
Information vs. Robustness in Rank Aggregation:

Models, Algorithms and a Statistical Framework for

Evaluation∗†

Sibel Adalı, Brandeis Hill, Malik Magdon-Ismail

110 8th Street

Rensselaer Polytechnic Institute

Troy, New York 12180

{sibel, hillb, magdon}@cs.rpi.edu

Abstract

The rank aggregation problem has been studied extensively in re-
cent years with a focus on how to combine several different rankers to
obtain a consensus aggregate ranker. We study the rank aggregation
problem from a different perspective: how the individual input rankers
impact the performance of the aggregate ranker. We develop a general
statistical framework based on a model of how the individual rankers
depend on the ground truth ranker. Within this framework, one can
generate synthetic data sets and study the performance of different
aggregation methods. The individual rankers, which are the inputs
to the rank aggregation algorithm, are statistical perturbations of the
ground truth ranker. With rigorous experimental evaluation, we study
how noise level and the misinformation of the rankers affect the per-
formance of the aggregate ranker. We introduce and study a novel

∗This work was partially supported by the National Science Foundation under grants

IIS-0324947, CNS-0323324, EIA-0091505 and IIS-9876932. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.
†A preliminary version of this work was published in the International Workshop on

Challenges in Web Information Retrieval and Integration (WIRI) 2006.

Kendall-tau rank aggregator and a simple aggregator called PrOpt,
which we compare to some other well known rank aggregation algo-
rithms such as average, median, CombMNZ and Markov chain aggre-
gators. Our results show that the relative performance of aggregators
varies considerably depending on how the input rankers relate to the
ground truth.

1 Introduction

The rank aggregation problem supposes that a set of objects are ordered
by several judges. Typically, the goal is to best represent, according to
some measure, the input rankers, independent of the accuracy or correct-
ness of the individual rankers. Such an approach tends to overlook the
ultimate goal, which is to obtain a ranking that is “closer” to some ground
truth ranking. For Web information retrieval, data in the form of individual
rankers is abundant, for example Google, Yahoo, MSN, . . . , which are gen-
erally based upon ranking algorithms that incorporate information retrieval
methods, link based algorithms and other algorithms used to compute the
relevance of web pages to a given query. Unfortunately, query results of
different rankers differ from each other due to the differences in ranking cri-
teria and the specific algorithms and databases employed by specific rankers.
Given this wide variety of differences, what is the best method to aggregate
rankers? From a user’s perspective, the problem of accessing the appropriate
ground truth ranking function for that user (or a group of users) is no longer
equivalent to the problem of providing an overall aggregate representation
of all the rankers. Rather, one must take into account how the aggregate
ranker relates to the ground truth ranker.

To illustrate, imagine two sets of bi-partisan rankers, one representing
the left and the other the right points of view. Given these two sets of
rankers, is it appropriate to output a consensus ranking that represents all
the rankers, in some sense rendering a non-opinion, or should one output a
consensus ranking from one of these sets of rankers according to what is more
appropriate for a particular user? The answer to this question is dependent
on the objective of the consensus ranking: is it to somehow give a summary

2

ranking for the population of rankers (for general queries) or is it to give a
ranking that is most useful for the specific user to make actionable choices
(with the consideration of user preferences). The impact of the input rankers
on the rank aggregation methods can be evaluated given specific knowledge
regarding the input rankers.

Problem Statement. In this paper, we present a study of rank aggre-
gation methods as a function of their relationship to the ground truth. In
contrast with previous work which concentrates on the performance of the
aggregation methods with respect to a given ground truth, our evaluation
concentrates on generating different scenarios for rankers and run compar-
isons. In particular, we study the effect of noise, misinformation, missing
objects and other factors that represent how rankers may be inaccurate
representations of the ground truth.

Methodology. We present a realistic statistical framework in which the
dependencies between the ground truth ranker and the individual rankers
can be modeled. Within the framework of our statistical model, the rela-
tionship between the individual rankers and the ground truth is specified
quantitatively by a set of parameters. We study the performance of various
aggregation techniques under different model assumptions through rigor-
ous experimental evaluation using synthetic data sets generated from this
statistical framework. We designed a closed-system in which we generate
the ground truth ranker and individual rankers that are used as input into
the rank aggregation algorithms. Our closed-system provides a structure to
test the performance of each aggregator with respect to the ground truth
ranker. We report on the effect of two distinct aspects of the input rankers:
the amount of correct information about the ground truth rank they contain,
and the amount of noise present in the data. We show that the best rank
aggregation algorithm, which we call an aggregator, depends considerably
on these factors and the error measure that is being optimized.

3

1.1 Our Contributions

We introduce a statistical framework for studying rank aggregation algo-
rithms. We give a rigorous experimental study of several rank aggregators
within this framework, including two novel rank aggregation methods which
we have developed. We study different ranker characteristics and provide
recommendations for which aggregation method to use, depending on the
ranker characteristics.

Statistical Framework. We introduce a factor-based statistical frame-
work in order to study the aggregation problem. Within this framework,
the ground truth ranker measures a set of factors. Based on these factors,
the ground truth ranker determines a ranking by sorting according to a score,
which is a weighted linear combination of the factors. The rankers estimate
the same factors to obtain their ranking, but make some mistakes. The
aggregation scenario is therefore specified by the probabilistic relationship
between the ranker measured factors and the ranker weights in the weighted
linear combination as compared to the ground truth factors and weights.
We assume that the ranker measured factors are contaminated by measure-
ment noise (errors); there can also be correlations between the errors for
different objects and among the different rankers for the same object. Dif-
ferent aggregation scenarios are obtained by varying the magnitudes of the
measurement errors and the correlations.

Within the statistical framework, it is then possible to repeatedly gener-
ate instances of the aggregation problem, and compare the performance of
various aggregate ranking algorithms with the ground truth, averaged over
instances. Since CPU cycles are cheap, the accuracy of such a study can be
made arbitrarily precise.

Rank Aggregation Algorithms. We study rank aggregation algorithms
with respect to the precision, TREC style precision and Kendall-tau error
measures. Among the aggregation algorithms we study are some standard
ones – the average, median and Kendall-tau optimizers. We also introduce
and study some new aggregators: some optimized variants of Markov chain

4

aggregators based on PageRank; a simple precision optimal aggregator which
we have not found mentioned in the literature and a novel iterative best
flip Kendall-tau aggregator. The Kendall-tau optimization method that we
introduce has O(n3) running time and it is competitive with many other rank
aggregation methods even when it starts from a random starting point. We
compute each aggregation method against the rankers assuming the ground
truth is not known and then evaluate their effectiveness with respect to the
ground truth. We find that for a number of aggregation scenarios, these
new algorithms perform comparable and sometimes better than the existing
ones.

The Information vs. Robustness Tradeoff in Aggregator Perfor-
mance. We give a detailed study of how the aggregation scenario (input
ranker characteristics) affect the performance of the aggregation algorithms.
In particular, the performance of a particular aggregation algorithm can
vary depending on the aggregation scenario. In particular, we find that
two important aspects of the aggregation scenario are the level of noise in
the rankers and the level of misinformation they contain (misinformation
arises when the rankers use different weights to combine the factors as does
the ground truth ranker). Aggregation methods can also be categorized by
how robust they are to misinformation and noise. Intuitively, an aggregator
which ignores “irrelevant” parts of the ranker data are robust to noise in
some sense, whereas an aggregator which pays attention to every detail in
the ranker data can easily be mislead by noise and misinformation. Our
experiments reveal that there is a tradeoff, in that the more information an
aggregator uses, the less likely it is to perform well in adverse aggregation
scenarios. The optimal aggregation method can vary significantly with the
aggregation scenario (level of noise and misinformation).

Real Data. Our experimental results reveal which aggregation methods
work well in which aggregation scenarios. In a practical setting, one does
not know apriori which aggregation scenario one is in, hence it is not easy
to determine which method to use. We report on results using the Text RE-

5

trieval Conference (TREC) datasets. Given the first K (K = {5, 10, 20, 50})
documents from a set of five input rankers, we show how aggregation meth-
ods perform for different values of K. We show that PageRank is the optimal
aggregator for TREC 3,5 and 9. We see that as the noise increases from
TREC-3 to TREC-5 and TREC-9, there is a greater need for robustness and
PrOpt, CombMNZ appear in the top rankers. We also present results using
the output of real search engine queries and based on human evaluation of
the aggregator outputs. Based on these (small sample) results, we conclude
that the Precision Optimal or PageRank aggregation is optimal with the
context of our limited sample size. Based on a simplistic analysis of the
ranker data, we conclude that the aggregation scenario is the high-noise,
small misinformation case, where our statistical framework indicates that
the optimal aggregator should be the Precision Optimal aggregator, which
is in accordance with our results.

1.2 Related Work

Rank aggregation has been studied extensively in the literature with the ob-
jective of finding a final ranking that has the best performance as measured
by a metric such as precision or recall with respect to some ground truth
or substitute relevance judgment. Some of the proposed rank aggregation
methods use the ranks together with scores obtained from the properties
of the ranked objects to find a final ranking. Yuwono and Lee [20] develop
methods to extract scores from the ranking of objects. Meng et. al. [15]
develop a number of rank aggregation methods for meta-searching that ex-
tract and use feature vectors from the short summaries for each document
returned by search engines and use these to improve the rankings. These
methods integrate score information on top of the ranking of objects.

A great deal of algorithms concentrate on using ranks only without access
to any additional training data. These are the class of algorithms we study
in this paper. One of the most common rank aggregation algorithms in the
literature is Borda’s method [4], which corresponds to ordering with respect
to the average rank. One of the most efficient algorithms, CombMNZ [10,
14], orders objects with respect to each object’s average rank and hit count

6

(number of input rankers that contain that particular object). Dwork et
al. [7] introduce the notion of an aggregate ranking that minimizes the total
Kendall-tau distance to the input rankers, which models a consensus ranking
based on an analogy with voting. Since finding such an aggregation is NP-
hard [2], they introduce a number of Markov chain models to approximate it.
These rank aggregation methods are compared with well-known methods in
hopes of decreasing the appearance of spam in meta-search. Spam indicates
that a document has an undeservingly high rank which is a real problem in
the case of web search. Resistance to spam may be used to indicate that the
rank aggregation is resistant to noise in the rankers. Montague et al. [16]
propose another meta-search algorithm, Condorcet-fuse which represents the
ranked information in a graph where each weighted directed edge orders two
documents based on whether the majority of the rankers rank the objects
in this order. The algorithm uses quicksort to construct a total ordering of
objects where each partition is consistent with the majority of the edges for
the pivot node. We study all these methods in this paper together with the
new IBF Kendall-tau optimization, our optimized Markov chain aggregator
called PageRank and the PrOpt aggregator.

