network size is varied from 100 to 1000, and
the transmission/sensing radius and the sensing event
probability are kept constant asr = 0.2 andPSE = 0.1,
respectively. These results show that the mean field the-
ory and independence assumptions work well in practice.
It is not surprising to observe that the sensor nodes
remain more and more in theoff state as the network
gets denser –i.e. as the number of nodes increases for a
fixed r.

Figure 6 presents the simulation results for the con-
nectivity and coverage figures using the same set of
parameters as in Figure 5. We observe that the overall
connectivity and coverage is well maintained especially
with the increasing number of nodes. Note that the
number of nodes in theoff state increases as the network
size increases (see Figure 5). However the Markov model
parameters obtained by the optimizer ensures that the
number of sensingnodes is high enough so that the
connectivity and coverage is maintained with high proba-
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Fig. 6. The connectivity and coverage figures obtained
by simulation on networks of different sizes. The transmis-
sion/sensing radius is kept constant atr = 0.2 and the sensing
event probability atPSE = 0.1.
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Fig. 7. Minimized power per node, computed using the steady-
state probabilities from Figure 5. The transmission/sensing
radius is kept constant atr = 0.2 and the sensing event
probability atPSE = 0.1.

bility –asymptotically with probability 1. This theoretical
expectation is justified by the simulation results of Figure
6.

Figure 7 demonstrates the power savings by the op-
timized Markov model. As the network gets denser, in-
creasingly many nodes may be in theoff state at any time,
and hence the power expended per node decreases. The
theoretical and experimental results agree on supporting
this argument.

We also compare the steady state probabilities of
CARES for theory and simulation by varying the sens-



11

0.02 0.04 0.06 0.08 0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Probability of a Sensing Event ( p
SE

)

S
te

ad
y 

S
ta

te
 P

ro
ba

bi
lit

ie
s

 off (theory)
 off (sim)
 sense/receive (theory)
 sense/receive (sim)

Fig. 8. The steady-state probabilities for different values of
sensing event probability, for a network ofn = 500 nodes and
transmission/sensing radiusr = 0.2.

ing event probability, and keeping the network size
and density constant. In Figure 8, it may first seem
interesting to note that CARES does not react much
to the changes in the event density. The reason is that
the constrained optimization ensures that enough nodes
are in the sense/receivestate to ensure connectivity
and coverage, regardless of the event density. Thus, the
steady state probabilities for thesense/receivestate does
not change much, but as more events are generated,
nodes will spend more time in thetransmitstate, hence
less time in theoff state.

We now compare our approach to a similar work,
the AFECA protocol [10], in terms of energy savings.
AFECA is proposed as an add-on for any underlying
routing protocol, and its energy-savings is presented on
the AODV protocol by a simulation study in [10]. In
AFECA nodes are in one of the three states:sleeping,
listening and active. In the sleeping state, the radio
of a node is turned off for energy savings, but the
sensors or other parts of the node may be on. The
listening state corresponds to oursense/receivestate,
i.e. the node can sense events and receive messages.
The active state is used to transmit any available data.
The main difference of AFECA is that instead of using
probabilistic transitions, a node stays in a state for a
certain duration and then transitions to another state, as
long as there is no interrupt in this duration, such as a
sensing event.

The state diagram for AFECA is shown in Figure
9. Starting in thesleepingstate, nodei may transition
into the active state if there is a sensing event to be
transmitted. Otherwise, if no such event happens in

after

no traffic

upon first traffic

after

upon sensing event

Tl with

active

sleeping

listening

Ta after last traffic

Tsa

Fig. 9. States and transitions in AFECA

Tsa seconds, then it transitions to thelistening state,
whereTsa depends on the number of neighbors ofi –to
take advantage of higher node density for more energy
savings. More specifically,Tsa =Random(1, Ni) × Ts,
where Ni is the number of neighbors ofi, and Ts is
a global parameter of AFECA. While inlistening state,
i can sense events and forward any received traffic, in
which case it transitions to theactive state. If no such
event happens inTl seconds then it transitions to the
sleepingstate. Wheneveri goes into theactive state, it
stays so for at leastTa seconds; if at any time it has
not sent or forwarded data in timeTa, it transitions to
the sleepingstate. Clearly, the performance of AFECA
depends on the parametersTs, Tl andTa.

