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Introduction.

The maximum cumulative loss from a peak to a following bottom, commonly denoted the
maximum drawdown MDD, is a measure of how sustained one’s losses can be. Large draw-
downs usually lead to fund redemptions, and so the MDD is the risk measure of choice
for many money management professionals – a reasonably low MDD is critical to the suc-
cess of any fund. Related to the MDD is the Calmar ratio1, a risk adjusted measure of
performance, that is given by the formula

Calmar(T ) =
Return over [0, T ]

MDD over [0, T ]
.

The Sharpe ratio is similar in that it is also a risk adjusted measure of performance, however
the MDD risk measure is replaced by the standard deviation of the returns over intervals
of size T .

The “square-root-T -law” is a well known law prescribing how the unnormalized Sharpe
ratio scales with time. This law allows one to scale the Sharpe ratio so that comparing
different systems is possible even when their Sharpe ratios were computed using different

values of T . On the other hand, such similar scaling laws for the Calmar ratio are not
known. As a result, the common practice is to compare Calmar ratios for portfolios over
equal length time intervals (the typical choice is three years). Such a constraint on the use
of the use of Calmar ratio is artificial, and, based upon the results that we will present,
unnecessary.

Another task that is important for fund managers is the ability to construct portfolios
that are optimal with respect to the risk adjusted performance. When the performance
measure used is the Sharpe ratio, this leads to mean-variance portfolio analysis. A similar
approach to portfolio optimization using the Calmar ratio as a criterion is not prevalent

1Similar to the Calmar ratio is the Sterling ratio, Sterling(T ) = Return over [0,T ]
MDD over [0,T ]−10%

, and our discussion
applies equally well to the Sterling ratio.
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primarily due to a lack of an analytical understanding regarding how the MDD of a portfolio
is related to performance characteristics of the individual instruments.

In this article, we present analytical results relating the expected MDD to the mean
return and the standard deviation of the returns. The detailed mathematical derivations
are given in [10]. We also present formulas that relate the Calmar ratio to the Sharpe
ratio. We introduce the Normalized Calmar Ratio which can be immediately compared for
two portfolios. We also present some plots illustrating some of the portfolio aspects of the
MDD, in particular, how the correlation factors in. Among our interesting findings is that
an instrument with a negative return can be beneficial from the Calmar ratio point of view,
if it is sufficiently uncorrelated.

Related Work. The drawdown at time t has been studied, and its distribution can be
obtained analytically from the joint density of the maximum and the close of a Brownian
motion (see for example [8]). Most work on the maximum drawdown is empirical in nature
(for example [3, 4, 7, 12]). The most relevent theoretical result is for the case of a Brownian
motion with zero drift, in which case, the full distribution of the maximum drawdown is
given in [6]. Since we wish to relate the MDD to the drift, we cannot assume that the drift
is zero. Portfolio optimization using the drawdown has also been considered in [5].

The Expected Maximum Drawdown.

Assume that the value of a portfolio follows a Brownian motion:

dx = µdt + σdW 0 ≤ t ≤ T,

where time is measured in years, and µ is the average return per unit time, σ is the standard
deviation of the returns per unit time and dW is the usual Wiener increment. This model
assumes that profits are not reinvested. If profits are reinvested, then a Geometric Brownian
motion is the appropriate model,

ds = µ̂sdt + σ̂sdW 0 ≤ t ≤ T.

For such a case, equivalent formulas can be obtained by taking a log transformation: if
x = log s, then x follows a Brownian motion with µ = µ̂− 1

2
σ̂2 and σ = σ̂. (The MDD in this

case is defined with respect to the percentage drawdown rather than absolute drawdown.)
If the portfolio value follows a more complicated process, then the results for the Brownian
motion can be used as benchmark.