Another set of rank aggregation algorithms consider the availability of
training data. Aslam et al. [1] introduces the Bayesian inference, Borda-fuse
and Bayes-fuse aggregation methods which use the Bayes’ rule for assessing
relevance of objects. Similarly, Lilis et. al. [6] computes the probability that
a document is relevant to a query based on possibly incomplete relevance
judgements. Both of these algorithms consider ranked lists as training data
with true/false relevance judgements. In contrast, the study in [12] tries
to learn the ordering of relevant objects by using the clickthrough data
recorded by search engines themselves. The order in which users click the
data is used to infer the relevance ordering of objects. This data is fed to a
learning module that learns the significance of various features such as object
features and their ranking in search engines in obtaining a final ranking.
These papers show the availability of training data may greatly improve the
performance of rank aggregation methods. However, the type of training
data required for this type of work may be too detailed and/or hard to get

7

in some cases. For this reason, we concentrate on rank aggregation methods
that only consider rank values.

The area of research most relevant to this is the study of the perfor-
mance of different ranking algorithms. Most of the prior work in this
area [16, 17, 19] uses the TREC data or special subsets of this data. In
some cases, search engine results together with informal relevance judge-
ments [7] have been introduced. While the TREC data provides a common
base for testing, it provides data for a single scenario concerning noise and
misinformation settings. Hence, it is not possible to generate data for dif-
ferent scenarios. The exact relationship of this data to the ground truth
is not known as the ground truth is a relevance judgement, not a ranking.
Finally, this data set is limited in size, making it hard to produce tests
with high statistical significance. We introduce the statistical framework
to solve this problem. The framework allows us to generate synthetic data
to test the rank aggregation algorithms with respect to specific noise and
misinformation scenarios. We show that the best algorithm changes based
on these different scenarios, signaling a trade-off between informativeness
and robustness of these methods. While most of the studies concentrate
on the relative performance of different algorithms, Vogt [19] measures the
improvement of performance when more and more rankings are aggregated.
Shows that generally more rankers provide better aggregations. Our results
show that while this is true when rankers are noisy versions of the ground
truth, in cases where there is misinformation in the rankers, it might be
better to disregard some of the rankers to achieve a better ranking.

2 Basics

In this section, we describe the terminology used and the rank aggregation
methods that are studied in this paper. We use the terms ranker or ranked
list interchangeably. A ranked list R contains a list of objects in sorted
order where R(1) is the object with highest score (rank 1), and in general if
R(m) = oi, then we say that object oi has rank m, denoted by rR(oi) = m.
We will denote by [R]K the partial list consisting of the top K ranked objects

8

(in order).
An aggregation method takes as input a number of (partial) ranked

lists and produces as output another ranked list. Normally, if only the top
K objects are being aggregated, then the aggregator will output the top
K objects in the aggregated list. We implement a variety of performance
measures to assess the degree of closeness or similarity between two rankers,
R1 and R2. In the following, we use oi ∈ R to denote that object oi appears
in list R. Let DB(R) be the set of objects that appear in an ranker R and
|DB(R)| be the number of objects. We define aggregate ranker RA as the
sorted list of objects returned by an aggregation method.

The Precision prK([R]1K , [R]2K) gives the number of common objects in
the top K of both lists. A frequently used variant of precision is the TREC-
style average precision (TSAP), which is given by tsapK([R]1K , [R]2K) =
(
∑

i reli)/K where reli = 1/i if the ith object in [R]1K is in [R]2K and
reli = 0 otherwise. The TSAP measure takes into account not only the
number of relevant objects, but also where they appear in the lists.

Another performance measure is the Kendall-tau measure, τK([R]1K , [R]2K),
which is the total number disagreements in the lists [R]1K and [R]2K over all
pairs of objects (oi, oj) appearing in the union of the lists. Kendall-tau mea-
sures the sortedness of one ranked list with respect to the other. Specifically,
let εij = 1 if (rR1(oi)− rR1(oj) · (rR2(oi)− rR2(oj)) < 0 and zero otherwise.
Then τK([R]1K , [R]2K) =

∑
i<j εij . Fagin et. al. [9] introduce penalty mea-

sures when the two rankers are not identical. In our statistical framework,
we assume rankers rank the same database of objects. As a result, we as-
sume missing objects will appear below objects in the observed top K and
use the default ranking K +1 for these objects. In the case when oi, oj both
appear in one list and they are both absent in the other, we use there is
no disagreement. Note that this introduces an implicit bias toward existing
rankers since it assumes their ranking is correct.

2.1 Rank Aggregation Methods

In our tests, we study a number of rank aggregation methods. In all our
rank aggregation methods, we process the top K objects obtained from all

9

ranked lists. If an object is missing a rank value because it is not in the
top K, we assign a default implied rank of K + 1. The median (Me) and
average (Av) rank aggregation methods are defined in the usual way and
make use of the implied ranks as well as the observed ranks.

2.1.1 CombMNZ

The prior work of Fox and Shaw [10] and Lee [14] present the CombMNZ
algorithm, initially using scores [10] and later using ranks [14]. This algo-
rithm first computes the Borda rank of each object and then multiplies this
value by the number of times the object appears in different input rankers.
The objects are then ordered in decreasing order of their modified Borda
scores. More formally, we implement CombMNZ as follows. We now de-
note DB(RA) = DB(R1) ∪ . . . ∪ DB(Rs) for s rankers. Given rankers
{R1, . . . ,Rs}, we perform Borda rank normalization (brn) for each object
o ∈ DB(RA), as presented in Renda et al. [17].

brni(o) =

 1 − rRi (o)−1

|DB(RA)| if o ∈ Ri

0 otherwise
(1)

Now we can compute the aggregate score sc(o) for each object o. We
denote h({R1, . . . ,Rs}, o) as the number of times object o appears in the
rankers (in range [1,s]). The set of aggregate scores are then sorted in
decreasing order.

CombMNZ : sc(o) = h({R1, . . . ,Rs}, o) ∗
s∑

i=1

brni(o) (2)

2.1.2 Precision Optimal Aggregation (PrOpt)

The precision optimal aggregation method ranks objects by the number of
times they appear in the input rankers’ top K list disregarding any implied
ranks. We choose the top K objects from this list. If there are ties for
the Kth object, then we break ties with respect to the order imposed by
the average aggregation method (Av). We break any further ties randomly.
This is a simplified version of the CombMNZ algorithm discussed above.

10

To our knowledge, this simple aggregation method has not been introduced
in the literature.

2.1.3 PageRank (Pg)

We implement a Markov chain aggregator similar to MC4 in Dwork et al. [7]
with some modifications. In general, our model is a weighted version of
MC4. We found our setting of weights outperforms all other weighted and
unweighted versions of this algorithm that we tested. In our model, if the
current state is oi, then the next state is chosen at random from any object
that is ranked higher by some other engine. The transition probability from
oi to oj is proportional to the number of rankers that rank oi higher than
oj and the differences in the ranks of these two objects for these rankers. If
two rankers rank oi higher than oj with ranks (1, 5) and (2, 3) respectively,
then the probability of transition is proportional to (5 − 1) + (3 − 2) after
normalization. While we do not explicitly transition only when majority of
the rankers rank the object higher as in MC4, we achieve this implicitly by
the weights of the edges as described in detail below.

In this formulation, it is possible that a strongly connected component
(SCC) of the graph may have no outgoing edges to the remainder of the
graph, resulting in a sink component. Dwork et al. [7] solve this problem
by first obtaining a partial ranking for this SCC and then by removing it
to repeat the process. We note that the same problem is tackled in the
PageRank algorithm [5] algorithm that also has an equivalent Markov chain
formulation by the introduction of random jump probabilities. We adopt
the PageRank solution to this problem and introduce outgoing edges (called
random jumps) with a small probability from each node to every other node,
given by (1− α)/N where N is the number of objects. We call this method
PageRank (Pg). We observe almost no variation in the results for different
settings of the α-parameter (from 0.5 to 0.99) which we set to 0.85 in our
tests. In the high values for α, the random jumps have almost no effect
in the ranking. As a result, we do not expect a big difference between our
results and the method described in [7].

We solve the system of linear equations satisfied by the pageranks ex-

11

actly using algebraic methods (as opposed to iteratively). Note that Dwork
et. al. [7] report on results that approximately compute the steady state
probability.

Formally, given the input rankers, we construct a graph G = (V,E)
where each object is a node. For each ranking where oi is ranked higher than
oj , we introduce a directed edge (oj , oi) with weight equal to the difference
in ranks. We then normalize the weights so that outgoing edges have total
weight of 1 for each node. The pagerank Pg(oi) of an object oi is given by

Pg(oi) = (1 − α)pi + α ∗
∑

(oj ,oi)∈E

Pg(oj) ∗ w(oi, oj)
outdeg(oj)

where outdeg is the outdegree of a node. The probability of randomly
jumping to a site is proportional to the indegree (pi) of that node where
pi = indeg(oi)∑

oj∈V
indeg(oj)

. The in-degree measure approximates the ranking pro-

duced by the average rank aggregator for the random jump event.

2.1.4 Condorcet-fuse (CFuse)

The Condorcet-fuse algorithm [16] constructs a graph G = (V,E) where
V = DB(RA) and e(oi, oj) ∈ E is an unweighted directed edge where oi →
oj (or oj → oi) indicates that oi (oj) dominated oj (oi) in the majority of
rankers. Thus, for every pair of objects, there is at most one edge. The
objects are then sorted in such a way to remain consistent with the directed
edges. Therefore, the objects are listed such that all edges are forward edges.
In the case of ties, the objects are randomly ordered.