In order to compare with our CARES protocol, we
also implement AFECA with the optimal parameters
(Ts = 10 sec,Tl = 10 sec andTa = 60 sec) given in
[10]. Note that by varying the event firing probability and
allowing the packets to be forwarded and occasionally
dropped as described earlier, we mimic the behavior of
some random routing protocol each time we run the
simulation. Similar to the approach we take for the
evaluation of CARES, we compute the ratio of time a
node spends in each state of AFECA. We then compute
the power consumption per node using these ratios. In
AFECA protocol, a node does not transmit for most of
the time it is in theactivestate since it stays in theactive
state forTa more seconds after the last traffic. Hence we
simply use 1.1W as the average power consumed in the
active state of AFECA, which is a lower bound on the
actual value. (Actual value is between 1.1W and 1.6W,
and much closer to 1.1W.)

We observe that the AFECA protocol has more energy
savings for very low event densities, hence we provide
the results for a wide range of values for the sensing
event probability. For this purpose we exponentially
increasePSE from 10−6 to 0.1, and plot the power values
against a logarithmicx-axis representing the sensing
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Fig. 10. Power savings for CARES and AFECA for a network
of n = 1000 nodes, and transmission/sensing radiusr = 0.2.
The probability of a sensing event is varied between10−6 and
10−1.
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Fig. 11. Power savings for CARES and AFECA for different
network sizes, with the transmission/sensing radiusr = 0.2
and sensing event probabilityPSE = 0.001.

event probabilities. Figure 10 presents the results for
a network of sizen = 1000 and transmission/sensing
radius r = 0.2. The plot for CARES is shown only
for theoretical results since the simulation gives almost
identical results. Note that AFECA reacts too much to
an increase in the event density and it may not provide
any benefit in some settings where CARES can still save
more than60% in energy consumption. AFECA has
deterministic parameters (except the randomized sleep
periods to account for the node density), and it is not well
defined how to adjust these parameters for maximum en-
ergy savings. The advantage of our approach is that it can

be optimized in a well defined way for any given settings;
the constrained optimization problem OPT1 is solved
for a given network size, transmission radius, sensing
radius and event sensing probability. The sensing event
probability can be approximated for a given application
scenario. Then each sensor node can be programmed
to follow the Markov model with the optimal transition
parameters given as the solution of OPT1.

We also compare the energy savings of the two
protocols for various network sizes and a fixedr and
PSE, in Figure 11. As expected, both CARES and AFECA
can save more energy as the network gets denser, how-
ever CARES has about two times more energy savings
than AFECA on average. On the other hand, CARES
maintains the connectivity and coverage throughout the
network as well as AFECA does.

IV. CONCLUSIONS

In this work we presented CARES, a randomized
algorithm which is run locally at a sensor node to
govern its operation. Each node conserves energy by
asynchronously and probabilistically turning itself off.
The probabilities for staying in off, sense/receive, and
transmit states ensure connectivity and coverage in the
network. The problem of finding probabilities to max-
imize energy saving while ensuring both connectivity
and coverage is expressed as an optimization problem
defined by node parameters. In the simulation study,
we also show that the power savings of our protocol
outperforms that of the previously known protocols, by
as much as an order of magnitude in some cases. In our
theoretical analysis we used mean-field theory approxi-
mations which have been justified by our simulations.
Future work includes extending the analysis to non-
homogeneous settings.
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APPENDIX

Proof of Theorem 3. We can inscribe a square of
side ∆ = rS

√
2 in a circle of radiusrS. The coverage

by the disks will then be no less than the coverage
by the squares. LetS be the area not covered by the

squares, thenA ≤ S. Defining the coverage function
fS(x) for the squares analogously to (4), we find that
E[S] = (1 − ∆2pS)

n. E[S2] =
∫

dx
∫

dy fS(x)fS(y).
The fS(x)fS(y) term in the integrand is the probability
that both the pointsx and y are not covered. Let
Sz denote the square centered at the pointz ∈ T .
Then the probability that both pointsx and y (in the
integrand) are not covered is given by the probability
that all sensing squares are outsideSx∪Sy, soE[S2] =
∫

dx
∫

dy (1 − pS|Sx ∪ Sy|)n. In the integral, let
x = (x1, x2) and y = (y1, y2). If |x1 − y1| ≥ ∆
or |x2 − y2| ≥ ∆ then |Sx ∪ Sy| = 2∆2. Otherwise,
|Sx∪Sy| = 2∆2− (∆−|x1−y1|)(∆−|x2−y2|). Fix x

in they integral. The area over whichy can range with
Sy disjoint fromSx is 1−4∆2 This area thus contributes
(1−4∆2)(1−2∆2)n to the integral. Over the remaining
area, changing coordinate in they integral so that its
origin lies atx, this contribution to the integral (over the
area when the two squares overlap) becomes

I = 4

∫

dx

∫

0≤y1,y2≤∆

dy(1 − 2pS∆
2 + pS(∆ − y1)(∆ − y2))

n.

