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Abstract

Direct routing is the special case of bufferless routing where N packets, once injected

into the network, must be delivered to their destinations without collisions. We give a

general treatment of three facets of direct routing:

(i) Algorithms. We present a polynomial time greedy direct algorithm which is worst-

case optimal. We improve the bound of the greedy algorithm for special cases, by

applying variants of the this algorithm to commonly used network topologies. In

particular, we obtain near-optimal routing time for the tree, mesh, butterfly and

hypercube.

(ii) Complexity. By a reduction from Vertex Coloring, we show that optimal Direct

Routing is inapproximable, unless P=NP.

(iii) Lower Bounds for Buffering. We show that certain direct routing problems cannot

be solved efficiently; in order to solve these problems, any routing algorithm

needs buffers. We give non-trivial lower bounds on such buffering requirements

for general routing algorithms.
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1 Introduction

Direct routing is the special case of bufferless routing where N packets need to be delivered

from their sources to their destinations without colliding with each other, i.e., once injected,

the packets proceed “directly” to their destination without being delayed (buffered) at in-

termediate nodes. Since direct routing is bufferless, packets spend the minimum possible

time in the network given the paths they must follow – this is appealing in power/resource

constrained environments (for example optical networks or sensor networks). From the point

of view of quality of service, it is often desirable to provide a guarantee on the delivery time

after injection, for example in streaming applications like audio and video. Direct routing

can provide such guarantees.

A path-routing problem is specified by a set of packets with respective sources and desti-

nations on a network (graph), together with a corresponding path for each packet. Given a

path-routing problem, the task of a direct scheduling algorithm (or direct algorithm for short)

is to compute the injection times of the packets. If the packets are injected at their specified

times, they will follow their respective paths to their destinations without collisions. The

objective is to minimize the routing time rt, which is the time at which the last packet is

absorbed at its destination. We note that direct algorithms are inherently offline, since the

computation of injection times requires knowledge about all packets in order to guarantee

no collisions between the packets.

We assume a synchronous model for routing, in which during every time step, a packet

may traverse one link. We measure the routing time of a direct routing algorithm with

respect to the congestion C (the maximum number of packets that use an edge) and the

dilation D (the maximum length of any path). Denote by rt∗ the optimal routing time

for a given path-routing problem. Since packets can traverse at most one link per time

step, a well known lower bound on the routing time for any algorithm (direct or not) is

rt∗ ≥ max{C, D} ≥ 1
2
(C + D) = Ω(C + D). It is generally desirable to design scheduling

algorithms with routing times close to this lower bound.

Another kind of routing problem we consider is the batch-routing problem, in which we

are given a set of packets with sources and destinations but the paths are not specified.

We convert instances of batch-routing problems to instances of path-routing problems by

finding appropriate paths for the packets. The congestion and dilation of the chosen paths

affect the efficiency of the scheduling algorithm. In general we want to find paths which

minimize C and D. Let C∗ and D∗ be the congestion and dilation of the optimal paths

(i.e. the paths that minimize max{C, D}). Then, for any scheduling algorithm it holds that

rt∗ = Ω(C∗ + D∗), and it is desirable to achieve routing times close to this lower bound.

Since the above lower bounds on the routing time for path or batch-routing problems
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apply for any scheduling algorithm (direct or not), we are comparing the performance of our

algorithms to optimal algorithms which may use buffers.

1.1 Contributions

We give a general analysis of three aspects of direct routing, namely efficient algorithms for

direct routing; the computational complexity of direct routing; and, the connection between

direct routing and buffering.

1.1.1 Algorithms

We first study path-routing problems in arbitrary networks. We give a greedy direct al-

gorithm with routing time O(C · D). We show that this is worst-case optimal for direct

algorithms. A natural question is whether one can improve this routing time bound for

routing problems on particular network topologies. We study batch-routing problems on the

tree, mesh, hypercube, and butterfly, for which we show that there exist paths for which

simple variations of the greedy direct algorithm give routing times close to the optimal rout-

ing time Ω(C∗ +D∗). Thus, in many cases, efficient routing can be achieved without the use

of buffers.

Throughout, we will use the expression with high probability (w.h.p.) to denote a proba-

bility of the form 1 − O(n−α), for some α > 0, where n is the size of the network.

Arbitrary Networks: We consider path-routing problems on arbitrary network topologies.

We give a simple greedy direct algorithm which considers packets in some order, as-

signing the first available injection time to each packet. The greedy algorithm is really

a family of algorithms, a particular realization of which depends on the particular or-

dering of the packets that is chosen. Different orderings can lead to different routing

times, and we make use of this dependence to determine particular “good” orderings

for specific networks such as the tree and the mesh (see below).

For any ordering of the packets, the greedy direct algorithm guarantees a routing time

rt ≤ C · D. We show that this is worst-case optimal: there exist instances of path-

routing problems for which no direct algorithm can achieve a better routing time than

C · D.

Tree: We study batch-routing problems on arbitrary trees. Given a set of packets with

arbitrary sources and destinations, we convert the batch-routing problem to a path-

routing problem by assigning the unique shortest paths to the packets. These paths

are optimal in terms of congestion and dilation, since any other selection of paths must
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include the shortest paths. We give a direct algorithm for the path-routing problem

using the shortest paths, with routing time rt ≤ 2C∗ + D∗ − 2 < 3 · rt∗. The direct

algorithm is obtained using the greedy algorithm with a particular ordering of the

packets.

Mesh: We study batch-routing problems on the d-dimensional mesh with n nodes. Given

a set of packets with arbitrary sources and destinations, we convert the batch-routing

problem to a path-routing problem, by using near-optimal paths with respect to the

congestion and dilation (the paths are obtained using the construction described in

[10]). Using these paths, we give a direct algorithm which, with high probability, has

routing time

rt = O(d2C∗ log2 n + d2D∗) = O(d2 · log2 n · rt∗).

This result follows from a more general result we give for path routing problems on the

mesh: if the paths contain at most b “bends”, i.e. at most b dimension changes, then

we give a direct algorithm with routing time O(b ·C + D). This direct algorithm gives

the near optimal routing time as advertised, because the paths constructed in [10] have

O(d logn) bends with congestion C within d log n of the optimal C∗, and dilation D

within d2 of the optimal D∗.

We also study permutation batch-routing problems on the 2-dimensional mesh, in which

each node is the source and destination of one packet. We show that if the packets

follow one-bend shortest paths, then using the same direct algorithm, we obtain routing

time a constant factor away from optimal.

Butterfly: We study permutation batch-routing problems on a butterfly with n inputs. We

first convert an input instance of the permutation to a path-routing problem using

Valiant’s method [29, 30]: we use two butterflies connected back to back, and each

packet uses a path to an intermediate random node in the output of the first butterfly.

The path selection guarantees that the congestion is O(lg n), with high probability.

We then apply the direct schedule obtained by the greedy algorithm using an arbitrary

ordering of the packets, which gives routing time rt ≤ 5 lg n, with high probability.

This bound is within a constant factor from optimal, since D∗ = Ω(log n).

Hypercube: We study permutation batch-routing problems on a hypercube with n nodes.

We convert the permutation problem to a path-routing problem by selecting a random

intermediate node for each packet. The paths from the source to the intermediate

node are obtained by lexicographically bit-fixing the bits of the source to match those

of the intermediate node. Then a similar approach is used to construct the path from

the intermediate node to the destination. We then apply the greedy direct algorithm
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with an arbitrary ordering of the packets to obtain the direct schedule. The resulting

schedule has routing time rt < 14 lg n, with high probability. This is a worst-case

constant factor approximation to the optimal schedule, since there exist permutations

for which D∗ = Ω(lg n).