2.1.5 Kendall-tau Optimal Aggregators

Given a set of input rankers R1, . . . ,Rs, and an aggregate ranker RA, our ob-
jective is to improve the performance of RA with respect to R1, . . . ,Rs where
we define the performance as Eav = 1

s

∑s
i=1 E(Ri,RA) where E(Ri,RA)

could be any one of the performance measures discussed previously (such
as precision, Kendall-tau or TSAP). If the input rankers give unbiased es-
timates of the ground truth ranker, then improving the performance with

12

respect to the rankers should also improve the performance with respect to
the ground truth ranker. In this paper, we consider the Kendall-tau error
measure for optimization, for which the minimization problem is known to
be NP-hard. We implement two heuristic optimization techniques. Note
that the algorithms we give below are generic search algorithms and can
make use of any performance measure.

Adjacent Pairs (ADJ) performs local optimization as proposed in Dwork
et al. [7]. The general approach is to take a ranked list and swap adjacent
objects until no further improvement on the Kendall-tau measure is possible.
This local optimization algorithm can be initiated from the output of any
of the rank aggregation algorithms discussed above. For example, AvADJ
refers to the result of taking the average aggregation method and then apply-
ing the ADJ local optimization to it. For completeness, we include a descrip-
tion of adjacent pairs optimization below. Given input rankers R1, . . . ,Rs

and an initial aggregate ranker RA, this algorithm aims to improve the
performance measure Eav between RA and R1, . . . ,Rs.

1: for each object [oi] in RA do
2: swap oi with oi+1 in RA

3: compute Eav after the swap;
4: if Eav improved then
5: permanently swap objects
6: repeat for-loop until no further reductions can be performed
7: return RA

Iterative Best Flip (IBF) is a novel optimization that we present. IBF
is based on an algorithm to perform local combinatorial optimization origi-
nally introduced by Kernighan and Lin [13] in the specific context of graph
partitioning. The general idea of the algorithm is to perform a sequence of
greedy swaps between any pair of objects that eventually leads to a good
local optimum of the given performance measure. A key feature is that we
perform the greedy swap even if the performance gets worse temporarily. In
this way, the algorithm has a limited amount of look ahead. We begin with

13

an initial ranking, which could be one of the rank aggregation algorithms and
continue until no improvements are possible. For example, AvIBF refers to
the result of taking the average aggregation method and then applying the
IBF optimization to it.

Given input rankers R1, . . . ,Rs and an initial aggregate ranker RA, this
algorithm also aims to improve the performance measure Eav between RA

and R1, . . . ,Rs.

1: repeat
2: Rold = RA, Config = 〈RA〉, finished = false;
3: for each object [oi] in RA do
4: for every possible swap [oj] in RA do
5: Compute Eav after the swap;
6: Perform the swap with the best Eav in RA; {Eav may get worse as

a result}
7: Add RA to Config

8: Let Rnew be the ranking in Config with the optimum Eav;
9: if Rnew has better performance than Rold or Rnew has the same

performance as Rold but is a new configuration then
10: RA = Rnew

11: else
12: finished = true

13: until finished
14: return RA

Note that the algorithm is forced to make a swap when considering each
object sequentially (according to some arbitrary ordering). The best swap
is made even if this leads to a temporary reduction in the performance. It
is exactly this flexibility which has been found to help the algorithm escape
from bad local minima/maxima. A straightforward implementation which
computes the performance after each swap would have computational com-
plexity O(s · f(n) ·n2) where f(n) is the cost of computing the performance
measure. We are using the Kendall-tau error measure for measuring per-
formance, for which f(n) = O(n2). By performing a pre-processing step

14

which allows us to update the average error, instead of recomputing it from
scratch, each time a swap is made, we improve the computational complexity
to O(n3).

2.2 Information vs. robustness trade-off

Before introducing our tests, we would like to elaborate on the properties of
the above rank aggregation methods. In general, an aggregate ranker is con-
sidered a “complex” ranker if it adapts its final ranking to the subtle nuances
in the input rankers. Thus, such a complex aggregator will easily be misled
by noise in the data – it is too sensitive to small fluctuations (inconsisten-
cies) in the data, and as a result its performance rapidly degrades as such
inaccuracies appear in the data. Conversely, consider the other extreme,
an aggregator which considers little or none of the information contained in
the rankers – for example an aggregator which completely ignores the input
rankers and outputs a constant ranking. Such an ignorant ranker will have a
poor performance, however its performance will not degrade as inaccuracies
appear in the input rankers. Such a ranker uses less information, however it
is robust. We consider an aggregator that uses less of the information con-
tained in the input rankers as a “simple” aggregator even though a simple
aggregator may be hard (computationally complex) to construct.

One of the simplest aggregators we introduce is the precision optimal ag-
gregator (PrOpt) that disregards all information regarding the actual ranks
except for the number of times an object appears in the input rankers. How-
ever, when the input rankers contain almost the same objects, then the ranks
produced by PrOpt are very similar to the output of the average aggrega-
tion method which is used for breaking the ties. The median aggregator
disregards a specific type of information since it throws away all rank infor-
mation for an object except for the middle one. Hence, it is not affected by
changes in the actual rank values of outliers. The average aggregator is one
of the most complex methods in our tests since it includes all the rank values
in the computation. Note that neither median nor average explicitly take
into account the number of times an object appears in the input rankers.

The question is then whether optimizing for Kendall-tau introduces more

15

or less information about the input rankers. One of the best known voting
paradoxes as discussed by Saari [18] show that when aggregating votes to
find the optimal ranking of candidates, the winner of pairwise elections
may not be the winner of the plurality vote. We examine what this means
for the Kendall-tau optimal aggregator. In the table below, we show an
example of two rankers, R1 and R2, for three objects. As we can see in the

R1 R2 average Kendall-tau optimal

o1 o3 o1 o3 | o1 | o1

o2 o1 o3 o1 | o2 | o3

o3 o2 o2 o2 | o3 | o2

table, all three orderings given are Kendall-tau optimal with respect to the
rankers R1,R2, while only one of them corresponds to the unique average
aggregator. So, the Kendall-tau optimal ranking that uses only pairwise
comparisons seems to ignore some information about the rankers which the
average ranker uses. To see why, note that for R1, when we compare o3 to
o2 and o1, we do not take into account the fact that o2 is ranked below o1

and hence o3 is ranked third. Thus in the Kendall-tau, a flip is a flip, no
matter how far apart the flipped objects are. Hence, it is insensitive to the
location of the flips. On the other hand, the average takes into consideration
the distance between flipped objects.

Given that Kendall-tau optimal ranking ignores some information, it
leads to an aggregation method that is robust to noise. This was the main
motivation behind the introduction of this optimization method in the lit-
erature [7]. The two optimization methods we study here ADJ and IBF as
well as the PageRank (Pg) and Condorcet Fuse (CFuse) are approximations
of the Kendall-tau optimal ranking. As our tests show, the performance of
the optimization methods depends on the initial starting ranking from which
the optimization proceeds. In the case of Pg, we use the average rank as
the starting point. We evaluate all other methods using different starting
rankings. Our results show that IBF is a far superior optimizer than ADJ,
hence it produces a good approximation to the true Kendall-tau optimal

16

aggregator (even if our optimizer starts from a random ranking). Therefore
the IBF optimized version of any ranker depends less on the input rankers
than the ADJ optimized version. Generally, we expect that both Pg and
the AvIBF contain less information about the location of flips than the
average aggregator. However, any Kendall-tau optimization possibly leads
to an aggregator that contains more information than PrOpt especially in
noisy scenarios. Similarly, CFuse starts from a random starting point and
uses only majority opinion, disregarding the value of the differences in the
ranks. As a result, it is a worse approximation of the Kendall-tau optimal
than IBF and Pg, but still a simple ranker as it disregards a great deal of
information. If we compare Me with MeIBF, we can argue that MeIBF
possibly contains less information about the middle ranker but more infor-
mation about the other rankers than Me.

The aggregators we study in this paper incorporate different types of
information to varying degrees. This provides us with a fairly extensive set
of methods to test the information and robustness trade-off in aggregation
methods and highlight when a specific aggregation method outperforms the
others.

3 Statistical Framework

In this section, we describe the statistical model that we use to generate
synthetic data sets to evaluate the rank aggregation algorithms and their
input rankers. Our statistical model is based on hypothetical search engines
that rank objects based on multiple factors. We assume that each engine
tries to find the best ranking by approximating a ground truth, but the
approximation is imperfect for a number of reasons that are explained in
detail below. In our model, we generate both a ground truth and then the
imperfect rankers. In our evaluation, we assume the ground truth is not
known during aggregation as it is the case in the real world. However, we
are able to assess how well aggregators perform with respect to the ground
truth after we compute the aggregation.

17

3.1 Ground Truth

Assume there are n objects o1, . . . , on. The ground truth denotes the rank-
ing of objects with respect to some specific query. We denote r(oi) to be the
ground truth rank of an object oi. In our framework, we assume that the
ground truth rank of an object (a web page in the case of a search engine) is
determined using a score computed from a set of factors f1, . . . , fF , where
f` ∈ [−3, 3] for ` ∈ [1, F]. Each factor f` measures some property of the
object; examples of factors are an object’s PageRank, the number of occur-
rences of the query keywords in the object’s text, the amount of time the
page has been live, and the frequency of updates. These factors have been
used in the search engine literature in the past [5, 8] to compute both the
relevance of a page as well as its quality. To simplify notation, we collect
f1, . . . , fF into the vector f , and write f(oi) for the factors of object oi. The
ground truth score (or value) of object oi, denoted Vi, is a weighted linear
combination of the factors,

Vi = wT f(oi) =
F∑

`=1

w` · f`(oi).

The weight vector w determines the relative importance of the factors. A
negative weight vector indicates that the particular factor is detrimental to
the value, or a low value for a factor is considered good. In our experiments
we have set w > 0 with

∑
w` = 1 which means a high value for a factor

is always considered good. For simplicity, we will assume that no two ob-
jects have the same score. The ground truth ranks {r(oi)} are obtained by
ordering the objects in decreasing order of their scores. Thus, r(oi) = k if
Vj > Vi for k− 1 objects oj and Vi > Vj for n− k− 1 objects oj . We denote
by the ground truth ranking R the vector containing the objects in sorted
order.

