
Efficient Optimal Linear Boosting of A Pair of Classifiers

Victor Boyarshinov Malik Magdon-Ismail

Dept. Computer Science, RPI, Troy, NY, USA.

{boyarv,magdon}@cs.rpi.edu

Abstract

Boosting is a meta-learning algorithm which takes as input a set of classifiers and combines
these classifiers to obtain a better classifier. We consider the problem of efficiently and optimally
boosting a pair of classifiers by reducing this problem to that of constructing the optimal linear
separator for two sets of points in 2 dimensions. Specifically, let each point z be assigned a
weight W (z) > 0, where the weighting function can be an arbitrary positive function. We give
efficient (low order polynomial-time) algorithms for constructing an optimal linear “separator”
` defined as follows. Let Q be the set of points mis-classified by `. Then the weight of Q, defined
as the sum of the weights of the points in Q, is minimized. If W (z) = 1 for all points, then
the resulting separator minimizes (exactly) the mis-classification error. Without an increase in
computational complexity, our algorithm can be extended to output the leave-one-out error, an
unbiased estimate of the expected performance of the resulting boosted classifier.

1 Introduction

Model aggregation (for example boosting and bagging) are a well known techniques for enhancing

the statistical performance of a set of weak classifiers to obtain a stronger classifier, i.e., one

with better generalization performance [16, 18, 4, 1, 13]. Our main focus in this paper is to

address some algorithmic issues of boosting. Specifically, we consider the problem of boosting

a pair of classifiers: given two classifiers, what is the optimal linear combination of this pair of

classifiers? To make these statements more precise, lets introduce some notation. The training

set D = {zi, yi}
n
i=1 is a collection of data points where zi ∈ R

d and yi ∈ {−1,+1}. A weighting

function W : R
d 7→ R

+ specifies a penalty for misclassifying a data point; let wi = W (zi). Let

g1, g2 : R
d 7→ R be a pair of classification functions, where the corresponding classifiers would be

given by sign(g1), sign(g2) : R
d 7→ {−1,+1}.

Definition 1.1 A (linearly) boosted classification function g(z)has the form

g(z) = w0 + w1g1(z) + w2g2(z).

The corresponding classifier is sign(g(z)) = sign(w0 + w1g1(z) + w2g2(z)).

1

g1 and g2 can be viewed as defining a new two dimensional feature space. Each datapoint zi ∈ R
d

can be mapped onto this two dimensional feature space by {zi, yi} 7→ {
[

g1(z)
g2(z)

]

, yi}. A linearly

boosted classifier corresponds exactly to a linear separator ` in this two dimensional space. We

illustrate with two examples below (black squares are data points from class {+1} and red circles

are from class {−1}).

`

g1

g2

`

g1

g2

(a) Ideal individual classifiers. (b) Individual classifiers make errors.

In (a), we illustrate the “ideal” situation in which both classifiers individually make no errors.

While there is no benefit from boostinig on the training set, there may still be benefit, from the

statistical perspective, to optimal boosting. In (b), we illustrate the more general case in which

the classifiers may make errors. A line ` (shown) represents one particular way in which to boost

the classifiers. The training points misclassified by the boosted classifier are circled. The essential

point is that there is an equivalence between the set of linearly boosted classifiers for g1, g2 and the

set of “separating” lines ` in the two-dimensional feature space. We can thus rephrase our entire

discussion regarding the optimal linear boosted classifier for g1, g2 (for whatever optimal means) in

terms of its corresponding optimal linear classifier in the two dimensional space.

Optimal Linear Separation in R
2. While our specific concern here is optimal boosting of a

pair of classifiers, optimal linear separation plays a key role in other areas of pattern recognition

and computational geometry. In statistical pattern recognition, a resurgence of linear separability

has emerged through its role in Support Vector Machines and other kernel based methods [9, 19]. In

computational geometry, determining the intersection of sets (mostly in two or three dimensions)

is of immense practical importance, for example in CAD systems. Thus efficient optimal linear

separation is a fundamental tool that may be of use outside our setting.

Our goal here is to develop efficient algorithms for exact linear separation, where we use “exact”

to mean globally optimal with respect to the (arbitrarily specified) positive error criterion W . We

2

emphasize that our algorithms are applicable to the case where the data points are not linearly

separable.