1.1.2 Computational Complexity

We show that the problem of finding the optimal direct schedule for path-routing problems

is NP-complete. Thus, there are instances of path-routing for which computing the optimal

schedule is computationally hard. In order to obtain this result, we reduce the vertex coloring

problem to path routing. In particular, given an instance of the vertex coloring problem,

we construct, in polynomial time, an instance of a path-routing problem with dilation D,

such that the vertex coloring has a solution with k colors if and only if there exists a direct

routing schedule with routing time D + k − 1. Thus, the reduction is gap-preserving [16], so

direct routing is as hard to approximate as coloring.

1.1.3 Lower Bounds for Buffering

We construct path-routing problems for which every direct algorithm requires routing time

C · D, while (C + D) = Θ(
√

C · D) = o(C · D). If we were allowed to use buffers, there

exist scheduling algorithms ([20, 23, 25]) that would give routing time close to the optimal

O(C + D). Thus, in order to solve the above routing problems efficiently, packets have to

be buffered (we say that a packet is buffered if it remains in the buffer of a node for a time

step, given that the packet was in the same node the previous time step). We study what

the minimum buffering requirments would be in order to improve the routing time of the

schedule. Specifically, we show that in order to obtain a routing time which is O(C + D),

a scheduling algorithm has to buffer packets Ω(N4/3) times in total. More generally, we

show that to obtain a routing time within N ε of optimal, a scheduling algorithm must buffer

packets Ω(N (4−2ε)/3) times.

1.2 Related Work

The only previous work which specifically addresses direct routing is for permutation prob-

lems on trees [3, 28], where the authors obtain a routing time O(n) for any tree with n nodes.

This result is worst-case optimal, since there are permutations on trees with rt∗ = Ω(n).

However there are many examples where their algorithms are sub-optimal, for example, for

a permutation routing on a star network, in which case they obtain a routing time Ω(n).

Our algorithm for trees is every-case optimal for arbitrary routing problems, in particular

for a permutation routing on a star network, our algorithm gives routing time O(1).
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Cypher et al. [12] study an online version of direct routing in which a worm (packet of

length L) can be re-transmitted if it is dropped (they also allow the links to have bandwidth

B ≥ 1). For the case corresponding to our work (L = B = 1), they give an algorithm with

routing time O((C + log n) · D). We give an off line algorithm with routing time O(C · D),

show that this is worst case optimal, and that it is NP-hard to give a good approximation

to the optimal direct routing time. We also obtain near-optimal routing time (with respect

to buffered routing) for many interesting networks, for example the mesh.

Adler et al. [1] study a dual to the direct routing problem, which is time constrained

routing, where the task is to schedule as many packets as possible within a given time frame.

They show that the time constrained version of the problem is NP-complete, and also study

approximation algorithms on linear networks, trees and meshes. They also discuss how much

buffering could help in this setting.

Other models of bufferless routing are matching routing [2, 26, 31], where packets move to

their destinations by swapping packets in adjacent nodes, and hot-potato routing [4, 5, 7, 8, 9,

14, 17, 22], in which packets follow links that bring them closer to the destination, and if they

cannot move closer (due to collisions) they are deflected. A basic difference between those

routing models and direct routing is that the packets don’t follow some specific path. Optimal

routing for given paths on arbitrary networks have been studied extensively in the context

of store-and-forward algorithms (which are algorithms with buffers) [19, 20, 23, 25, 27].

Paper Organization. We give some necessary preliminaries in Section 2. Then, we

present direct scheduling algorithms in Section 3 followed by the computational complex-

ity of direct routing in Section 4, ending with lower bounds on buffering in Section 5. We

conclude with some discussion of out results in Section 6.

2 Preliminaries

2.1 Problem Definitions

Consider a graph G = (V, E) with n ≥ 1 nodes. A path p in G is a sequence of nodes

p = (v1, v2, . . . , vk). The length of a path p, denoted |p|, is the number of edges in the path.

For any edge e = (vi, vj) ∈ p, let dp(e), the depth of e in p, denote the length of the path

(v1, . . . , vi, vj), which is the prefix of p ending at e.

We consider routing problems where packets need to be delivered in the network. We

model the graph so that the nodes are synchronous: time is discrete and all nodes take steps

simultaneously. At each time step, at most one packet can follow a link in each direction;

thus, at most two packets can follow a link at the same time, one packet at each direction.
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A path-routing problem (G, Π,P) is specified by a set of N ≥ 1 packets Π = {πi}N
i=1;

each packet has a pre-specified path pi = (si, . . . , δi) ∈ P, where si is the source and δi

the destination of the packet. The objective is to send the packets to their destinations by

following the pre-specified paths.

Consider two packets πi and πj . We say that their respective paths pi and pj interfere if

they share an edge in the same direction; in this case we also say that the packets interfere.

The packets collide if they appear in the same node at the same time, and the next edge in

their paths is the same.

Given a path-routing problem, in direct routing, the packets are sent to their destinations

with no collisions. The only parameter that needs to be computed is the injection times

of the packets which will guarantee collision-free delivery of the packets. Thus, a set of

injection times T = {τi}N
i=1 specifies a valid direct schedule if each packet πi is injected at its

corresponding time τi into its source si, then it will follow its path without collisions to its

destination where it will be absorbed at time ti = τi + |pi|.
For a path-routing problem (G, Π,P), the task of a direct scheduling algorithm (or direct

algorithm for short) is to compute a direct schedule T . The routing time of the algorithm,

denoted rt(G, Π,P), is the maximum time at which a packet gets absorbed at its destination,

rt(G, Π,P) = maxi{τi + |pi|} (this is also the routing time of the direct schedule T ). The

offline time of the algorithm, ol(G, Π,P) is the number of operations used to compute the

direct schedule T .

We also study batch-routing problems in which the paths are not specified in the beginning.

In particular, a batch routing problem (G, Π, Q) specifies for each packet π ∈ Π, a pair of

sources and destinations (si, δi) ∈ Q. Interesting batch-routing problems are permutation

problems, in which every node in G is the source and destination of one packet, and random

destination problems, in which each node is the source of one packet and the destination of

a packet is chosen randomly in the network. In order to solve batch-routing problems, we

first convert them to path-routing problems, by selecting appropriate paths for the packets,

and then apply a direct algorithm.

2.2 Dependency Graphs

Consider a path-routing problem (G, Π,P). The dependency graph D of the routing problem

is a graph in which each packet πi ∈ Π corresponds to a unique node. We will use πi to refer

to the corresponding node in D. There is an edge between two packets in D if their paths

interfere. An edge (πi, πj) with i < j in D has an associated set of weights Wi,j: w ∈ Wi,j if

and only if πi and πj interfere on some edge e for which dpi
(e)−dpj

(e) = w. Thus, in a valid

direct routing schedule with injection times τi, τj for πi, πj , it must be that τj −τi 6∈ Wi,j . An

6



illustration of a direct routing problem and its corresponding dependency graph are shown

in Figure 1.

π1

π3

π2

π4

W1,3 = {2}

W1,2 = {0,−2}

π2

π1 π3

π4

path-routing problem (G, Π,P) dependency graph D

Figure 1: An example direct routing problem and its dependency graph.