We collect all the ground truth scores for all objects in the vector V,
and define the factor matrix F in which the rows of F are the object factor
vectors f , i.e. Fi` = f`(oi). Then, V = Fw.

18

3.2 Rankers

We assume the existence of rankers R1, . . . ,Rs are each somehow related
to the ground truth ranking R (we use superscript to refer to rankers). In
fact, ranker is trying to approximate the ground truth as best as it can. Our
statistical framework provides a natural probabilistic approach to model the
relationship between a ranking Rj and the ground truth R. Intuitively, each
input ranker Rj is an approximation to R constructed as follows: the input
ranker attempts to measure the same factors f which are relevant to the
ground truth ranking. However, its measurements may incur some errors,
so we will write the factor matrix obtained by ranker Rj as Fj = F + εj .
Ranker Rj may also not have the correct relative weights for the factors.
Denoting ranker Rj ’s weights by wj , we have

Vj = Fjwj = (F + εj)wj .

The ranking Rj is obtained by ordering objects according to scores in Vj .
The top K lists [Rj]K are the inputs to the aggregation algorithm. The
ground truth ranking, and the input to the aggregation algorithms are
completely specified by F, ε1, . . . , εs,w,w1, . . . ,ws. The statistical model
is therefore completely specified by the joint probability distribution

P (F, ε1, . . . , εs,w,w1, . . . ,ws).

Such a general model can take into account various other types of cor-
relations such as correlations among factor values (correlations in F); corre-
lations between factor values and ranker errors (correlations between F and
εj); correlations among ranker errors (correlations among the εj); correla-
tions between true weights w and ranker weights wj (the degree of similarity
between rankers and the truth); correlations between ranker weights and the
errors of different rankers. We discuss these in detail below.

We study two sets of weights for the factors given in the table below.

Weight vector Values

w 2
F (F+1) [1, 2, . . . , F]

wR 2
F (F+1) [F, . . . , 2, 1]

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3 -2 -1 0 1 2 3

Er
ro

r

Score

δ=5, β=0.01
δ=0.01, β=5

δ=3, β=3

Figure 1: Possible shapes of the correlation between factors and the magni-
tude of errors

We note that while the actual rank formula used by different search
engines, modeled here by rankers is not known, it is clear that the final
rankings of search engines differ from each other. We associate this to two
factors, the differences in the way the scores for factors are computed and the
differences in the weights or the general combination formula. For example,
the recent phenomenon called Google Bombs [11] show that at the time of
these attacks Google attached a higher importance to two factors compared
with other engines: recency of updates to a page and the number of times a
keyword appears in links pointing to a page. This resulted in specific pages
achieving a high rank in Google for specific keywords used in the anchor
text pointing to this page. However, other search engines were not effected
similarly by these effects. In the next section, we model some correlations
that may exist between the errors and factors on top of this model. We give
examples why such correlations may exist due to the often complex business
relationships between search engines.

20

3.3 Correlations in the system

The first type of correlation we introduce is between the errors and the
factors (defined by σ2, γ, δ, β), where εj

i` depends on Fi`. In our model, we
construct the error given to an object oi’s factor fl in ranker Rj that would
not outweigh the factor values assigned to the ground truth ranker R. More
specifically, we set the variance V ar(εj

i`) to be a function of Fi`,

V ar(εj
i`) = σ2 (γ − Fi`)δ · (γ + Fi`)β

maxf∈[−3,3](γ − f)δ · (γ + f)β
.

The parameters γ, δ, β are shape parameters which determine how noise
enters the rankings, and σ2 is a parameter governing the maximum possi-
ble variance – how noisy the ranker factors are. The noise parameter σ2

measures how much the true information is getting corrupted. The shape
parameters γ, δ, β determine which information gets corrupted. We use this
type of noise to model spam, i.e. pages receiving undeservedly high rank. In
other words, while the ground truth score of a factor may be low, a ranker
may give it a high score with some probability. A common example of spam
is padding of text with many keywords. The ground truth in this case may
correctly determine that the score of this page for this keyword should be
low while the ranker may make a mistake and give it a high score. The
distribution of noise shows us how this type of error occurs.

The functional dependence between the scores and the magnitude of
the errors allows us to model different types of errors that the rankers may
make. Figure 1 shows three possible shapes of this function for γ = 3 and
σ2 = 1. Along the x-axis, we have the possible values for an object’s factors,
in which higher values are good. Along the y-axis, we display the amount of
error assigned to be added to the factors. When δ = β (denoted by the ‘*’
symbol), then the errors are lowest for objects with the highest and lowest
values. This setting allows objects appearing the the middle of the ranking to
be affected by the additive errors but the ordering of the top objects remain
consistent with the ground truth ranker. When δ << β (denoted by the ‘x’
symbol), the values are shifted upward which does not changes the ordering
of the objects in the rankings. When δ >> β (denoted by the ‘+’ symbol),

21

the low valued objects are more likely to make large mistakes; hence their
values increases their value and elevates them high into the rankings. This
might be due to the adversarial techniques used by the engines to mislead
the algorithms used by the rankers to estimate a specific factor. We use this
last setting in our tests to model spam.

It is also possible to model missing objects by assuming with some prob-
ability pi

m ranker i does not have a specific object in its database and does
not rank this object at all.

Other correlations modeled in our system are as follows:

σf Correlation between two factors of the same object in the ground truth
ranker.

This models whether two factors measure the same quantity or inde-
pendent quantities. For example, the length of page and frequency of
keywords would be correlated positively. Similarly, if we are count-
ing the frequency of a keyword in title, text and the outgoing links
(to measure a hub value for the page) than it is likely that there will
be a correlation. However, this correlation can be negative as higher
occurrence of a keyword in one field may imply a lower occurrence of
another keyword for two texts of the same length.

σn Correlation between two objects for the same factor in the ground
truth ranker.

This models the distribution of values for a single factor over all the
objects. Hence, if the correlation is low, the objects take more or less
random values. Otherwise, if there is a positive correlation, one object
having low score may imply another having low score. So, if scores
are very close to each other as a result, the problem becomes harder
since the objects are indistinguishable from each other. For example,
for very popular keywords, the distribution will be very dense meaning
there will be lots of pages with the same frequency of keywords. How-
ever, for keywords that have political connotations, one can imagine
a bipartisan situation. Certain objects from one party having a high

22

occurrence may imply a low occurrence for the objects from the other
party, leading to a negative correlation.

σnf Correlation between two different objects for different factors in the
ground truth ranker.

This models when the value of an object for a factor may depend
partially on the value of another object for another factor. It is possible
to model this as σn ∗σf . It makes little sense to have a non-zero value
for sigmanf when the other two are zero. For example, suppose we
consider two objects, o1 and o2, where one of the factors of o1 is the
pagerank of o1 which links to o2 and one of the factors of o2 is the
frequency of keywords in the anchor links for o2. Since a search engine
may include the keywords of the link from page o1 in the content of o2,
then the frequency depends on the number of number of incoming links
to o1. But, the pagerank of o1 depends on the number of its outgoing
links and where the links lead to, which forms a cycle. So, there is a
correlation between these two objects through different factors.

σ∗f Correlation between the errors made by rankers for two factors of the
same object (one set for each ranker).

The errors made by rankers for two different factors may depend on
each other since rankers use similar algorithms for both. For exam-
ple, frequency of keywords in anchor text and in regular text may be
independent of each other. But, if the same algorithm for stemming
and categorization is used then the algorithm makes similar errors in
both. Another reason the errors of two factors may be correlated is
when they depend on the underlying index of pages. For example, fac-
tors that use a statistical method for normalizing the scores will make
errors that have dependence on each other. Finally, time dependent
factors will make errors that depend on the time of measurement and
the actual time a specific change was made.

σ∗n Correlation between the errors made by rankers for two objects for the
same factor (one set for each ranker).

23

This simply means that the algorithm makes similar mistakes for two
objects. If the value of the factors for two objects are correlated, then
this is a reasonable assumption. For example, two rankers may use the
same database of web pages to compute the pagerank independently.
Even though the computation may differ, the pagerank values depend
on the underlying graph. If the pagerank of a page is underestimated
due to missing edges, then the pagerank of all the pages that are
pointed to this page will also be underestimated resulting in a positive
correlation.

σ∗nf Correlation between the errors made by rankers for two different ob-
jects for different factors (one set for each ranker).

Suppose the ranker makes an error determining when a page was last
updated and the last update time is a factor. Now suppose this page
links to another page and the pagerank depends on when the links are
added (i.e. pages accumulating links very quickly are demoted). Then,
this would effect the pagerank of pages that it links to and make the
errors correlated.

σ∗R Correlation among rankers.

Basically this models the case of a ranker making errors that correlate
with the errors another ranker makes. An easy example of this is the
case where a ranker may use the output of another ranker. This is an
explicit relationship in the case of a meta-search engine. There are also
other implicit relationships where a ranker may rely on another par-
tially for different query types such as directory lookups or sponsored
links.

To complete the model description, the factors for each object are chosen
independently and identically from a uniform distribution with variance 1,
and hence lie approximately in the range [−3, 3]. The errors for each fac-
tor and each ranker are chosen independently from a uniform distribution
with mean zero and variance given by the formula above for some choice
of σ2, γ, δ, β. The input to the aggregation algorithm are the top K ′ lists

24

corresponding to each ranking. In our experiments we selected K ′ = K.
Let A generically refer to an aggregator, and let E([R]K , [RA]K) be a

performance measure, such as Kendall-tau, that measures the difference
between the ground truth ranker R and the ranker RA obtained by the
aggregator. In a realistic setting, [R]K is not known, however in our setting,
[R]K is known. Thus, among the available aggregators, we can select the
aggregator with the best performance through simulation within this sta-
tistical setting. The statistical framework can embed qualitative features of
the aggregation setting through the choice of P (F, ε1, . . . , εs,w,w1, . . . ,ws);
rigorous simulation can then be used to obtain the appropriate aggregator
for that particular aggregation setting.