A tedious but elementary computation to perform these
integrals then leads to the following result, after adding
the contribution from the part of the integral over the
region whereSx andSy are disjoint.

E[S2] = (1−2pS∆
2)n

(

1 + 4pS∆
2

n
∑

i=1

(n

i

) λi

(i + 1)2

)

,

where λ = pS∆
2/(1 − 2pS∆

2). Using the facts that
var(S) = E[S2]−E[S]2 andE[S]2 = (1−2pS∆

2)n(1+
pS∆

2λ)n, we arrive at

var(A) = (1 − 2pS∆
2)n

n
∑

i=1

(n

i

)

λi ×
(

4pS∆
2

(i + 1)2
− (pS∆

2)i
)

,

≤ 4pS∆
2(1 − 2pS∆

2)n
n
∑

i=1

(n

i

) λi

(i + 1)2
,

≤ 4pS∆
2e−2npS∆

2

n
∑

i=1

(n

i

) λi

(i + 1)2
.

Let F (i) =
(n

i

)

λi

(i+1)2 , then we can bound the sum by
n maxi F (i), so we boundF (i). F (i) is a very sharply
peaked function ofi. Its maximum occurs ati∗ for which
F (i∗)/F (i∗ − 1) ≥ 1 and F (i∗ + 1)/F (i∗) < 1. Since
F (i+1)/F (i) = λ(i+1)(n− i)/(i+1)2 , this condition
can be solved fori∗ to give i∗ = nλ/(1+λ)+Θ(1/nλ).
Using the fact that

( n
i∗

)

≤ (en/i∗)i
∗

, we get the
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following bound,

4pS∆
2exp

(

−2n∆2pS + nλ(1+log(1+λ))
1+λ + Θ( 1

nλ)
)

nλ
1+λ

(

1 + Θ( 1
nλ)
)

Noting that forr ≤ 1/2
√

2, ∆ ≤ 1
2 , hence,(1+ log(1+

λ))/(1 − pS∆
2) ≤ 9/10, we get that

var(S) ≤
4exp

(

−n∆2pS
10 + Θ( 1

n∆2pS
)
)

n∆2pS

(

1 + Θ( 1
n∆2pS

)
)

Sincen∆2pS = 2
πω(n), we have that

var(S) ≤
2πexp

(

−ω(n)
5π + Θ( 1

ω(n))
)

ω(n)
(

1 + Θ( 1
ω(n))

)

SinceE[S] ≤ e−
2

π
ω(n) ≤ e−

(1−ε)

10π
ω(n), we can now apply

the Markov inequality toS to get

P[S ≥ 2e−
(1−ε)

10π
ω(n)] <

2πexp
(

− εω(n)
5π + Θ( 1

ω(n))
)

ω(n)
(

1 + Θ( 1
ω(n))

)

Noting thatP [A ≥ z] ≤ P [S ≥ z] for any z, we get the
required bound.

Proof of Theorem 6. Conditions P1 and P3 of path
connectivity for a large enough area (of size≥ 1−η) are
implied by condition(i) in the theorem and Proposition
4. It remains to show that the disk graph obtained from
nodes in the sensing state is connected with probability
1 in the limit. Let nS be the number of sensing nodes
(randomly scattered). Then, on account of the indepen-
dence assumption,nS is a binomial random variable,
B(nS;n, pS). E[nS] = npS, and so the Chernoff bound,
[24], givesP[nS < (1− ε)npS] < exp(−npSε

2/2). Since
npS → ∞, we have thatP[nS ≥ (1 − ε)µ] → 1. Let
P[P2] be the probability that condition P2 holds, and
let nS(ε) = (1 − ε)npS. Then,

P[P2] ≥ P[P2|nS ≥ nS(ε)]P[nS ≥ nS(ε)],

c(nS) = πr2nS − log nS → ∞, becausenS ≥ (1 − ε)npS

and npS → ∞, and so from Theorem 5, we have
that P[P2|nS ≥ nS(ε)] → 1. Since we also have that
P[nS ≥ nS(ε)] → 1, we then have thatP[P2] → 1. So
there is a sufficiently large area for which we have that
P[P1] = 1−e1(n) for that area,P[P2] = 1−e2(n) and
P[P3] = 1 − e3(n) for that area, whereei(n) → 0.
By the union bound,P[∼ P1∨ ∼ P2∨ ∼ P3] ≤
e1(n) + e2(n) + e3(n) → 0, hence we conclude that
P[P1∧P2∧P3] → 1 for a sufficiently large area, prov-
ing that the network is path connected on a sufficiently
large area, with probability 1 in the asymptotic limit.