We say that two packets are synchronized if they are adjacent in D and 0 is in the weight

set of the edge in D connecting the two packets. A clique K in D is synchronized if all the

packets in K are synchronized, i.e., if 0 is in the weight set of every edge in K. No pair in a

synchronized clique can have the same injection time, as otherwise they would collide. Thus,

the size of the maximum synchronized clique in D gives a lower bound on the routing time:

Lemma 2.1 (Lower Bound on Routing Time) Let K be a maximum synchronized

clique in the dependency graph D. Then, for any direct algorithm, rt(G, Π,P) ≥ |K|

We define the weight degree of an edge e in D, denoted W (e), as the size of the edge’s weight

set. We define the weight degree of a node π in D, denoted W (π), as the sum of the weight

degrees of all edges incident with π. We define the weight of the dependency graph, W (D),

as the sum of the weight degrees of all its edges, W (D) =
∑

e∈E(D) W (e). For the example

in Figure 1, W (D) = 3.

3 Algorithms

Here we consider algorithms for direct routing. All the direct algorithms we give are based

on a greedy algorithm which finds schedules for arbitrary path-routing problems in arbitrary

networks. The greedy direct algorithm guarantees a routing time O(C ·D). There exist path

routing instances for which the direct routing time is Ω(C ·D), i.e., no direct algorithm can
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perform better than the greedy algorithm, hence the greedy algorithm is worst case optimal.

We give variations of the greedy direct algorithm which improve on the O(C · D) general

bound for specific architectures, such as the tree, mesh, butterfly, and hypercube, as we

discuss in the next subsections. The greedy algorithm is as follows:

1: // Greedy Direct Algorithm:

2: // Input: path-routing problem (G, Π,P) with N packets Π = {πi}N
i=1.

3: // Output: Set of injection times T = {τi}N
i=1.

4: Let π1, . . . , πN be any arbitrarily chosen ordering of the packets.

5: for i = 1 to N do

6: Greedily assign the first available injection time τi to packet πi ∈ Π, so that it does

not collide with any packet already assigned an injection time.

7: end for

The greedy direct algorithm is really a family of algorithms, one for each specific ordering of

the packets. By construction, no packet πj collides with any packet πi with i < j, and thus,

by induction, the greedy algorithm produces a valid direct schedule. The routing time for

the greedy algorithm will be denoted rtGr(G, Π,P). Consider the dependency graph D for

the routing problem (G, Π,P). We can show that τi ≤ W (πi), where W (πi) is the weight

degree of packet πi, which implies:

Lemma 3.1 rtGr(G, Π,P) ≤ maxi{W (πi) + |pi|}.

Proof: We show that the injection times assigned by the greedy algorithm satisfy τi ≤
W (πi), from which the claim follows immediately. For packet i, we consider the path pi and

the interval of times [0, W (πi)]. Every time a packet σ, that has already been assigned an

injection time, uses an edge on pi, we remove the (at most one) injection time in this set that

would cause πi to collide with σ at the time σ uses this edge. Since W (πi) is the number of

times packets can collide with πi, we remove at most W (πi) injection times from this set. As

there are W (πi) + 1 injection times in this set, it cannot be empty, so the greedy algorithm

must assign an injection time to πi that is in this set, as it assigns the smallest available

injection time.

We now give an upper bound on the routing time of the greedy algorithm in terms of C

and D. Since the congestion is C and |pi| ≤ D ∀i, a packet interferes with other packets at

most (C − 1) · D times. Thus, W (πi) ≤ (C − 1) · D, ∀i. Therefore, using Lemma 3.1 we

obtain:

Theorem 3.2 (Greedy Routing Time Bound) rtGr(G, Π,P) ≤ C · D.
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We briefly discuss the offline time of the greedy algorithm. Each time an edge on a packets

path is used by some other packet, the greedy algorithm will need to desynchronize these

packets if necessary. This will occur at most C · D times for a packet, hence,

Lemma 3.3 The offline computation time of the greedy algorithm is olGr(G, Π,P) = O(N ·
C · D)

The bound of Lemma 3.3 is tight, since in the worst case, each packet may have C · D
interferences with other packets. In Theorem 5.1, we establish the existence of hard instances

of direct routing, specifically instances where any direct algorithm requires Ω(C ·D) routing

time. Thus, the general O(C · D) bound on the routing time of the greedy algorithm is

worst-case optimal, to within constant factors. In the next subsections, we will show how the

greedy algorithm can do better for batch-routing problems on specific network architectures

by choosing appropriate paths and then using a more careful choice of the order in which

packets are considered.

3.1 Trees

Here, we consider batch-routing problems on trees. Consider the batch-routing problem

(T, Π, Q), in which T is a tree with n nodes. We construct a path-routing problem (T, Π,P)

such that all the paths in P are shortest paths, for the given sources and destinations in

Q. Shortest paths have optimal congestion on trees, given sources and destinations, since

any other selection of paths must contain the shortest paths. Thus, if the shortest paths

have congestion C and dilation D, any other selection of paths must have at least as much

congestion and dilation, which implies that Ω(C + D) is a lower bound for the routing time.

We now show that the greedy algorithm with a particular order in which the packets are

considered gives an asymptotically optimal schedule. Let r be an arbitrary node of T . Let di

be the closest distance that πi’s path comes to r. The direct routing algorithm can now be

simply stated as the greedy algorithm with the packets considered in sorted order, according

to the distance di, with di1 ≤ di2 ≤ · · · ≤ diN .

Theorem 3.4 (Routing Time on Trees) Let (T, Π, Q) be any batch-routing problem on

the tree T . If the packets follow shortest paths P , then the routing time of the direct greedy

algorithm using the distance-ordered packets is rt(T, Π,P) ≤ 2C + D − 2.

Proof: We show that every injection time satisfies τi ≤ 2C − 2. When a packet πi with

distance di is considered, let vi be the closest node to r on its path (see Figure 2). All packets

that are already assigned times that could possibly collide with πi are those that use the two

edges in πi’s path incident with vi (for example packets π′, π′′ in Figure 2). Hence, there are
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vi

πi

di

r

π′′

π′

Figure 2: The path of a packet πi in the tree

at most 2C −2 such other packets. Since πi is assigned the smallest available injection time,

it must therefore be assigned a time in [0, 2C − 2]. Since the path length of π has length at

most D, we obtain the desired result.

3.2 Mesh

A d-dimensional mesh network M = M(m1, m2, . . . , md) is a multi-dimensional grid of nodes

with side length mi in dimension i. The number of nodes is n =
∏d

i=1 mi, and we define

m =
∑d

i=1 mi. Every node is connected to up to 2d of its neighbors on the grid.

The hard instance of direct routing constructed in Theorem 5.1 is for the two dimensional

mesh. In this problem, any direct algorithm would have routing time Ω(C ·D), and for this

particular problem C · D is strictly worse than C + D (see Theorem 5.1). Thus, with

respect to worst case routing time on arbitrary inputs, the general greedy direct algorithm is

asymptotically optimal for mesh networks. We discuss some important special cases where

the situation is considerably better. In particular, we give a variation of the greedy direct

routing algorithm which is analyzed in terms of the number of times that the packet paths

“bend” on the mesh. We then apply this algorithm to the 2-dimensional mesh in order to

obtain optimal permutation routing, and the d-dimensional mesh, in order to obtain near-

optimal routing for arbitrary batch-routing problems.

3.2.1 Multi-bend Paths

Here, we analyze a variation of the greedy direct algorithm in terms of the number of times

a packet bends in the network. Consider a path-routing problem (G, Π,P). We first give an

upper bound on the weight degree W (D) of dependency graph D in terms of the number

of bends in the paths. We then use the weight degree bound in order to obtain an upper
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bound on the routing time of the algorithm.