4 Experimental Evaluation

In this paper, we study how the information and noise levels in the input
rankers affects the performance of rank aggregation methods. First, we
present tests using the synthetic data sets generated by the statistical model.
Then, we validate our findings from the synthetic data sets against real data.

4.1 Synthetic Data

We use the statistical model described in Section 3 to generate data sets with
a single ground truth using five factors and 100 objects each. We retrieve
top 10 from each ranker and compute the precision and Kendall-tau for top
10 objects. We set the ground truth weights to w = 〈 1

15 , 2
15 , 3

15 , 4
15 , 5

15〉.
We generate five rankers with different relationship to the ground truth.

All rankers have the same spam distribution (V ar(εj
i`)) obtained by setting

δ = 5.0 and β = 0.01. This results in smaller errors in factors with high
scores and low rank, and larger errors in factors with very low scores. Hence,
while good objects will have high scores, bad objects may also get high scores
occasionally. For each ranker, we vary the variance parameter σ2 between
0.1, 1, 5 and 7.5. Increasing the variance models more noise: higher values
increase the likelihood of objects getting undeserved high scores. The noise
level is the same for all factors for a specific test.

25

We also vary misinformation by changing the weights of a number
(nMI) of rankers to wR = 〈 5

15 , 4
15 , 3

15 , 2
15 , 1

15〉. The remaining 5−nMI rankers
have the same weights as the ground truth ranker. When nMI = 0, there is
no misinformation, all rankers have the same weights as the ground truth. As
nMI increases, the information about the input factors being transmitted by
the rankers decreases. We call this an increase in misinformation. To see why
this is different from noise, consider the case when we have infinite number
of rankers. It is then possible that by averaging these rankers we are able
to average out all the noise. However, information lost by the rankers that
use incorrect weights can never be recovered in this case. Misinformation
models the case when the rankers use a value formula that differ from the
ground truth. For example, a ranker may consider recency of updates to be
a more important or reliable factor in ranking than the ground truth. Noise
models the case where rankers incorrectly estimate the score of a factor;
this is the case in many text based spam methods which result in inflated
scores for specific keywords. Other examples of noise are errors made in
the pagerank computation due to the incompleteness of the underlying web
graph and errors in time based factors due to the frequency of crawls to a
site.

Method Description

Av average

CombMNZ CombMNZ

Me median

Pg PageRank

Rnd Random

CFuse Condorcet-fuse

PrOpt precision optimal

xADJ adjacent pairs opt. after aggregator x

xIBF iterative best flip opt. after aggregator x

Figure 2: Legend

Given these two settings, we perform tests with and without the adja-

26

cent and iterative best flip optimization for Av,Me,Pg resulting in three
different versions of each aggregator. The optimization is performed with re-
spect to the Kendall-tau error measure. We compute the aggregations using
the rankers only, assuming the ground truth is unknown. We then evalu-
ate the performance of the aggregation with respect to the ground truth to
measure how well the aggregation would have done in a specific noise and
misinformation scenario. We should note that the precision and TSAP are
measures of accuracy to be maximized, whereas the Kendall-tau is an error
to be minimized. Figure 2 lists the aggregation methods used in our tests.
Note that we experimented with the PageRank algorithm using many differ-
ent settings, including uniform distribution for random jump probabilities
and no explicit weights for the edges. We found that the settings given in
Section 2.1 provides the best results when compared with the ground truth.

Ordering Aggregators. We repeat the tests for a specific noise and mis-
information setting (as well as other parameters studied later) for 40,000
datasets where each dataset contains its own ground truth ranker and five
input rankers. We do a pairwise comparison among all pairs from the 11
aggregation methods. We use the notation xADJ to denote adjacent pairs
optimization starting from aggregator x (and similarly for xIBF). For every
pair of aggregation methods Ai, Aj , we calculate the difference (Ai − Aj)
of the performance measure values on each dataset. Based on the variance
of these differences, we obtain a 99.9% confidence interval on the difference
(3 sigma). If this confidence interval includes zero, then the two aggregators
are incomparable (or equivalent). On the other hand, if we consider the case
of precision error measure where the confidence interval is always positive
(resp. negative), then Ai is better (resp. worse) than Aj , written Ai > Aj

(resp. Ai < Aj). These ordering relations are shown in the graphs of Figures
5, 6, 7. In each graph, an edge from aggregator Ai to Aj exists if Ai is a
better aggregator than Aj for that error measure. To reduce the complexity
of the graph, we remove all edges that would be implied by transitivity.

27

PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZσ2 = 7.5 Pg Pg Pg Pg Pg
PgADJ PgADJ PgADJ PgADJ PgADJ

PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ PrOpt CombMNZ PrOpt, CombMNZσ2 = 5.0 Pg Pg MeIBF Pg Pg
PgADJ PgADJ Pg, RndIBF Av Av

CombMNZ MeIBF Me Av PrOptσ2 = 1.0 PrOpt, Pg, Av PgADJ MeADJ Pg CombMNZ
PgADJ, PgIBF Cfuse Cfuse CombMNZ Av

PrOpt, Av, Pg PgADJ, Cfuse Me Pg PrOptσ2 = 0.10
*ADJ, *IBF, Cfuse,

CombMNZ
CombMNZ, MeIBF MeADJ Av CombMNZ

Me PrOpt, MeADJ Cfuse CombMNZ Av

nMI = 0 nMI = 1 nMI = 2 nMI = 3 nMI = 4

high noise
PrOpt, Pg*,
CombMNZ

PrOpt, Pg*, *IBF,
CombMNZ

PrOpt, Pg*,
CombMNZ, *IBF

PrOpt, Pg,
CombMNZ,

PgADJ
Pg

MeIBF, RndIBF Cfuse Cfuse PgIBF
PrOpt, PgADJ,

CombMNZ
AvIBF AvADJ AvADJ MeIBF, RndIBF PgIBF

PrOpt, CombMNZ
PrOpt, PgIBF,

MeIBF
MeIBF, RndIBF Av Av

Pg, PgADJ
RndIBF,

CombMNZ, Pg,
PgADJ, AvIBF

AvIBF, PgIBF Pg AvADJ

PgIBF Cfuse PrOpt, CombMNZ AvADJ, PgADJ Pg

PrOpt, Pg*, Av*,
Me, CombMNZ

MeIBF, PgIBF, Me Av Av

MeADJ, Cfuse
CombMNZ, Cfuse,

PrOpt
MeADJ Pg AvADJ

MeIBF PgIBF Cfuse AvADJ Me, Pg

Av
PgADJ,

CombMNZ
Me Av Av

PrOpt,*ADJ, *IBF,
Cfuse, CombMNZ

PrOpt, MeADJ,
Cfuse, PgIBF,

MeIBF
MeADJ Pg AvADJ

low noise RndIBF Me PrOpt AvADJ RndIBF

less
misinformation

more
misinformation

(a) Summary of results for TSAP (with legend) (b) Summary of results for precision (P@10)

high noise PrOpt, CombMNZ PrOpt, CombMNZ PrOpt, CombMNZ Pg Pg

Pg Pg Pg, PgADJ, MeIBF PrOpt, CombMNZ PgADJ

PgADJ PgADJ RndIBF PgADJ PrOpt, CombMNZ

PrOpt, CombMNZ PgADJ MeIBF, PgIBF Pg Av

Pg
Pg, PgIBF, MeIBF,

RndIBF
AvIBF. RndIBF PrOpt, CombMNZ Pg

PgADJ AvIBF, CombMNZ PgADJ Av AvADJ

Pg MeIBF MeADJ Av Av
Av RndIBF Me Pg PrOpt

CombMNZ PgADJ MeIBF PrOpt CombMNZ

PrOpt, Av, Pg MeIBF Me Av PrOpt

*ADJ, *IBF, Cfuse,
CombMNZ

MeADJ MeADJ Pg CombMNZ

low noise Me Cfuse MeIBF CombMNZ Av

less
misinformation

more
misinformation

(c) Summary of results for Kendall-tau

Figure 3: Summary of results for the baseline case

28

4.1.1 Noise vs. misinformation, baseline case

Figure 3(a) through (c) summarizes the findings for the TSAP (Trec style
precision), precision at top 10 and the Kendall-tau error measure. Each cell
in the box represents the summary of the tests on 40,000 different data sets.
We use the notation ∗IBF to denote starting from any initial aggregator
(Av, Me and Pg and then performing the IBF optimization, and x∗ to
denote aggregator x with or without optimization. In each box, we list
the best two or three aggregators together with the differences in the given
performance measure between top 1 and 2, and top 2 and 3 aggregators.

When the misinformation is low nMI = 0 and the noise is low σ2 =
0.01, 0.1, almost all aggregation methods are equivalent with respect to all
aggregators. In these cases, PrOpt reduces to Av due its tie breaking
methodology. When misinformation is low, as the noise increases, there is
a greater need for robustness. In this case PrOpt, CombMNZ Pg and
IBF optimized rankers become the winners. When the noise is low, and the
asymmetry between rankers increases, (nMI = 1, 2), median becomes the
dominant aggregation method as it is not effected by the outliers. This is a
“bi-partisan” case where the majority of the rankers are correct, but there
are one or two outliers. In these cases, as noise increases, there is a greater
need for robustness. In this case, MeIBF is the clear winner. When noise
is low but misinformation is high (nMI = 3, 4), there is a greater need to
incorporate as much information as possible from the input rankers. Hence,
average (Av) becomes the best ranker again. This remains true even in the
presence of moderate levels of noise. We note that when the noise is high,
PrOpt, CombMNZ, Pg and IBF optimization appears to be the best
aggregation methods.