Using results on the first passage time of a reflected Brownian motion, we find that
the expected MDD has drastically different behavior according to whether the portfolio is
profitable, breaking even or losing money. This “phase shift” in the behavior is highlighted
by the asymptotic (T → ∞) behavior in the formulas below. The asymptotic behavior
is important because most trading desks are interested in long term performance, i.e.,



0 1 2 3 4 5
0

1

2

3

4

5

6

Comparison of Q
MDD

(x) for Different µ

x

Q
(x

)

µ<0

µ=0

µ>0

0 1 2 3 4
0.5

0.75

1

1.25

1.5

1.75

2

E(MDD) Per Unit σ Versus Sharpe Ratio (µ/σ)

Sharpe Ratio (µ/σ)
E

(M
D

D
)/

σ

T=1

T=2

T=3

(a) (b)

Figure 1: In (a) we show the behavior of the Qp(x), Qn(x) and the equivalent function for
µ = 0, illustrating the behavior of these functions for different µ regimes. In (b) we show
how the expected MDD per unit variance depends on the Sharpe ratio for different values
of T .

systems that can survive over the long run, with superior return and small drawdowns.
The expression for the expected MDD is:

E(MDD) =
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As can be noted, the scaling of the expected MDD with T undergoes a phase transition
from T to

√
T to log T as µ transitions from negative to zero to positive. One immediate

use of this behavior is as a hypothesis test to determine if a portfolio is profitable, even
or losing. The functions Qn(x) and Qp(x) are complicated integral expansions that do not
have a convenient analytical form. They are independent of µ, σ and T , and so they are
“universal functions” in the sense that they can be evaluated once and tabulated for future
use. Such a table is given in [10] and can also be downloaded from [2]. Figure 1(a) shows
the functions Qp(x) and Qn(x). The exact functional form including the distribution of the
MDD, as well as a tabulation of values can be found in [10, 9]. From now on, we focus
on the more interesting case of profitable (µ > 0) portfolios. The discussion can easily be
extended to all three regimes of µ.

Define the
√

T -scaled Sharpe ratio of expected performance by Shrp = µ/σ. The ex-
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Figure 2: How Clmr depends on T and Shrp. In (a) we illustrate the how Clmr scales with
time for different portfolio characteristics, and in (b) how it scales with Shrp at different
times.

pected MDD normalized per unit of σ can be written entirely in terms of Shrp:

E(MDD)

σ
=

2Qp

(

T
2
Shrp2

)

Shrp

Figure 1(b) illustrates the dependence of E(MDD) normalized per unit of σ on the Sharpe
ratio, Shrp.

The Normalized Calmar Ratio.

First, we will deduce a relationship between the Sharpe ratio and the Calmar ratio. Consider
the Calmar ratio of expected performance, Clmr, given by

Clmr(T ) =
µT

E(MDD)
.

Substituting this definition into the expression for E(MDD), we get that

Clmr(T ) =
T
2
Shrp2

Qp

(

T
2
Shrp2

)

T→∞−→ TShrp2

0.63519 + 0.5 log T + log Shrp
(1)

Some interesting points to note are that the Calmar depends on µ and σ only through the
scaled Sharpe ratio (the dependence of Clmr on T and on the normalized Sharpe ratio are
illustrated in Figure 2); for fixed µ, σ, Clmr is increasing with T . Thus, knowing the Calmar



Portfolio µ(%) σ(%) Calmar Time Interval (yrs) Relative Strength

Π1 25 10 5 [0,1] 1.00
Π2 30 10 6 [0.5,2] 0.97
Π3 25 12.5 6 [0,2] 0.64

Table 1: Some example portfolios.

ratio of a portfolio without knowing T is useless. If fund X has a Calmar of 5 and fund
Y has a Calmar of 6, it is not clear which is a better fund. In fact it is possible that fund
X is better! To make a better comparison, it is necessary to know the time intervals over
which each Calmar ratio was computed, and scale appropriately. However, perhaps we can
remove this dependence on T by standardizing the way the Calmar ratio is quoted. This can
be accomplished by normalizing the Calmar ratio. More specifically, whenever a Calmar
ratio is quoted, one should automatically incorporate the appropriate scaling so that the
comparison becomes seamless. Despite how prevalent the MDD is as a measure of risk,
such a systematic approach is not usually used, because the appropriate scaling behavior
was not known. Our results provide exactly the necessary scaling behavior.