For any subset of packets Π′ ⊆ Π, let DΠ′ denote the subgraph of D induced by the set

of packets Π′. (Note that D = DΠ.) Consider the path p of a packet π. Let’s assume that

p = (. . . , vi, v, vj, . . .), such that the edges (vi, v) and (v, vj) are in different dimensions. We

say that the path of packet π bends at node v, and that v is an internal bending node. We

define the source and destination nodes of a packet π to be external bending nodes. The

segment p′ = (ui, . . . , uj) of a path p, is a subpath of p in which only ui and uj are bending

nodes. Consider two packets π1 and π2 whose respective paths p1 and p2 interfere at some

edge e. Let p′1 and p′2 be the two respective segments of p1 and p2 which contain e. Let p′

be the longest subpath of p′1 and p′2 which is common to p′1 and p′2; clearly e is an edge in p′.

Let’s assume that p′ = (vi, . . . , vj). It must be that vi is a bending node of one of the two

packets, and the same is true of vj . Further, none of the other nodes in p′ are bending nodes

of either of the two packets. We refer to such a path p′ as a common subpath. Note there

could be many common subpaths for the packets π1 and π2, if they meet multiple times on

their paths.

Since p1 and p2 interfere on e, the edge h = (π1, π2) will be present in the dependency

graph D with some weight w ∈ W1,2 representing this interference. Now consider some other

edge e′ 6= e in p′. If the packets π1 and π2 collide at e, then they must collide at e′. This

implies that the interference on edge e′ is represented in the dependency graph D with the

same weight w on the edge h. Similarly, all interferences of the two packets on their common

subpath p′ are represented with the same weight w on edge h. Thus, weight w suffices to

represent the interference of the two packets on the entire subpath p′. Therefore, a common

subpath contributes at most one to the weight-number of D, and in order to find an upper

bound on W (D), we only need to find an upper bound on the number of common subpaths.

Using this observation we obtain the following bound:

Lemma 3.5 For any subset Π′ ⊆ Π, W (DΠ′) ≤ 2(b+1)|Π′|(C−1), where b is the maximum

number of internal bending nodes of any path in Π′.

Proof: For each common subpath, one of the packets must bend at the beginning and one

at the end nodes of the subpath. Thus, a packet contributes to the total number of subpaths

only when it bends. Consider a packet π which bends at a node v. Let e1 and e2 be the two

edges of the path of π adjacent to v. On e1 the packet may meet with at most C − 1 other

packets. Thus, e1 contributes at most C − 1 to the number of common subpaths. Similarly,

e2 contributes at most C − 1 to the number of common subpaths. Thus, each internal bend

contributes at most 2C − 2 to the number of common subpaths, and each external bend

C − 1. Therefore, for the set of packets Π′, where the maximum number of internal bends is
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b, the number of common subpaths is bounded by 2(b+1)|Π′|(C − 1), which is also a bound

on W (DΠ′).

Since the sum of the node weight degrees is 2W (D), we have that the average node

weight degree of the dependency graph for any subset of the packets is upper bounded by

4(b+1)(C−1). We say that a graph D is K-amortized if the average weight degree for every

subgraph is at most K.∗ Thus D is 4(b + 1)C-amortized. A generalized coloring of a graph

with weights on each edge is a vertex coloring in which the difference between the colors of

adjacent nodes cannot equal a weight. K-amortized graphs admit generalized colorings with

K + 1 colors. This is the content of the next lemma.

Lemma 3.6 Let D be a K-amortized graph. Then D has a valid K +1 generalized coloring.

Proof: We use induction on n, the size of G. For n = 1, the claim is trivial. Assume it

is true for n < r for r > 1, and consider n = r. Since the average node weight degree is at

most K, there is a node v with weight degree at most K. Consider the subgraph induced by

D− v. This subgraph is K-amortized, so suppose we have a valid K +1 generalized coloring

of D − v, which exists (by the induction hypothesis). Since v has weight degree at most K,

one of the K +1 colors can now be assigned to it to obtain a valid K +1 generalized coloring

of G.

A generalized coloring of the dependency graph gives a valid injection schedule with

maximum injection time one less than the largest color, since with such an injection schedule

no pair of packets is synchronized. Lemma 3.6 implies that the dependency graph D has a

valid 4(b+1)(C −1)+1 generalized coloring. Lemma 3.6 essentially determines the order in

which the greedy algorithm considers the packets so as to ensure the desired routing time.

Hence, we get the following result:

Theorem 3.7 (Multi-bend Routing Time on Mesh) Let (M, Π,P) be a path-routing

problem on a mesh M with congestion C and dilation D. Suppose that each packet has

at most b internal bends. Then there is a direct schedule with routing time rt(M, Π,P) ≤
4(b + 1)(C − 1) + D.

Note that when b = O(1) then the routing time of Theorem 3.7 is optimal. An imple-

mentation of the induction in the proof of Lemma 3.6 immediately leads to the following

recursive procedure to compute the direct schedule in Theorem 3.7:

1: //Recursive algorithm Injection(Π) to compute direct schedule in mesh:

∗K-amortized graphs are similar to balanced graphs [6].

12



2: //Input: Set of packets Π, together with their paths.

3: //Output: injection times {τi}N
i=1, where τi is injection time for packet πi ∈ Π.

4: if |Π| = 1 then

5: Set τ1 = 0;

6: else

7: Find πj ∈ Π such that W (πj) = minπ∈Π{W (π)};
8: Set Π′ = Π − {πj};
9: Call Injection(Π′) to set the injection times of all packets in Π′.

10: Set τj to the smallest available injection time so as not to collide with any packets

already assigned injection times.

11: end if

3.2.2 Permutation Routing on Mesh

Consider a 2-dimensional
√

n × √
n mesh. Take an arbitrary permutation batch-routing

problem (G, Π, Q). We solve the permutation problem by using shortest paths with at most

one internal bend, such that the packet first moves in the row of its source until the column

of the destination where it bends and then moves in the column toward the destination.

Let P denote the set of paths that we obtained in this manner. Since at most
√

n packets

originate and have destination at each row, the congestion at each edge in the row is at most

O(
√

n). Similarly for edges in rows. Applying Theorem 3.7, and the fact that D = O(
√

n),

we get:

Theorem 3.8 (Permutation Routing Time on Mesh) Let (M, Π, Q) be a permutation

routing problem on a 2-dimensional mesh. Then, there is a selection of paths P with a direct

schedule that gives routing time rt(M, Π,P) = O(
√

n).

Note that that the routing time of Theorem 3.8 is worst case optimal for permutation routing

on the mesh, since there exist permutations with D = 2
√

n− 2, in which a packet goes from

one corner of the mesh to the opposite corner.

3.2.3 Near Optimal Direct Routing on Mesh

Here we consider again the d-dimensional mesh M , for arbitrary d. Suppose we are given an

arbitrary batch-routing problem (M, Π, Q). For any selection of of paths Π for the sources

and destinations in Q, with congestion C and dilation D, it holds that C +D = Ω(C∗ +D∗)

(where C∗ and D∗ denote the smallest possible congestion and dilation of any path selection

for the given sources and destinations Q). Thus, the routing time of any scheduling algorithm

is Ω(C∗ + D∗).
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Maggs et al. [21], give a strategy to select paths in the mesh such that the congestion

achieved by the paths is C = O(dC∗ log n) with high probability. In that algorithm the

dilation is D = O(m log n). Busch et al. [11] improve the dilation to be D = O(d2D∗),

while preserving the congestion bound. The paths obtained by the algorithms in [11, 21],

are constructed from the concatenation of O(log n) dimension-by-dimension shortest paths

between random nodes in the mesh. Since a dimension-by-dimension shortest path between

two nodes on the mesh contains at most d bends, the number of bends that a packet makes

is b = O(d logn). We summarize these observations in the following lemma.