We observe that in high noise cases, PrOpt, CombMNZ and Pg ap-
pear to be winners but IBF optimization appears to loose its competitive-
ness. This is a surprising result as optimizing for positional information, in
fact, results in a loss of information that hurts performance for a measure
that relies on positional information. The results for Kendall-tau error are
similar to precision as well. Note that this error measures if the objects are
in relatively correct order. The first difference we note is that for high noise,

29

PrOpt does not always do as well since it does not directly optimize for po-
sitional information. For the highest noise value and nMI = 0, 1, 2, PrOpt,
CombMNZ perform be better than all others. However, for nMI = 3, 4,
Pg does better. For TSAP, PrOpt, CombMNZ do well even in high noise
and high misinformation cases. This means that while Pg incorporates in-
formation about the ordering of the objects, it may occasionally miss some
objects resulting in a lower precision value. MeIBF appears to do very well
(first or second place) in almost all noise cases for nMI = 1, 2. Another
interesting thing that we notice is that for high noise cases, IBF optimizers
do not as well as PrOpt and Pg. Note that, IBF optimizer reduces the
error with respect to the input rankers but ends up with worse performance
with respect to the ground ranker for the high noise cases. More informa-
tion about the rankers needs to incorporated in these cases. Figures 5, 6
and 7 show the detailed results of the topological sort for various selected
test cases.

In Sections 4.1.2- 4.1.3, we investigate the performance of these ag-
gregators for different settings of the statistical framework. We exclude
CombMNZ and Cfuse in these tests as CombMNZ appears to be very
similar to PrOpt and Cfuse does not appear to be a competitive method.

4.1.2 Missing Objects

We run experiments where each ranker is missing 10% and 50% of all the
objects in the database and examine how the choice of aggregator may
change. We show in Figures 8 and 9 the summary of the first and second
best aggregators for both the precision and Kendall-tau error measures.
With missing objects, there are fewer pairs of objects to compare for IBF
and ADJ optimizations and the median values are based on fewer rankings.
As a result, the effectiveness of these rankers is reduced. For example, for
10% missing objects, Me is no longer the best for the cases where there is
asymmetry between rankers and *IBF becomes prominent in these cases.
As for 50% missing objects, we see that Av and AvADJ become very
prominent for almost all the cases as more and more information needs to
be incorporated. AvADJ provides small amount of robustness over Av

30

and becomes an important aggregator.

4.1.3 Correlation Experiments

We run experiments where we vary different correlations as discussed in
Section 3. In each test, we vary only one of the correlations.

Correlation between two objects for the same factor for the ground
truth (σn) In these tests, we introduce a correlation between objects for
one factor. We test a positive correlation in Figure 10 and negative corre-
lations in Figure 11. We do not see a significant change in the results for
positive correlations. However, for negative correlations, PrOpt and IBF
become more prominent which signals a need for robustness.

Correlation between two factors of the same object for the ground
truth σf In the next set of tests, we introduce correlations between two
factors for the ground truth and consider the case where the correlation is
positive in Figure 12 and negative in Figure 13. Again, for positive corre-
lation, we do not see a big difference. In case of negative correlations, we
see that PrOpt becomes prominent for precision in low noise cases and Pg
becomes prominent for Kendall-tau error measure. In high noise cases, Av
and AvADJ become the best rankers as more and more information need
to be incorporated from the input rankers.

Correlation between the errors made by rankers for two objects for
the same factor (one set for each ranker) σ∗n In these experiments,
we assign the correlated errors of two of the five rankers to be fixed at 0.60.
The results are shown in Figure 14. The Precision Optimal aggregator no
longer dominates as the best aggregation for high noise cases as compared
to the other experiments. Me* is robust with respect to noise in the bi-
partisan case when a majority of the rankers align with the ground truth
(nMI = 1, 2). We observe that our IBF optimization performs well in a
large number of cases, including high noise and some misinformation.

31

Correlation amongst rankers σ∗R We performed experiments for pos-
itive correlations amongst all the rankers in Figure 15. We observed that
with our low setting of 0.10, there was no significant difference in perfor-
mance for the precision and Kendall-tau error measures as compared to our
experiments without any correlations.

4.2 TREC Data Collection

We use the rankings submitted by the participants of the Text REtreival
Conference (TREC) as input rankers to the rank aggregation algorithms.
We use three datasets (TREC-3, TREC-5 and TREC-9) each comprising of
50 queries, which was also used in [16]. Each participant devises a system,
which retrieves 1000 documents, and returns a ranking of these documents
for a particular query. In TREC, human evaluators are used to determine
if a document is relevant or irrelevant. The relevant documents are then
compared to these rankings of up to 1000 documents using different types
of performance evaluators including the precision and TREC-style average
precision as described previously.

For each query, we repeat the following 50 iterations: we select the top-
K (K = {5, 10, 20, 50}) documents from a randomly chosen set of 5 input
rankers as input to the rank aggregation methods. We compute the TREC-
style average precision comparing the aggregate ranker to the relevant doc-
uments determined by human evaluators. For each query, we find TSAP
over the 50 iterations for each value of K and aggregator. We display the
mean average precision over all queries for each aggregator.

We show in Tables 1- 3, TSAP over the 50 queries in each TREC data
collection. We use boldface to show the best two or three aggregators for
each column. The last column sums the TSAP values from each top-K for
each aggregator to determine which are the best aggregators overall.

We see throughout these results that Pg produces the best aggregators
for the majority of values of K. The CombMNZ, PrOpt aggregators also
perform well for most top-K values; however these methods are not one of
the best overall. We notice xIBF and xADJ are among the aggregators
that perform second best. We observe that certain aggregators perform best

32

top-5 top-10 top-20 top-50 Best Overall

Av 0.2769 0.1805 0.1109 0.0548 0.6231

Me 0.251 0.1697 0.1051 0.0525 0.5783

Pg 0.2884 0.1882 0.1147 0.0562 0.64751

AvIBF 0.2835 0.1857 0.1126 0.0548 0.6366

MeIBF 0.284 0.1863 0.1131 0.0549 0.6383

PgIBF 0.2862 0.1865 0.1132 0.055 0.6409

AvADJ 0.2755 0.1815 0.1111 0.0546 0.6227

MeADJ 0.2582 0.172 0.1058 0.0527 0.5887

PgADJ 0.2516 0.1876 0.1112 0.0559 0.6063

RndIBF 0.2724 0.1759 0.1094 0.0548 0.6125

PrOpt 0.2637 0.1806 0.1113 0.0562 0.6118

CFuse 0.284 0.1858 0.1106 0.0531 0.6335

CombMNZ 0.2697 0.1877 0.1147 0.0562 0.6283

Table 1: TREC-3 TSAP Results

top-5 top-10 top-20 top-50 Best Overall

Av 0.2289 0.1428 0.0828 0.0387 0.4932

Me 0.2012 0.1274 0.0758 0.0357 0.4401

Pg 0.2346 0.1463 0.0844 0.0388 0.5041

AvIBF 0.232 0.1453 0.0835 0.0385 0.4993

MeIBF 0.2251 0.1458 0.0837 0.0375 0.4921

PgIBF 0.2135 0.1405 0.0836 0.0386 0.4762

AvADJ 0.218 0.1391 0.0828 0.0385 0.4784

MeADJ 0.2078 0.1302 0.0771 0.036 0.4511

PgADJ 0.196 0.1459 0.0841 0.0388 0.4648

RndIBF 0.2036 0.1454 0.0807 0.0384 0.4681

PrOpt 0.2139 0.1458 0.0843 0.0387 0.4827

CFuse 0.2216 0.1444 0.0828 0.0382 0.487

CombMNZ 0.2077 0.1408 0.0818 0.0376 0.4679

Table 2: TREC-5 TSAP Results

33

top-5 top-10 top-20 top-50 Best Overall

Av 0.176 0.1033 0.0599 0.0272 0.3664

Me 0.1418 0.0888 0.0531 0.0247 0.3084

Pg 0.1808 0.1065 0.0608 0.0272 0.3753

AvIBF 0.1741 0.105 0.0606 0.0276 0.3673

MeIBF 0.1786 0.1057 0.0607 0.0274 0.3724

PgIBF 0.1791 0.1052 0.0607 0.0275 0.3725

AvADJ 0.1764 0.1025 0.0602 0.0276 0.3666

MeADJ 0.1503 0.0916 0.054 0.0251 0.321

PgADJ 0.1569 0.1062 0.061 0.0277 0.3518

RndIBF 0.1761 0.1053 0.0605 0.0263 0.3682

PrOpt 0.1781 0.1063 0.0606 0.027 0.372

CFuse 0.1723 0.1051 0.055 0.0265 0.3589

CombMNZ 0.1768 0.1065 0.0606 0.02591 0.3698

Table 3: TREC-9 TSAP Results

under different circumstances. We note that Me and its variants perform
poorly indicating no misinformation. This is to be expected as the rankers
are sampled uniformly from a larger set. We have also computed the varia-
tion in the ranks of each TREC data set to check if there was a difference in
the noise level of each data set. We found that TREC-9 had slightly lower
levels of noise in the data sets we generated. These data sets still consti-
tute a small sample compared to our previous tests. However, we can see
that PrOpt and CombMNZ do not appear in the top two for TREC-9,
whereas these two aggregators are among the best in the other TREC data
sets. As noise increases in TREC-3 and TREC-5, there is a greater need for
robustness and hence these two aggregators become more prominent. This
confirms our findings from the statistical framework.

4.3 Search Engine Data

We have tested five aggregation methods on a small sample (6 queries) using
the following search engines for rankers:

34

queries computer viruses, death penalty, mining coal goal silver,
photography, wireless communications

rankers Altavista, Clusty, Dogpile, Excite, Google, Looksmart,
Metacrawler, MSN, Search, Teoma, Yahoo

aggregators Average, Median, Median with IBF optimization,
PageRank, Precision Optimal

For each query and every pair of aggregation methods, we determined man-
ually which aggregator was superior. To do this, we used the pair of objects
with highest rank discrepancy in the two aggregate rankings, and then man-
ually determined which object was more relevant to the query. The results
between every pair of rankers were averaged over queries. The relative per-
formance of these aggregators on this set of queries is summarized in the
figure below.