Fix a reference time frame τ (for example τ = 1). If all Calmar ratios were quoted on
this time frame, then comparing portfolios would be easy. For a given portfolio, suppose
we have computed Shrp. In this case, from (1), for the time interval τ , we know that
Clmr is expected to be Clmr(τ) = τ

2
Shrp2/Qp(

τ
2
Shrp2). Similarly, at time T , we know that

Clmr(T ) = T
2
Shrp2/Qp(

T
2
Shrp2), and so to get the τ -normalized-Calmar ratio, we need to

scale by a normalizing factor,

γτ (T,Shrp) =
1

T
Qp(

T
2
Shrp2)

1

τ
Qp(

τ
2
Shrp2)

More specifically, if everyone agrees on the base time scale τ , then having computed the
Calmar ratio, and µ, σ for a portfolio over the interval [0, T ], the τ -normalized-Calmar ratio
Calmar(τ) is given by

Calmar(τ) = γτ (T,Shrp) × Calmar ratio.

Following the convention applied to quoting the Sharpe ratio, we suggest fixing the base
time scale τ to one year.

Example: The idea is best illustrated by an example. Suppose that three portfolios
Π1,Π2,Π3 have the P&L statistics over their respective time intervals as illustrated in
Table 1. How do we compare these portfolios if our criterion is the Calmar ratio? First,
let us illustrate some of the intuition. If we compute Clmr for Π1, we get roughly 3.8. Since
its actual Calmar is higher, Π1 seems to have negative autocorrelation for its returns, i.e., it
seems to be outperforming. Similarly, Clmr(Π2) = 6.76 and Clmr(Π3) = 4.55. It seems that
Π2 is underperforming and is the worst, however it is not clear how to compare Π1 with Π3

at this point. By computing the normalized (to τ = 1) Calmar ratios, we will be in a better



Fund µ(%) σ(%) T (yrs) MDD Calmar E[MDD] Calmar β

S&P500 10.04 15.48 24.25 46.28 5.261 44.56 0.6104 1

FTSE100 7.01 16.66 19.83 48.52 2.865 55.54 0.4395 0.5003

NASDAQ 11.20 24.38 19.42 75.04 2.899 77.87 0.4402 0.5407

DCM 15.65 5.78 3.08 3.11 15.50 4.770 6.541 27.76

NLT 3.35 16.03 3.08 25.40 0.4062 31.35 0.2202 0.1331

OIC 17.19 4.52 1.16 0.42 47.48 2.493 42.31 212.0

TGF 8.48 9.83 4.58 8.11 4.789 15.84 1.752 3.589

Table 2: MDD-related statistics of some indices and funds available through the Interna-
tional Advisory Services Group, [1]. DCM=Diamond Capital Management; NLT=Non-
Linear Technologies; OIC=Olsen Investment Corporation; TGF=Tradewinds Global Fund.
The normalized Calmar ratio, Calmar is normalized to τ = 1 yr. The relative strength
index β is computed with respect to the S&P500 as benchmark.

position. Specifically, the Calmar ratio of Π1 is already normalized, i.e., Calmar1 = 5.
If we compute the normalizing factors for portfolios Π2 & Π3, we get γ(Π2) = 0.74 and
γ(Π3) = 0.60, from which we get the normalized Calmar ratios: Calmar2 = 4.41 and
Calmar3 = 3.62. It is now clear that Π1 > Π2 > Π3, if we normalize to τ = 1.