Lemma 3.9 ([11, 21]) For any batch routing problem (M, Π, Q) on the d-dimensional

mesh, there exists paths P that use at most b = O(d logn) bends which achieves near optimal

congestion C = O(dC∗ log n) and near optimal dilation D = O(d2D∗).

Lemma 3.9 combined with Theorem 3.7 give the following result:

Theorem 3.10 (Near Optinal Batch Routing on the Mesh) For any batch-routing

problem (M, Π, Q) on the mesh, there exist packet paths P and a respective direct sched-

ule with routing time rt(M, Π,P) = O(d2C∗ log2 n + d2D∗), with high probability.

Theorem 3.10 implies that there is a direct routing schedule with routing time which is

within a factor d2 log2 n from the optimal.

3.3 Butterfly

We consider the n-input butterfly network B, where n = 2y, y ≥ 0 (see [18]). In the butterfly

network B, each node has a distinct label 〈l, r〉, where l is its level and r is its row. The

rows are labeled by lg n-bit binary addresses. Nodes at level 0 are inputs (sources of packets)

and nodes at level lg n are outputs (destinations of packets). Thus, an n-input butterfly has

n(lg n + 1) nodes. For l < lg n, a node labeled 〈l, r〉 is connected to nodes 〈l + 1, r〉 and

〈l + 1, rl〉, where r(l) denotes r with the lth bit complemented. Note that there is a unique

path from an input node to an output node and the length of the path is lg n + 1.

We study permutation routing problems on the butterfly, in which each input node is the

source of one packet, and each output node is the destination of one packet. In order to solve

the permutation problems efficiently, we will use Valiant’s scheme [29, 30] which uses two

back to back butterflies where packets choose random intermediate nodes before reaching

their destinations. Thus, we first study the random destination problem on a butterfly, which

we then use to solve permutation routing problems.
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3.3.1 Random Destinations on Butterfly

Consider a random destinations routing problem (B, Π, Q) on a butterfly B, in which every

input node is the source of one packet and the destination of each packet is chosen indepen-

dently and uniformly at random among the output nodes of the butterfly. Since the path

from a source to a destination is unique, we immediately obtain a path-routing problem

(B, Π,P), which we solve using the greedy direct algorithm.

A trivial lower bound on the routing time is lg n+1, the length of any path. We will show

that the greedy direct algorithm gives routing time at most 5
2
lg n w.h.p., which is optimal

up to a constant factor. In order to get this bound, we first show that any packet interferes

with at most 3
2
lg n other packets w.h.p. This implies that the maximum weight degree in

the dependency graph D is at most 3
2
lg n (since the paths are shortest paths, as explained

below), and then using Lemma 3.1 we obtain the advertised bound.

Consider a packet πi ∈ Π with path (v0, v1, . . . , vlg n). Let mk, k = 1, . . . , lg n − 1, be

the number of other packets that could possibly interfere with packet πi, with the first

interference edge being (vk, vk+1) (note that it is not possible to have interferences on edge

(v0, v1)). For any one of the mk packets, let qk be the probability that it actually uses the

edge (vk, vk+1). Note that all the mk packets independently choose their destinations, and

we will see in the next lemma that qk does not depend on the specific packet, only on k. The

following lemma follows from the properties of the butterfly network.

Lemma 3.11 m0 = 0, mk = 2k−1, and qk = 2−(k+1), for k = 1, . . . , lg n − 1.

Proof: Clearly m0 = 0. Let πj be some packet that interferes for the first time with πi on

edge (vk, vk+1). Packet πj arrives at vk using edge (w, vk) with w 6= vk−1. The number of

input nodes that can reach w is 2k−1, and πj could have originated from any of these nodes.

Thus, mk = 2k−1.

To obtain qk, we observe that from vk+1, packet πj can reach M = 2lg n−(k+1) destination

nodes. Since the only way to get to these nodes is using the edge (vk, vk+1), and since the

destination nodes are chosen randomly with uniform probability, the probability that packet

πj uses this edge is qk = M/n = 2−(k+1).

Let Xi be the number of different other packets that interfere with packet πi. Let x
(i)
j

be the Bernoulli random variable that equals 1 if packet πj interferes with packet πi, and

let q
(i)
j = P[x

(i)
j = 1]. Clearly, Xi =

∑

j x
(i)
j , and x

(i)
j are independent for different j. Let

µ = E [Xi] =
∑

j q
(i)
j . Using Lemma 3.11 we obtain

µ =
∑

j

q
(i)
j =

lg n−1
∑

k=1

mkqk =
1

4
(lg n − 1). (1)
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Thus, the expected number of packets that use packet πi’s path is 1
4
(lg n − 1), independent

of πi and the specific path used by packet πi. Note that in the dependency graph D, Xi

is equal to W (πi). This is a consequence of the fact that since the packet paths are the

shortest, when two packets interfere then for every common edge of their paths the resulting

weight on the dependency graph D is the same.

We will use the following version of the Chernoff bound to get a concentration result for

Xi, which will give an upper bound of the routing time.

Lemma 3.12 ([24]) Let y1, . . . , ym be independent binomial random variables, with

P [yi = 1] = bi for i ∈ [1, m], where 0 < bi < 1. Let Y =
∑m

i=1 yi, µ =
∑m

i=1 bi. Then,

for any α > 2e, P [Y > αµ] < 2−αµ.

We now give the upper bound on the routing time for the butterfly when using the greedy

direct algorithm.

Theorem 3.13 (Random Destinations Routing Time on Butterfly) For a random-

destinations routing problem (B, Π, Q), on the n-input butterfly B, using the unique shortest

paths P, the routing time of the greedy direct algorithm satisfies P
[

rtGr(B, Π,P) ≤ 5
2
lg n

]

>

1 − 2
√

2n− 1

2 .

Proof: For packet πi, define the event Ei by Ei = {Xi > α
4

lg n} for some α > 2e. Applying

the Chernoff bound in Lemma 3.12 and using Equation (1), we get

P [Ei] = P
[

Xi >
α

4
lg n

]

≤ P [Xi > αµ] <
2α/4

nα/4
.

The identity P [maxi Xi ≤ α lg n] = 1 − P [∪i Ei] and the union bound then give

P
[

max
i

Xi ≤
α

4
lg n

]

> 1 − n · 2α/4

nα/4
= 1 − 2α/4

nα/4−1
.

Since maxi W (πi) = maxi Xi and D = lg n, we conclude by applying Lemma 3.1 with the

choice α = 6 > 2e.

3.3.2 Permutations on Butterfly

It is known that in the butterfly there exist permutation routing problems with congestion

at least Ω(
√

n), i.e. some edges are hot-spots (see [24, Section 4.2]). In order to avoid

hot-spots, Valiant [29, 30] proposed the following alternative scheme to route permutation

routing problems in a butterfly-like network. Take two butterflies and connect them back to

back, so that the outputs of the first butterfly are connected to the respective outputs of the

the second butterfly. The permutation problem is for this butterfly network: each packet has
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source on the input of the first butterfly and destination on the input of the second butterfly.

The idea is to allow each packet to choose uniformly and at random an intermediate node

on the output of the first butterfly. The path is then given by the source to the random

intermediate node followed by the intermediate node to destination. Such a routing scheme

avoids hot-spots – the permutation problem is now equivalent to two random destinations

problems. Thus, we can apply Theorem 3.13 twice to obtain:

Theorem 3.14 (Permutation Routing Time on Butterfly) For a batch permutation

routing problem (B′, Π, Q) on the n-input back to back butterfly B′, and using the paths P
constructed using Valiant’s scheme, the routing time of the greedy direct algorithm satisfies

P [rtGr(B
′, Π,P) ≤ 5 lg n] > 1 − 4

√
2n− 1

2 .