PrOpt MeIBF

Av MePg

Figure 4: Small sample real dataset results

As can be observed in Figure 4, the optimal aggregator is Precision
Optimal and PageRank aggregators. The average variance in the rank of an
object over the rankers was high and a clustering of the rankings provided
by the different rankers revealed only one significant cluster, indicating little
asymmetry between the rankers. To find a cluster among the rankers, we
constructed a graph where each ranker is a vertex and each edge has a
weight that corresponds to the average Kendall-tau distance between the
two rankers for the above studied queries. Assuming the rankers are not all
using the incorrect weights, we can assume that there is little misinformation
in this setting. As a result, we conclude that the we are in the high noise low
misinformation aggregation scenario, and according to our results within the

35

statistical framework, the optimal aggregator should be Precision Optimal
and PageRank, which agrees with what was determined empirically.

Our results indicate that through a somewhat qualitative analysis of
the ranker results, the level of noise and misinformation can be roughly
determined and leads to the correct choice of aggregator from within the
statistical framework.

5 Conclusion

In this paper, we introduce a realistic statistical framework for creating
synthetic data sets and we use model to study the rank aggregation prob-
lem. Within this framework, rankers are constructed as perturbations of the
ground truth model. The ground truth ranker (not a priori known) has the
benefit of complete and accurate knowledge of the factors and weights in the
linear combination formula. The perturbations of the other rankers can be
chosen to represent a number of different, realistic features that may arise
in a realistic ranker aggregation problem: spam, correlation among rankers,
hard vs. easy aggregation problems, outlier rankers (eg. the bi-partisan
setting). The main feature of the statistical framework is that, given some
estimates of the characteristic properties of the ranker ensemble (such as
symmetry and level of noise), one can quantitatively investigate the per-
formance of different aggregation methods. This gives a more principled
approach to selecting an aggregation method for the particular application
setting. We performed an experimental evaluation of several aggregators
using our statistical framework and provided initial guidelines for choosing
an aggregator based on the information used and robustness of the rankers,
and the aggregation setting.

To summarize our conclusions, if computational complexity is a concern,
then one of Av, Me, CombMNZ and PrOpt will usually perform well,
depending on the ranker properties: when there is little noise or asymmetry
among the rankers, Av is good; when there is significant asymmetry among
the rankers, then Me is good; and, when there is significant noise, then
PrOpt or CombMNZ are good. Pg and Kendall-tau optimized aggrega-

36

tors are difficult to compute, however they appear to perform well generally.
In particular, IBF appears most robust and performs well when there is
some noise and asymmetry among the rankers. Further, IBF can be used
in conjunction with any other aggregator as a starting point. Contrary to
the conclusion in [7] we did not find any settings in which ADJ systemat-
ically outperforms the other aggregators. We also performed small sets of
tests using real data from TREC Conferences and also from 11 commer-
cial (meta)-search engines that supports our finding from the experimental
evaluation. The real datasets had varying amount of noise but low misin-
formation.

The complexity robustness tradeoff is not unfamiliar in machine learning
and appears in the bias/variance trade off and the VC-dimension/generalization
tradeoff [3]. We see that this is an important tradeoff to keep in mind in
the rank aggregation problem as well.

The real data results provide some evidence that our algorithms could
be beneficial in a real world environment. In general, we cannot expect a
single aggregation algorithm to do well in all scenarios. Search engines or
any other set of input rankers may have varying levels of noise and mis-
information depending on the specific query. The challenge is to develop
methods to estimate the amount of noise and misinformation in the data
with little user intervention and then use the most appropriate aggregator
for a new scenario. However, our results also show that in presence of asym-
metry between rankers, aggregating all the information may not always be
the best choice. It may be desirable to either consider only the majority
opinion or present alternate rankings for each different opinion based on
user preferences.

References

[1] J. A. Aslam and M. Montague. Models of metasearch. In Proceedings of ACM
SIGIR, pages 276–284, 2001.

[2] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which
it can be difficult to tell who won the election. Social Choice and Welfare,
6(2):157–165, 1989.

37

[3] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[4] J. C. Borda. Mémoire sur les élections au scrutin. In Histoire de l’Académie
Royale des Sciences, 1781.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Proceedings of ACM WWW, pages 107–117, 1998.

[6] R. C. David Lillis, Fergus Toolan and J. Dunnion. Probfuse: A probabilistic
approach to data fusion. In Proceedings of ACM SIGIR, pages 139–146, 2006.

[7] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods
for the web. In Proceedings of ACM WWW, pages 613–622, 2001.

[8] N. Eiron and K. S. McCurley. Analysis of anchor text for web search. In
Proceedings of ACM SIGIR, pages 459–460, 2003.

[9] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J.
Discrete Mathematics, 17(1):134–160, 2003.

[10] J. Fox and E. Shaw. Combination of multiple sources: The trec-2 interactive
track matrix experiment. In Proceedings of ACM SIGIR, 1994.

[11] J. Hiler. Google time bomb. In www.microcontentnews.com/articles/googlebombs.htm,
2002.

[12] T. Joachims. Optimizing search engines using clickthrough data. In Proceed-
ings of ACM SIGKDD, pages 133–142, 2002.

[13] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal, 49(1):291–307, 1970.

[14] J. H. Lee. Analyses of multiple evidence combination. In Proceedings of ACM
SIGIR, pages 267–276, 1997.

[15] Y. Lu, W. Meng, L. Shu, C. Yu, and K.-L. Liu. Evaluation of result merg-
ing strategies for metasearch engines. In Proceedings of the 6th international
Conference on Web Information Systems Engineering (WISE), 2005.

[16] M. Montague and J. A. Aslam. Condorcet fusion for improved retrieval. In
Proceedings of ACM CIKM, pages 538–548, 2002.

[17] M. E. Renda and U. Straccia. Web metasearch: Rank vs. score based rank
aggregation methods. In Proceedings of ACM SAC, pages 841–846, 2003.

[18] D. Saari. Basic Geometry of Voting. Springer-Verlag, 1995.

38

[19] C. C. Vogt. How much more is better? characterizing the effects of adding
more ir systems to a combination. In Proceedings of RIAO Conference, 2000.

[20] B. Yuwono and D. L. Lee. Server ranking for distributed text retrieval sys-
tems on the internet. In Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications (DASFAA), pages 41–50, 1997.

39

PgADJ

RndIBF

0.002
CombMNZ

0.003
AvADJ

0.003

MeADJ

0.003

MeIBF
0.002

PgIBF
0.003

AvIBF

0.003

Pg

0.003

CFuse

0.002

PrOpt

0.003

Me

0.002

Av

0.001

8.5E-4

7.5E-4

9.7E-4

0.001

0.001

6.7E-4

6.2E-4

0.001

8.7E-4

0.001

MeIBF

RndIBF0.014

Me

0.018

MeADJ

0.005

CFuse

0.008

CombMNZ

0.018

0.016

PrOpt

0.017

0.014

PgADJ

0.017

0.015

AvADJ 0.015

0.012

PgIBF
0.015

0.012

AvIBF

0.012

0.010

Pg

0.016

0.013

Av

0.013

0.011

(a) nMI = 0, σ2=0.10 (b) nMI = 0, σ2=1.0

Av Me
0.100

MeADJ
0.026

AvADJ
0.058

CFuse
0.076

AvIBF
0.017

RndIBF
0.010

MeIBF
0.014

PgIBF
0.008

PgADJ 0.014

Pg

0.017

CombMNZ
0.013

0.010

PrOpt

0.012

0.010

(c) nMI = 0, σ2=5.0

Me Av
0.063

AvADJ
0.080

MeADJ
0.031

CFuse
0.312

AvIBF
0.095

MeIBF
0.008

RndIBF

0.002

CombMNZ

0.009

0.016

PrOpt
0.012

0.019

PgADJ

0.010

0.017

PgIBF

0.008

0.015

Pg

0.006

0.013

(d) nMI = 0, σ2=7.5

Figure 5: Precision (P@10) for nMI = 0 with different levels of noise
40

Pg Av
0.722

AvADJ
1.024

AvIBF
0.367

CombMNZ
0.013

PgADJ
0.013

RndIBF 0.009

PgIBF

0.007MeIBF

0.061

0.062CFuse
0.046

PrOpt
0.015

MeADJ
0.007

Me
0.004

(a) nMI = 2, σ2 = 0.10

Av

Me

0.128

MeADJ

0.120AvADJ

0.111

0.120CFuse
0.272

CombMNZ

0.095
RndIBF

0.096

PrOpt
0.094

PgIBF

0.005

0.003

MeIBF
0.097

PgADJ

0.092

AvIBF

0.094

Pg

0.089

(b) nMI = 2, σ2 = 7.5

Figure 6: Precision (P@10) for nMI = 2 with different levels of noise

41

PrOpt

CFuse

0.002

PgADJ

0.002CombMNZ

0.002

MeIBF 0.003
PgIBF

0.004

0.005

0.004

0.004

MeADJ

0.003

0.003

0.003

0.002

Me

0.012

0.013

AvIBF
0.012

0.014

Pg

0.011

0.010RndIBF
0.005

AvADJ
0.349

Av
0.580

(a) nMI = 4, σ2 = 0.10

MeADJ Me
0.066

Av
0.120

AvADJ
0.042

CFuse
0.045

AvIBF
0.085

MeIBF
0.091

RndIBF

0.087
PgIBF

0.025

0.019

0.023

CombMNZ
0.019

PrOpt
0.018

PgADJ

0.017
Pg

0.002

0.003

0.005

(b) nMI = 4, σ2 = 7.5

Figure 7: Precision (P@10) for nMI = 4 with different levels of noise

high noise

Pg PgADJ PgIBF Pg Pg
PgADJ PgIBF MeIBF PgADJ PrOpt
PrOpt PrOpt PrOpt PrOpt

PrOpt PrOpt RndIBF Av Av
[Pg] [MeIBF] MeIBF [Pg, AvADJ] [AvADJ]

Av AvIBF RndIBF Av Av
[AvADJ] [RndIBF, PgIBF] [PgIBF] [AvADJ] [AvADJ]

AvADJ AvIBF RndIBF Av Av
[PgADJ] [PgIBF] [PgIBF] [Pg] [Pg]

low noise
less more
 misinformation misinformation

high noise

PrOpt PrOpt PrOpt PrOpt Pg
Pg [Pg] [PgADJ] Pg [PrOpt, PgADJ]

PgADJ PgADJ PgIBF Av Av
[PgIBF] [PgIBF] [AvIBF] [Pg, PrOpt] [AvADJ]