The normalized Calmar ratio may depend on the choice of τ , the normalizing time. We
can remove the τ -dependence by defining the relative strength β(Π1|Π2) of portfolio Π1 with
respect to some other benchmark portfolio, Π2. Π2 could be (for example) the S&P 500.
For normalizing time τ , define the τ -relative strength βτ (Π1|Π2) of Π1 with respect to Π2,

βτ (Π1|Π2) =
Calmar1(τ)

Calmar2(τ)
.

If Shrp1 6= Shrp2, then the τ -relative strength depends on τ . The limiting (i.e. τ → ∞) long
term behavior of the relative strength is well defined, and so we define the relative strength

β(Π1|Π2) = limτ→∞ βτ (Π1|Π2). One can show that

relative strength = β(Π1|Π2) =
Calmar1

Calmar2

×
1

T1
Qp(

T1
2

Shrp2

1
)

1

T2
Qp(

T2
2

Shrp2

2
)
,

which is independent of τ . If the relative strength is greater equal to 1, then Π1 is “better”
than Π2, written Π1 � Π2. Since β(Π1|Π3) = β(Π1|Π2)β(Π2|Π3), the relative strength index
is transitive (Π1 � Π2 and Π2 � Π3 implies Π1 � Π3), which is certainly a desirable con-
sistency condition for any such strength index. It is complete and anti-symmetric, because
β(Π1|Π2) = 1/β(Π2|Π1) (so either Π1 � Π2 or Π2 � Π1 and Π1 � Π2 =⇒ Π2 � Π2). Thus
� is a total order. Further, the choice of the reference instrument does not affect the total or-
dering, because β(Π1|Π2) = β(Π1|Π3)/β(Π2|Π3) (so β(Π1|Π3) ≥ β(Π2|Π3) =⇒ Π1 � Π2).
The relative strengths of the portfolios in the example, with Π1 as benchmark, are given in
Table 1.



Real Data. In Table 2, we give the MDD-related statistics for some indices and funds.
The data (in non-bolded font) was obtained from the International Advisory Services Group,
[1]. Notice that the expected MDD is generally slightly lower than predicted. One reason
for this is due to the discretization bias (the data is built from monthly statistics, however
the model is continuous). Notice that the time periods over which the funds are quoted are
quite different, since the funds have been in existence for different periods of time. Some
have not been around for 3 years, and some have been around significantly longer. Thus, it is
not clear how to compare the funds using Calmar ratios for some standardized time period,
3 years being the norm in the industry: if a fund has been around less than 3 years, then it
is not possible, and choosing (say) the most recent 3 year period for a well established fund
ignores valuable data. However, the normalized Calmar ratios and the relative strengths
facilitate seemless comparison among the funds using all the available data.

Summary. We now have a systematic way to quote Calmar ratios so that systems can be
easily compared. Further, there is a direct (monotonic) relationship between the Calmar
Ratio and the Sharpe Ratio. A deviation observed from historical data indicates a non-
Brownian phenomenon at work, which could for example be the presence or absence of
excessive correlation between successive loss periods, or the presense or absense of fat-
tailed behavior for the returns (note however that it has been empirically found that higher
moments have negligible impact on the Calmar ratio [4]). Such features may depend on the
nature trading system, the types of markets (for example trending or mean reverting), and
the degree of diversification. For example, for a passive buy and hold strategy, if the Calmar
Ratio is lower than indicated by the theory, that could be due to positive autocorrelation
for the returns, indicating the need for more risk control measures such as diversification or
hedging. Alternatively, if a trend following system were to pick the trends accurately, then
it could significantly improve the Calmar ratio.

Portfolio Aspects of MDD.