3.4 Hypercube

We consider the n-hypercube network H with n = 2y nodes, y ≥ 0 (see [18]). In the

hypercube network H each node vi has a distinct lg n-bit binary label 〈i1, i2, . . . , ilg n〉 ∈
{0, 1}lg n. There is a link between two nodes vi and vj if and only if their respective labels

〈i1, i2, . . . , ilg n〉 and 〈j1, j2, . . . , jlg n〉 differ in exactly one position. Thus, the degree of every

node is lg n. Note that the distance (shortest path) between any two nodes is ≤ lg n. Between

a pair of nodes there exist many shortest paths.

We study permutations on the hypercube. In order to solve the permutations efficiently,

we first send the packets to random intermediate nodes and then to the destination. Thus,

we first study random destination problems.

3.4.1 Random Destinations on Hypercube

Consider a random destinations routing problem (H, Π, Q), in which every node is the source

of one packet, and each packet chooses its destination uniformly and at random. We will

construct a path-routing problem with paths P such that the packets use (left-to-right) bit-

fixing paths from their source to the destination as follows. Let π be a packet which has to

be routed from source s(π) to destination δ(π); flip the leftmost bit at which the labels of

s(π) and δ(π) differ and send packet π along the edge that leads to the resulting node v; now

repeat this process with v and δ(π), continuing until the path has reached δ(π). Note that

bit-fixing paths are shortest paths, since the number of bits flipped is minimum. Further,

for this selection of paths D ≤ lg n, since no more than lg n bits are flipped.

We will show that the direct greedy algorithm has routing time bounded by 7 lg n, w.h.p.,

which is optimal to within constant factors because it can be shown that D ≥ 1
4
lg n w.h.p

(using a simple Chernoff bounding argument). As with the butterfly analysis (Section 3.3),
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let Xi be the number of other different packets that packet i interferes with. We will use the

following result which is adapted from [24, Theorem 4.6]:

Lemma 3.15 ([24]) P [maxi Xi ≤ 6 lg n] > 1 − 1/(32n).

Thus, the maximum node weight degree in the dependency graph D is at most 6 lg n, with

probability at least 1 − 1/(32n). Since D ≤ lg n, Lemma 3.1 implies that the routing time

of the greedy algorithm is at most 7 lg n w.h.p. We have the following theorem:

Theorem 3.16 (Random Destinations Routing Time on Hypercube) For a ran-

dom destination routing problem (H, Π, Q) on the n-hypercube H, when choosing bit-fixing

paths P, the routing time of the greedy direct algorithm satisfies P [rtGr(H, Π,P) ≤ 7 lg n] >

1 − 1/(32n).

3.4.2 Permutations on Hypercube

It is known that on the n-hypercube there exist permutation routing problems with conges-

tion at least Ω(
√

n/ log n), i.e. some edges are hot-spots (see [24, Section 4.2]). In order

to avoid hot-spots, we will use Valiant’s scheme [29, 30]: for any permutation problem, we

will construct paths P by first taking bit-fixing paths from a source to a random uniformly

picked intermediate node, followed by bit-fixing paths from the intermediate node to the

destination. This routing problem is the combination of two random destinations problem.

Thus, we can apply Theorem 3.16 twice to obtain Theorem 3.17.

Theorem 3.17 (Permutation Routing Time on Hypercube) For a permu-

tation routing problem (H, Π, Q) on the n-hypercube H, using Valiant’s scheme

with bit-fixing paths P, the routing time of the greedy direct algorithm satisfies

P [rtGr(H, Π,P) < 14 lg n] > 1 − 1/(16n).

4 Computational Complexity of Direct Routing

In this section, we show that direct routing, and approximate versions of it, are NP-complete.

First, we introduce the formal definition of the direct routing decision problem. In our

reductions, we will use the well known NP-complete problem Vertex Color, the vertex

coloring problem [15], which asks whether a given graph G is κ-colorable. The chromatic

number, χ is the smallest κ for which G is κ-colorable. An algorithm approximates χ with

approximation ratio q if on any input G, the algorithm outputs u such that χ ≤ u and

u/χ ≤ q. Typically, q is expressed only as a function of the number of vertices in G.
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It is known [13] that unless P=NP†, there does not exist a polynomial time algorithm to

approximate χ with approximation ratio N1/2−ε for any constant ε > 0.

By polynomially reducing coloring to direct routing, we will obtain hardness and inap-

proximability results for direct routing. We now formally define a generalization of the direct

routing decision problem which allows for collisions. We say that an injection schedule is

a valid K-collision schedule if at most K collisions occur during the course of the routing.

(The number of collisions is the total number of times (over all pairs of packets) that a pair

of packets interferes; thus, a pair of packets may contribute more than once to the total

number of collisions.)

Problem: Approximate Direct Route

Input: A path-routing problem (G, Π,P) and integers T, K ≥ 0,

Question: Does there exist a valid k–collision direct routing schedule, for some k ≤ K with

maximum injection time τmax ≤ T ?

The problem Direct Route is the restriction of Approximate Direct Route to in-

stances where K = 0. Denoting the maximum injection time of a valid K-collision injection

schedule by T , we define the K-collision injection number τK(G, Π,P) for a direct routing

instance as the minimum value of T for which a valid K-collision schedule exists. We say

that a schedule approximates τK(G, Π,P) with ratio q if it is a schedule with at most K

collisions and the maximum injection time for this schedule approximates τK(G, Π,P) with

approximation ratio q.

We now show that direct routing is NP-hard using a polynomial-time reduction from the

vertex coloring problem.

Theorem 4.1 (NP-Hardness) Direct Route is NP-Hard.

Proof: We show that here exists a polynomial time reduction from any instance (G, κ) of

Vertex Color to an instance (G′, Π,P, T = κ − 1) of Direct Route.

Illustrated in Figure 3 is a path-routing problem for which there are N packets, and all

the packets form a synchronized clique of size N in the dependency graph D. There are L

levels in this routing problem. Each path in the figure (ending with an arrow) is the path

for 1 packet. The anchor path is the vertical path of length L (L = 4 in the figure). Each

path can be associated to a level, which denotes the x-coordinate at which the path moves

vertically up after making its final left turn. Thus the anchor path is the level-0 path, which

†It is also known that if NP6⊆ZPP then χ is inapproximable to within N1−ε, however we cannot use this

result as it requires both upper and lower bounds.
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x = 0 x = 1 x = 2 x = 3 x = 4

Figure 3: A mesh routing problem

begins at coordinates (0, 0) and ends at (0, L). There is a path for every level in [0, L], and

so the total number of packets is N = L+1. The level-i path for i > 0 begins at (1− i, i−1)

and ends at (i, L + i), and is constructed as follows. Beginning at (1 − i, i − 1), the path

moves right till (0, i− 1), then alternating between up and right moves till it reaches level i

at node (i, 2i − 1) (i alternating up and right moves), at which point the path moves up to

(i, L + i). We list some properties of this set of paths.

(i) Let j > i ≥ 0. The level-j path meets the level i path exactly once at the edge from

(i, i + j − 1) to (i, i + j). Further, an edge is shared by at most 2 paths.

(ii) Every packet is synchronized with every other packet, i.e., if packets π1, π2 follow paths

p1, p2 which share an edge e then dp1
(e) = dp2

(e): this follows from (i) and the fact

that the level-i path is injected at (1 − i, i − 1). Thus, if two packets are injected at

the same time into two paths p1, p2, then they will collide at e.