We will use the notation x to refer to the two dimensional projection of z into the feature

space given by
[

g1(z)
g2(z)

]

. The data D is naturally partitioned into two sets A,B corresponding to the

positive and negative data points. Specifically, zi ∈ A (zi ∈ B) iff yi = +1 (yi = −1).

Definition 1.2 Two sets A, B are linearly separable iff ∃v, v0 such that vT x + v0 > 0, ∀x ∈ A

and vTx + v0 < 0, ∀x ∈ B. The pair (v, v0) defines an (oriented) separating hyperplane.

If two sets, A,B, are linearly separable, the margin of a separating hyperplane ` is the minimum

distance of a data point to the hyperplane. The maximum margin separating hyperplane is a

separating hyperplane with maximum possible margin. We define the optimal separator with

respect to the weighting function W .

For hyperplane ` = (v, v0), let Q(`) = QA(`) ∪ QB(`) denote the set of misclassified points,

where QA(`) = {x ∈ A|vT x + v0 ≤ 0} and QB(`) = {x ∈ B|vTx + v0 ≥ 0} (note that we take the

points on ` as being misclassified). The hyperplane ` is denoted a representative hyperplane for

Q(`). The weight (or error) E(`) for ` is the total weight summed over the points misclassified by

`,

E(`) =
∑

i:xi∈Q(`)

wi.

Note that the sets A′(`) = A \ QA(`) and B′(`) = B \ QB(`) are linearly separable, and ` is a

separator for them. Similarily, QA(`) and QB(`) are also linearly separable and ` is a separator for

them as well. A separator `∗ is optimal if it has minimum weight, i.e., for any other separator `,

E(`∗) ≤ E(`).

Definition 1.3 (Optimal Weight Fat Separator) A hyperplane ` = (v, v0) is an optimal

weight fat separator for A,B if it is optimal and is also a maximum margin separator for A′(`) and

B′(`).

Intuitively, the optimal weight fat separator ` is the hyperplane with minimum error such that if

the misclassified points are viewed as noisy and are removed, then the entire set becomes separable,

and ` is a maximum margin separator for the “noise-corrected” set. We could analogously define

the optimal fat separator with respect to the new separable set that would be obtained if instead

of removing the misclassified points, we flip the classes of these points – all our results apply here

as well.

3

Our Contribution. We consider optimal boosting of a pair of classifiers, where we define the

optimal boosted classifier as the optimal fat separator in the two dimensional feature space x. An

exponential algorithm to solve this problem results from removing every possible subset of the data

and testing for separability (as the number of possible subsets is exponential). We first show how

to significantly improve the efficiency by reducing the problem to considering only the separators

` passing through every pair of points (O(n2)), which results in an O(n3) algorithm. By more

carefully enumerating these separators, we finally establish the following theorem.

Theorem 1.4 The optimal fat separator for the two sets A,B ∈ R
2 with |A| ≤ |B|, can be con-

structed in time O(|A|n log n), where n = |A ∪ B|.

Note that the algorithm is exact, i.e. outputs a globally optimal solution, applies to non-separable

sets A,B, and the weight function W can be an arbitrary positive function. In particular, if W (x) =

1, then the resulting separator minimizes the classification error, i.e., obtains the linearly boosted

classifier with minimum classification error. An important problem in computational geometry is

set intersection, or intersection of solid objects. Our algorithm can be applied in this setting with

W (x) = 1 to obtain the minimum sized intersection for two objects represented as sets of points.

The leave-one-out (or cross-validation) error is an important unbiased measure of the out of

sample (generalization) performance of any classifier. In particular, one would like to obtain the

expected generalization performance for the resulting boosted classifier. The typical computation

of this error would involve removing a data point xL, computing the optimal boosted classifier on

D \ xL, and evaluating its leave-one-out performance on xL. This leave-one-out performance can

be averaged over every data point left out to give a lower variance estimate of the expected out of

sample error. Since the entire optimal boosting has to be performed on n data sets of size n−1, the

resulting computation adds a factor of n to the computational complexity. We show how to extend

our algorithm to obtain the leave-one-out error with no increase in the asymptotic computational

complexity. Specifically, we establish the following theorem.

Theorem 1.5 For the two sets A,B ∈ R
2, the leave-one-out error for optimal boosting can be

computed in time O(n2 log n), where n = |A ∪ B|.

All our proofs are constructive, and can hence be converted to algorithms without much difficulty.