AvIBF RndBF RndIBF Av Av
[PgIBF] [AvIBF] [AvIBF] [Pg] PrOpt

MeADJ AvIBF RndIBF Av Av
[AvIBF] [AvADJ] [AvIBF] [Pg] PrOpt

low noise
less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 8: 10% Missing Objects

42

high noise

PrOpt PrOpt PrOpt PrOpt Pg
Pg [Pg, PgADJ] Pg Pg PrOpt

PgADJ PgADJ

Av Av Av Av Av
[AvADJ] [AvADJ] [AvADJ] [AvADJ] [AvADJ]

Av Av Av Av Av
[AvADJ] [AvADJ] [AvADJ] [AvADJ] [AvADJ]

Av Av Av Av Av
[AvADJ] [AvADJ] [AvADJ] [AvADJ] [AvADJ]

low noise
less more
 misinformation misinformation

high noise

PgIBF PgIBF PrOpt PgADJ AvADJ
[PgADJ] [PgADJ, PrOpt] PgADJ [Pg] [Av

PgIBF PgADJ, PgIBF]

Av AvADJ Av Av Av
[AvADJ] [Av] [AvADJ] [AvADJ] [AvADJ]

Av AvADJ Av Av Av
AvADJ [Av] [AvADJ] [AvADJ] [AvADJ]

AvADJ AvADJ Av Av Av
[Av] [Av] [AvADJ] [AvADJ] [AvADJ]

low noise
less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 9: 50% Missing Objects

high noise

PgADJ PrOpt PrOpt PrOpt PrOpt
[PrOpt, PgADJ [Pg*, *IBF] Pg* Pg

Pg, PgIBF] PgIBF

PrOpt PrOpt PrOpt Pg Pg
Pg [Pg, PgADJ, *IBF [PgADJ, PrOpt] [PgADJ, PrOpt]

PgADJ MeIBF]

Pg PgIBF MeADJ Av Av
[PrOpt, MeIBF [Me] [Pg] [AvADJ]

PgADJ, PgIBF]

Av PrOpt Me Av Av
[*ADJ, MeIBF [MeADJ, PrOpt] [Pg] [AvADJ]

AvIBF, PgIBF] PgADJ

low noise
less more
misinformation misinformation

high noise

PrOpt PrOpt MeIBF PrOpt PrOpt
Pg MeIBF [RndIBF, PrOpt] [Pg, MeIBF] Pg

PrOpt PrOpt PrOpt PrOpt PrOpt
[Pg] [Pg] PgADJ Pg Pg

Pg RndIBF MeIBF Av PrOpt
[Av, PrOpt] [MeIBF] [RndIBF] [Pg, PrOpt] Av

PrOpt MeIBF Me Av PrOpt
Av [MeADJ] [MeADJ] [Pg, PrOpt] [Av]
Pg

low noise
less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 10: Objects are positively correlated for one factor of the ground
truth with σn = 0.60

43

high noise

PrOpt PgADJ PrOpt PrOpt PrOpt
Pg* PgIBF AvIBF Pg Pg*
IBF Pg *IBF

PrOpt PrOpt PrOpt PgIBF PrOpt
Pg* Pg* Pg* [PgADJ, MeIBF, [Pg, Av, Me]
*IBF *IBF *IBF RndIBF]

PrOpt PrOpt AvIBF Pg Me
[Pg] [Pg, PgADJ, [MeIBF, RndIBF] PgADJ [MeADJ]

AvIBF] PrOpt

Pg PgADJ RndIBF Av Av
[PgADJ] [PrOpt, [PgIBF, MeIBF] [AvADJ] [AvADJ]

Pg, PgIBF]

low noise
less more
misinformation misinformation

high noise

PrOpt PrOpt PrOpt Pg Pg
Pg* [*IBF, Pg] RndIBF [PgADJ, MeIBF, [PgADJ, AvIBF]
*IBF AvIBF]

MeIBF MeIBF MeIBF Pg Pg
RndIBF [RndIBF, PrOpt] [PrOpt, RndIBF] [PgADJ, MeIBF, [PgADJ, Me]

AvIBF]

PrOpt PrOpt PrOpt Pg Me
[Pg] [Pg] [AvIBF] [PgADJ, PrOpt] [Av]

Pg PgADJ RndIBF Av Av
[Av] [PgIBF, RndIBF] [MeIBF, AvIBF] [AvADJ] [AvADJ, PrOpt]

low noise
less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 11: Objects are negatively correlated for one factor of the ground
truth with σn = −0.60

high noise

PrOpt PrOpt PrOpt Pg PrOpt
[PgADJ] [PgADJ, MeIBF] MeIBF [PrOpt, Av, Av, Pg

MeADJ PgADJ, AvADJ] PgADJ

PrOpt PrOpt MeADJ Av Av
[Pg*, AvADJ] [PgADJ, MeIBF] [MeIBF] [Pg] [Pg]

Av PrOpt, MeIBF Me Av Av
[AvADJ, AvIBF, PgADJ, MeADJ MeADJ [Pg] [AvIBF]
PgADJ, PgIBF]

PrOpt PrOpt, MeIBF Me Av Av
Av*,Me*, Pg* PgADJ, MeADJ MeADJ [Pg] [AvIBF]

low noise
less more
misinformation misinformation

high noise

PrOpt MeIBF MeIBF PrOpt PrOpt
[PgADJ] PgADJ [RndIBF] [Pg] [Pg]

Pg MeIBF MeADJ Av PrOpt
[PrOpt, Av] PgADJ [MeIBF] [Pg, PrOpt] [Av]

PrOpt MeADJ Me Av PrOpt
Av [MeIBF] MeADJ [Pg, PrOpt] [Av]
Pg

PrOpt MeADJ Me Av PrOpt
*IBF,*ADJ [MeIBF] MeADJ [Pg, PrOpt] [Av]

Av*,Me*, Pg*

low noise
less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 12: Two factors are positively correlated for the ground truth with
σf = 0.60

44

high noise

Av Av Av Av Av
[AvADJ] [AvADJ] [AvADJ] [AvADJ] [AvADJ]

Av Av Av Av Av
[AvADJ] [AvADJ] [AvADJ] [AvADJ] [AvADJ]

PrOpt PrOpt PrOpt PrOpt PrOpt
Pg [Pg] [Pg, PgADJ] [Pg] [Pg]

PrOpt, Av PrOpt PrOpt PrOpt PrOpt
PgADJ, AvIBF PgADJ [Av*, Pg*] Av*, Pg* Av*, Pg*

Av*

low noise
less more
misinformation misinformation

high noise

Av Av Av Av Av
[AvADJ] [AvADJ] [AvADJ] [AvADJ] [AvADJ]

Av Av Av Av Av
[AvADJ] [AvADJ] [AvADJ] [AvADJ] [AvADJ]

Pg Pg Pg Pg Pg
[PgADJ] [PgADJ] PgADJ PgADJ [PgADJ]

Av Av Pg Av Pg
Pg Pg [Av] Pg [Av]

PrOpt

low noise
less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 13: Two factors are negatively correlated for the ground truth with
σf = −0.60

high noise

MeIBF AvIBF AvIBF PrOpt Pg
[*IBF] MeIBF MeIBF [Pg, PgADJ, [PrOpt,PgADJ]

RndIBF RndIBF AvIBF]

PrOpt MeIBF MeIBF Pg Av
Pg* [AvIBF, RndIBF] [RndIBF] [PrOpt, Av, [AvADJ]

MeIBF PgADJ]

PrOpt MeIBF Me Av Av
Pg [PrOpt, PgADJ] [PrOpt, MeADJ] [Pg] [AvADJ]

PgADJ

Av, AvIBF PrOpt Me Av Av
MeADJ PgADJ [PrOpt, MeADJ] [Pg] [AvADJ]
MeIBF MeIBF

low noise

less more
misinformation misinformation

high noise

PrOpt MeIBF MeIBF MeIBF, RndIBF Pg
[MeIBF] [PrOpt, RndIBF] [RndIBF] [PrOpt, Pg] [PrOpt, PgADJ]

PrOpt MeIBF MeIBF PrOpt Av
[Pg] [RndIBF] [RndIBF] Pg [Pg]

[Av]

MeIBF MeADJ Av PrOpt
Pg [MeADJ] [Me] [PrOpt, Pg] Av
[Av] [Pg]

MeIBF Me Av PrOpt
[Me, RndIBF] [MeADJ] MeADJ [PrOpt, Pg] [Av]

[MeIBF]

low noise

less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 14: Positive correlation between errors performed by rankers for two
objects for the same factor with σ∗n =< 0.60, 0.60, 0.0, 0.0, 0.0 >

45

high noise

PrOpt PrOpt PrOpt PrOpt Pg
Pg* PgIBF MeIBF Pg [PrOpt, PgADJ]

MeIBF MeIBF RndIBF PgADJ

PrOpt PrOpt MeIBF Av Av
[Pg, PgADJ] MeIBF RndIBF [AvADJ, Pg] [AvADJ]

PrOpt PrOpt Me Av Av
Pg* PgADJ [MeADJ, PrOpt] [Pg] [AvADJ]
Av* MeIBF

PrOpt Me Av Av
[Me, RndIBF] PgADJ [MeADJ, PrOpt] [Pg] [AvADJ]

low noise

less more
misinformation misinformation

high noise

PrOpt PrOpt PrOpt PrOpt PrOpt
[Pg] [Pg] [MeIBF, Pg] Pg Pg

[PgADJ] [PgADJ]

PrOpt PgADJ MeIBF Pg Av
[Pg] [MeIBF] [PgIBF, RndIBF] [PrOpt, Av] [Pg]

Pg MeIBF Me Av PrOpt
[Av, PrOpt] [RndIBF] MeADJ [PrOpt, Pg] Av

[MeIBF] [Pg]

PrOpt MeIBF Me Av PrOpt
[Av, Pg] MeADJ [MeADJ] [PrOpt, Pg] [Av]

[Me]

low noise

less more
misinformation misinformation

(a) precision (P@10) (b) Kendall-tau error measure

Figure 15: Positive correlation amongst the rankers with σ∗R = 0.10

46