(iii) The length of the level i path is L + 2i.

Since every pair of packets is synchronized, in the dependency graph D, the packets form

a synchronized clique of size N . Given an instance I = (G, κ) of Vertex Color, we now

show how to reduce it to the corresponding instance I ′ = (G′, Π,P, T = κ − 1) of Direct
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Route. Each node in G corresponds to a packet in Π. The paths are initially as illustrated

in the routing problem above with L = N − 1. We now show how to transform this routing

problem so that the dependency graph D for the transformed routing problem is isomorphic

to G. This is the instance I ′ to which we reduce I.

Currently the dependency graph is KN , an N -clique. We need to remove some of the

edges to get G. If there is no edge between two nodes u, v in G, this means that the

corresponding packets must not collide. Suppose that the two packets u, v collide at edge

e = (x, y) in G′. We augment G′ by adding two nodes x′ and y′ corresponding to x and y

respectively. In G′, x′ (resp. y′) is adjacent to the same nodes as x (resp. y) is. Suppose

that the path of u was (. . . , a, x, y, b, . . .). We alter the u’s path to (. . . , a, x′, y′, b, . . .), and

do not change v’s path. The following figure illustrates the construction,

y

v

u

e

a
x

b

−→
x′u

v

a
x

y
b

y′

Notice that the paths corresponding to u and v no longer interfere. Further, the lengths

of u and v and their relationships with any other paths have not been altered in any way.

We perform this construction in every edge (u, v) in G that does not exist. The resulting

dependency graph for the paths in G′ is isomorphic to G, and every edge in the dependency

graph is synchronized.

Since every two packets that interfere in this routing problem are synchronized, they

cannot be assigned the same injection time in any valid schedule. Interpreting the injection

time of a packet as the color of that packet, we see that any valid direct routing schedule

induces a valid coloring of D. Since D is is isomorphic to G, this will also induce a valid

coloring of G. Further, a valid coloring of G and hence of D will induce a valid set of injection

times since no two packets that interfere (and hence are adjacent in D) will have the same

injection time. Thus the answer to instance I of Vertex Color is true if and only if the

answer to instance I ′ of Direct Route is true. The proof is concluded by noting that the

construction of I ′ is clearly polynomial in N .

Direct Route is in NP, as one can check the validity and routing time of a direct

routing schedule, by traversing every pair of packets, so Direct Route is NP complete.
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Further, we see that the reduction in Theorem 4.1 is gap preserving with gap preserving

parameter ρ = 1 [16].

Theorem 4.2 (Inapproximability of Collision Injection Number) A polynomial

time algorithm that approximates τK(G, Π,P) with ratio r, for an arbitrary path-routing

problem, yields a polynomial time algorithm that approximates the chromatic number of

an arbitrary graph with ratio r + K + 1. In particular, choosing K = O(r) preserves the

approximation ratio.

Proof: Consider the same instance of direct routing as in the proof of Theorem 4.1 (see

also Figure 3). Let K be the number of collisions allowed and suppose that a polynomial

time algorithm exists to approximate τK(G′, Π,P).

We will prove a stronger result than required for the theorem. Suppose that ` ≤
τK(G′, Π,P) ≤ u. The approximation ratio is r if u/τK(G′, Π,P) ≤ r, and we say the

approximation is to within q if u/` ≤ q. We will show that `χ ≤ χ ≤ uχ, where `χ = ` + 1

and uχ = u + K + 1. From these bounds, we will obtain the theorem.

The lower bound follows immediately because ` ≤ τK(G′, Π,P) ≤ τ(G′, Π,P) = χ − 1.

To prove the upper bound, suppose that τK(G′, Π,P) ≤ u, so a K-collision direct routing

schedule with maximum injection time u exists. For each collision, we can arbitrarily pick

one of the packets involved in the collision (there can be at most two packets involved in a

collision) and place it in a set C, if the packet is not already in the set. The packets in Π−C
therefore do not collide. We can assign the times u+1, u+2, . . . , u+ |C| to the packets in C,

and since all the packets are synchronized, none of the packets now collide, so we now have

a valid direct routing schedule with maximum injection time u′ ≤ u + |C| ≤ u + K, since

|C| ≤ K. Thus, χ = τ(G′, Π,P) + 1 ≤ u + K + 1 = uχ.

Note that since u/τK(G′, Π,P) ≤ r, and

u

τK(G′, Π,P)
≥ u

τ(G′, Π,P)
≥ u

(τ(G′, Π,P) + 1)
=

u

χ
,

we have that u/χ ≤ r, and so uχ/χ ≤ r+K+1, since χ ≥ 1. Further, uχ/`χ ≤ u/`+K+1 =

q + K + 1.

Thus, an approximation for τK(G′, Π,P) to within q or with ratio r yields an approxi-

mation for χ to within q + K + 1 or with ratio r + K + 1,, respectively. The approximation

is polynomial time since the reduction is polynomial time.

The previous theorem states that any approximation scheme for direct routing yields

an approximation scheme for vertex coloring. Since it is known that vertex coloring is

inapproximable, any inapproximability result for vertex coloring implies a corresponding

inapproximability result for direct scheduling. In particular we will use the known result
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that χ is inapproximable with ratio N1/2−ε unless P = NP. Choosing K = O(N1/2−ε), we

have:

Corollary 4.3 (Inapproximability of Direct Scheduling) Unless P=NP, for K =

O(N1/2−ε), there is no polynomial time algorithm to determine a valid K-collision direct

schedule that approximates τK(G, Π,P) with ratio O(N1/2−ε) for any ε > 0.

In words, even if we allow Ω(N1/2) collisions, one cannot efficiently compute an approx-

imately direct schedule with minimum injection time close to the minimum possible (with

approximation ratio O(N1/2)).

5 Lower Bounds for Buffering

In direct routing the nodes have no buffers to store packets in transit. However, in store-

and-forward routing, the nodes do have buffers. The buffers help to improve the routing

time. Here we study the question of how much the buffers help in reducing the routing time.

We say that a packet is buffered if it stays at the buffer of a node for a time step, while at

the previous time step the packet was also in the same node. We say that a packet is buffered

k times it is buffered for k time steps (the time steps may not be consecutive and the packet

may be buffered at different nodes). The amount of buffering of a routing algorithm is the

total sum of the number of times that packets are buffered (summed over all the packets).

We show that there is a tradeoff between the amount of buffering and the routing time.

The more the buffering the better the routing time. The worst routing time is when the

routing is direct. In order to obtain our results, we first give a “hard” routing problem for

which any direct routing algorithm requires a large routing time Ω(C ·D) (compared to the

optimal O(C + D)). Then, we show that in order to drop the routing time to the optimal,

many packets in the network need to be buffered at least once. Finally, we strengthen our

result and show that many packets need to be buffered many times.

5.1 Packets Buffered Once

We construct a “hard” path-routing problem for which any direct routing algorithm has

routing time rt = Ω(C · D) = Ω((C + D)2), which is asymptotically worse than optimal.

We then analyze the amount of buffering that would be required to attain near optimal

routing time, which results in a lower bound on the amount of buffering needed by any

store-and-forward algorithm.