Mean variance analysis exploits the correlation structure between assets to build a portfolio
with good Sharpe ratio characteristics. This ability is facilitated by the fact that the variance
and return of a portfolio can be computed given these properties of the individual assets.
As we have shown in the previous results, these parameters are also sufficient to obtain
the E(MDD) of the resulting portfolio, hence we should be able to perform such a similar
analysis to optimize the MDD. Further, since the Calmar ratio is monotonic in the Sharpe
ratio, we can directly transfer portfolio optimization methods for the Sharpe ratio over to
the Calmar ratio. We briefly illustrate some of these issues here. Assume throughout that
Calmar ratios are normalized to 1 year.

The Impact of Correlation. Consider for simplicity a portfolio of two instruments. If the
correlation of the returns of the two instruments is low, then we should be able to construct
a superior portfolio than either asset, from the risk-adjusted-return point of view. We want
to quantify this effect using the previous analysis, and the Calmar Ratio as a performance
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Figure 3: The Calmar Ratio for a Portfolio of Equally-Weighted Two Trading Sys-
tems/Markets (with µ1 = µ2 = 0.2, and σ1 = σ2 = 0.2) against the Correlation Coefficient
of the Two Systems.

measure. For illustration, consider a portfolio in which the mean return of each instrument is
20%, and the standard deviation of the returns of each instrument is 20% (all annualized).
Assume the portfolio is equal-weighted. Figure 3 shows the Calmar Ratio as a function
of the correlation coefficient of the returns of the two instruments. While the fact that
the Calmar Ratio decreases with increasing correlation is not surprising, the extent of the
change is higher than expected. We should mention, however that it is quite difficult to
find trading systems/markets both with positive returns and highly negative correlation.
Highly negative correlations are typically achieved by a long-type system versus a short-
type system, in which case their mean returns would typically be of opposite signs. So the
part of the curve deep into the negative correlation portion is probably difficult to attain.

Can A losing System be Beneficial? It should, however, be possible to explore the nega-
tive correlation region by combining a losing system with a profitable system. To illustrate,
let us perform the following curious experiment: consider two instruments with annualized
returns µ1 = µ2 = 20%, and standard deviations σ1 = σ2 = 20%, with correlation coef-
ficient ρ12 = 0.8 for the returns of the two instruments. Applying the formulas presented
earlier, we find that the best Calmar ratio that can be achieved is 1.154, using a portfolio
that weights each instrument equally. Assume now that we add to the portfolio a losing in-
strument with µ3 = −10%, σ3 = 30%, and with negative correlations ρ13 = ρ23 = −0.8. Let
the new weightings for the three instruments in the portfolio be 45%, 45%, and 10%. The
Calmar Ratio for the augmented portfolio is now 1.308. This unexpected result shows how a
losing trading system, that might initially be regarded as useless, is actually beneficial and
leads to improved performance. The benefit of the negative correlation outweighs its lack
of profit performance. It is as if this trading system/instrument provides “cohesion” to the



portfolio. This instrument could for example be a shorted group of stocks or indices, thus
providing the negative correlation with the rest of the portfolio of long stock positions. This
result sheds some light into long-short portfolios. Not only do they serve as diversification
vehicles by producing returns over different cycles than traditional long only portfolios, but
they can produce better risk adjusted returns.

Even though correlation is currently considered in the industry as an important factor
when deciding whether to add a trading system/instrument to a portfolio, it is usually
second to the average return. With respect to risk adjusted returns, the correlation is almost
on par with average returns, and deserves to be given a higher weight (when evaluating a
trading strategy).

Conclusion.

The MDD is one of the most important risk measures. To be able to use it more effectively,
its analytical properties have to be understood. As a step towards this direction, we have
presented a review of some analytic results that we have developed as well as some applica-
tions of the analysis. In particular, we highlight the introduction of the normalized Calmar
ratio as a way to compare quantitatively the Calmar ratios of portfolios over different time
horizons. We also indicate the possibly underrated role of correlations in affecting the per-
formance of portfolios, and these correlations can be systematically incorporated toward
optimizing the Calmar ratio of a portfolio. We hope this study would spur more research
analyzing this important risk measure.
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