Interpreting the Weight Function W . The most natural interpretation of the weight function

W is as a user defined risk metric which specifies the penalty for misclassifying inputs (which may

be a function of the actual input). The optimal boosted calssifier then corresponds to minimizing

the empirical risk.

4

We briefly digress to give a probabilistic interpretation of weight function W . Let pi be the

probability that the class of the ith data point is correct; pi is a measure of the noise in the data

point yi. Assume, without loss of generality, that pi > 1
2 (if pi < 1

2 , we could simply flip the value of

yi, and if pi = 1
2 , the data point conveys no useful information and can be discarded). Assume that

the classes of the data points are selected independently, and let Q be the set of points misclassified

by a particular classifier g. We can compute the likelihood of g as

l(D|g) =
∏

i:xi∈D\Q

pi

∏

i:xi∈Q

(1 − pi).

Taking the logarithm of both sides and collecting terms, we find that

log l(D|g) = W −
∑

i:xi∈Q

ŵi,

where W =
∑

i log pi is a constant independent of g and ŵi = log pi

1−pi
. Thus, computing the

maximum likelihood classifier corresponds exactly to computing the minimum weight classifier

where the weights are given by ŵi. These weights are legitimate, i.e. ŵi ≥ 0, because pi > 1
2 .

Paper Outline. Next we discuss some related work, then we give our optimal boosting algorithms

in Section 2. We discuss the leave-one-out error computation in Section 3, and we end with some

concluding remarks in section 4.

Related Work.

The convex hull of a set of points is the smallest convex set that contains the points. The convex

hull is a fundamental construction in mathematics and computational geometry, and convex hull

operations play an important role in linear separability, because two sets are linearly separable iff

their convex hulls are linearly separable. Chan [5] presented the state-of-the-art output sensitive

algorithm for computing the convex hull in 2 or 3 dimensions:

Fact 1.6 ([5]) The convex hull in 2 or 3 dimensions can be computed in O(n log h) operations,

where h is the size of the output, and n is the number of points.

When two sets of points are separable, an approach to constructing the maximum margin separator

is to first construct the convex hulls, and then construct the maximum margin separator for the

convex hulls. In 2 and 3 dimensions, this approach is very efficient. The maximum margin separator

can be specified as the orthogonal bisector of the line joining two points on the convex hulls of

the two sets. These two points are sometimes refered to as a realization of the maximum margin

5

separator (also referred to as support vectors). Dobkin and Kirkpatrick [11] introduced hierarchical

representations for convex hulls and established many useful properties of such representations.

Specifically, given a standard representation of a convex hull (in 2 or 3 dimensions), a compact

hierarchical representation of can be constructed in linear time. This representation has been

exploited in a series of subsequent papers ([11], [12]). In particular, they construct a sublinear

deterministic algorithm for obtaining the maximum margin separator for separable convex hulls in

2 and 3 dimensions (given the hierarchical representation for both convex hulls). Using the linear

algorithm for constructing the hierarchical representations combined with Fact 1.6, one obtains an

efficient deterministic algorithm for constructing the maximum margin separator for separable sets

in 2 and 3 dimensions:

Fact 1.7 ([6],[11]) The maximum margin separator (in 2 and 3 dimensions), and its realization,

for two separable sets A and B can be found in O(n log n) operations.

Generalizing to d > 3 dimensions is difficult, and a more popular approach is to re-formulate the

linear separability problem as a linear program or the maximum margin separator problem as a

quadratic program. Such problems can be handled using linear/convex programming techniques

such as: the simplex method [7], with complexity O(N2) where the constant is exponential in d

(in practice the simplex method has linear average-case complexity); or, interior point methods

[10, 14, 15, 17].

Our work addresses the case when A and B are not linearly separable (i.e., their convex hulls

intersect). Common approaches are to formulate some differentiable error as a function of the

distance of a misclassified point from the hyperplane. One then seeks to minimize some heuristic

function of this error, [19]. If the resulting error function is convex, then convex optimization

techniques can be brought to bear, for example in [19] one obtains a convex quadratic program.

Bennet and Mangasarian [2] propose minimizing the average distance from misclassified points

using linear programming. Most often, however, such heuristic errors are minimized using iterative

algorithms. Another approach, suggested in [3], is to solve the problem using linear programming

on the reduced convex hulls (contracted convex hulls obtained by placing an upper bound on the

multiplier in the convex combination for each point).