Theorem 5.1 (Hard Routing Problem) There exists a path-routing problem for which

every direct algorithm has routing time Ω(C · D) = Ω((C + D)2)
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Proof: We construct a path-routing problem for which the dependency graph is a synchro-

nized clique. The paths are as in Figure 3, and the description of the routing problem is

given in the proof of Theorem 4.1. The only difference is that c packets use each path. The

congestion is C = 2c and the dilation is D = 3L. Since every pair of packets is synchronized,

Lemma 2.1 implies that rt(G, Π,P) ≥ N . Since N = c(L + 1) = C
2
(D

3
+ 1), rt(G, Π,P) =

Ω(C · D). Choosing c = Θ(
√

N) and L = Θ(
√

N), we have that C + D = Θ(
√

N) so

C + D = Θ(
√

C · D).

Let problem A denote the routing problem in the proof of Theorem 5.1. We would like to

determine how much buffering is necessary in order to decrease the routing time for routing

problem A. Let T be the maximum injection time (so the routing time is bounded by T +D).

We give a lower bound on the number of packets that need to be buffered at least once:

Lemma 5.2 In routing problem A, if T ≤ α, then at least N − α packets are buffered at

least once.

Proof: If β packets are not buffered at all, then they form a synchronized clique, hence

T ≥ β (Lemma 2.1), i.e., α ≥ T ≥ β. To conclude, note that N − β ≥ N − α packets are

buffered at least once.

If the routing time is O(C + D), then α = O(C + D). Choosing c and L to be Θ(N1/2),

we have that α = O(N1/2), and so from Lemma 5.2, the number of packets buffered is at

least N − α = Ω(N):

Corollary 5.3 There exists a routing problem for which any algorithm will buffer Ω(N)

packets at least once to achieve asymptotically optimal routing time.

5.2 Packets Buffered Many Times

We now construct a path-routing problem B which forces packets to be buffered multiple

times. In routing problem A normalize the lengths of the packets so that all packet path

lengths are 3L; in order to do so add edges at the end of the paths when necessary. Denote

by A′ the respective network. We then construct a routing problem B by concatenating k

identical copies of A′, denoted A′
1, . . . , A

′
k. In problem B a packet π traverses each A′

i one

after the other in sequence, so that the path of a packet π is the concatenation of the paths in

each copy of A′ (the path in each A′
i is the normalized path of a routing problem A). When

a packet exits A′
i, it enters A′

i+1 at exactly the same level as in A′
i. In routing problem B, we

set C = 2c, D = 3kL and N = c(L + 1) = Θ(C · D/k). The packets in B are synchronized

in each A′
i, which leads to the following result.
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Lemma 5.4 For path-routing problem B, if T ≤ α, then at least N − jα packets each need

to be buffered, at least j times, in the concatenation of A′
1, . . . , A

′
j, where 1 ≤ j ≤ k.

Proof: We prove the claim by induction on j. For j = 1 the claim follows immediately

from Lemma 5.2. Let’s assume that the claim holds for all j < r, where r > 1; we will prove

that the claim holds for j = r.

Let xi denote the packets which are buffered i times in A′
1, . . . , A

′
r−1, where i ≥ 0.

Clearly, N =
∑

i≥0 |xi|. From those packets, the only packets that may be buffered less than

r times in A′
1, . . . , A

′
r, are packets from x0, . . . , xr−1. Let X =

∑r−2
i=0 |xi|; from the induction

hypothesis, we have that |xr−1| ≥ N − (r − 1)α, and since N ≥ X + |xr−1|, we conclude

that X ≤ (r − 1)α. Let Y be the packets of xr−1 which will not be buffered in A′
r. Since all

packets in Y are buffered exactly the same number of times before entering A′
r, these packets

are all synchronized in A′
r, and so must be injected at different times (Lemma 2.1). Thus,

T ≥ Y , and so α ≥ T ≥ Y . Therefore the number of packets buffered less than r times in

A′
1, . . . , A

′
r is at most X + Y ≤ (r − 1)α + α = rα. Consequently, at least N − rα packets

are buffered at least r times in A′
1, . . . , A

′
r.

By constructing B appropriately, we strengthen Corollary 5.3, and we obtain a tradeoff

between routing time and buffering for any routing algorithm (direct or not):

Theorem 5.5 (Buffering-Routing Time Tradeoff) There exists a path-routing problem

which, for any 0 ≤ ε < 1
2
, requires Ω(N (4−2ε)/3) buffering in order to obtain a routing time

that is a factor O(N ε) from optimal.

Proof: From Lemma 5.4, at least N − kα packets are each buffered at least k times in

routing problem B. Suppose we wish to obtain a routing time that is within O(N ε) of

optimality. Let 0 ≤ ε < 1
2
. In this case, T ≤ α = λ(C + D)N ε for some λ > 0. In routing

problem B, we select the parameters c, L, k as follows: c = N (2−ε)/3; L = N (1+ε)/3 − 1; and,

k = γN (1−2ε)/3, where γ is a constant chosen small enough so that λγ(2 + 3γ) < 1 (for

simplicity, assume that c, L, k are integers). After some elementary algebra, we have that

N − kα = (1 − λγ(2 + 3γ))N − 3λγ2N (2−ε)/3,

i.e., N − kα = Ω(N). Since at least N − kα packets are buffered at least k times (Lemma

5.4), the total amount of buffering is at least k(N − kα) = Ω(N (4−2ε)/3).

Setting ε = Ω(1/ log N), we obtain a lower bound on the buffering required by any

algorithm that guarantees an asymptotically optimal routing time of O(C + D):
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Corollary 5.6 (Lower Bound on Buffering) There exist path-routing problems for

which any routing algorithm with asymptotically optimal routing time requires Ω(N4/3) buffer-

ing.

Note that asymptotically optimal algorithms exist for store-and-forward routing [20, 23, 25].

Corollary 5.6 gives a lower bound on how much buffering is necessary on these algorithms.

6 Conclusion

We have given a comprehensive analysis of direct routing. We studied the efficiency of

the algorithms in terms of the congestion C and the dilation D. We gave a simple greedy

algorithm which is asymptotically optimal in the worst case. We then demonstrated that on

many common topologies, direct routing is efficient. In particular, we considered the tree,

d-dimensional mesh, butterfly and hypercube. One important implication of our results is

that on particular network topologies and for certain batch routing problems, direct routing

achieves routing times close to the routing times of store-and-forward algorithms.

We then continued to present hardness results for direct routing which show that direct

routing is as hard as vertex coloring. Thus, in order to compute efficient direct routing

schedules in polynomial time, we need to allow packets to collide.

Finally, we considered the connection between the efficiency of direct routing and buffer-

ing requirements of store-and-forward routing algorithms. We showed the existence of a

hard routing problem in which any buffered routing algorithm requires Ω(N4/3) total packet

buffering to obtain a routing time which is a constant factor from the optimal routing time.
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[8] C. Busch. Õ(Congestion + Dilation) hot-potato routing on leveled networks. In Pro-

ceedings of the Fourteenth ACM Symposium on Parallel Algorithms and Architectures,

pages 20–29, Aug. 2002.

[9] C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. In Proceedings of the

32nd Annual ACM Symposium on Theory of Computing, pages 278–285, May 2000.

[10] C. Busch, M. Magdon-Ismail, M. Mavronicolas, and P. Spirakis. Direct routing: Algo-

rithms and Complexity. In S. Albers and T. Radzik, editors, Proceedings of the 12th

Annual European Symposium on Algorithms (ESA), volume 3221 of Lecture Notes in

Computer Science, pages 134–145, Bergen, Norway, September 2004. Springer-Verlag.

[11] C. Busch, M. Magdon-Ismail, and J. Xi. Optimal oblivious path selection on the mesh. In

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS

2005), Denver, Colorado, USA, April 2005.

[12] R. Cypher, F. M. auf der Heide, C. Scheideler, and B. Vöcking. Universal algorithms
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