In contrast to these existing approaches, our work focuses on producing globally optimal solu-

tions: for an arbitrary weight function W , the problem cannot be represented as the minimization

of some differentiable error (convex or not). We output a minimum weight subset of the points Q

such that after deleting these points, the remaining points are separable, and the algorithms given

by Fact 1.7 can then be used. Alternatively, if the points in Q have their classes flipped, then once

again, the algorithms in Fact 1.7 can be brought to bear.

6

2 Optimal Fat Separators in 2 Dimensions

The goal in this section is to prove Theorem 1.4. Let A = {ai}
m
i=1 and B = {bj}

k
j=1 be two sets of

points, with m ≤ k, and let n = m + k. It is traditional to assign class +1 to one of the sets (say)

A and −1 to the other. Every point x has a weight W (x) > 0.

Definition 2.1 A separator set Q ⊆ A∪ B is a set with the following property: if the points in Q

are deleted, the remaining points are linearly separable.

Every separator set Q has a weight, W (Q) =
∑

x∈Q W (x). An optimal separator set Q∗ is one with

minimum weight, i.e., for any other separator set Q, W (Q) ≥ W (Q∗). The next lemma provides

a correspondence between optimal separator sets and hyperplanes. As already discussed, to every

oriented line `, we can associate the separator set Q(`) which is separable by `. The converse is

also true for an optimal separator set.

Lemma 2.2 Let Q∗ be any optimal separator set. Every hyperplane ` that separates (A ∪ B) \ Q∗

also separates Q∗, so Q∗ is also separable; further, Q(`) = Q∗.

Proof: Let Q∗ be an optimal separator set. Then A′ = A \ Q∗ and B′ = B \ Q∗ are linearly

separable, so let ` be any separating hyperplane. First assume that no point of Q∗ lies on `. Then

every point in Q∗ must be misclassified, for if x ∈ Q∗ is correctly classified, then Q∗\x is a separator

set with smaller weight, contradicting the optimality of Q∗. Now suppose that some points of Q∗

lie on `, then, since ` strictly separates A′,B′, there exists a small enough shift of ` which will still

separate A′ and B′. This shift can be chosen so as to classify at least one point x ∈ Q∗ correctly,

which means that Q∗ \x is a separator set with smaller weight, contradicting the optimality of Q∗.

For an optimal separator set Q∗, by Lemma 2.2, any hyperplane ` that separates (A∪ B) \ Q∗

induces Q∗, i.e. Q(`) = Q∗. In particular, the optimal fat (maximum margin) separator for

(A ∪ B) \ Q∗ will have minimum weight. Thus, once we have found an optimal separator set, we

can easily construct an optimal fat separator using the result in Fact 1.7. To prove Theorem 1.4,

it therefore suffices to give an efficient algorithm to compute an optimal separator set. A brute

force search through all subsets of A ∪ B is clearly an exponential algorithm. We present here a

polynomial time algorithm to find an optimal separator set, which will establish Theorem 1.4.

The general idea follows from Lemma 2.2 which implies that any optimal separator set is the

separator set of some hyperplane. Thus, it suffices to consider all possible hyperplanes, and their

separator sets. Though it appears that we have increased the difficulty of our enumeration problem,

7

we will now show that not all possible hyperplanes need be considered. In fact, we can restrict ourself

to hyperplanes passing through at least two points. This is a big step, because there are only Θ(n2)

such hyperplanes. The separator set for a given hyperplane can be computed in O(n) operations,

and so we immediately have an O(n3) algorithm. By being careful about reusing computations, we

can reduce the complexity to O(n2 log n), which is the content of the next theorem.

Theorem 2.3 (Optimal Separator Set) An optimal separator set Q(A,B) can be found in

O(mn log n) time.

Proof: We need to consider more carefully the definition of a separator set, especially when points

lie on the hyperplane `. According to the strict definition of separability, we would need to include

all the points on ` into Q(`). We relax this condition in the definition of the positive separator set

associated to the hyperplane `.

Definition 2.4 For hyperplane `, the positive separator set Q+(`) contains all misclassified points

except the positive points (in A) that lie on `. ` is denoted the positive separator hyperplane of

Q+(`).

For a hyperplane `, the only difference between the usual separator set and the positive separator

set is in how we treat the points that reside directly on the hyperplane (Q+(`) ⊆ Q(`)). The next

lemma which shows a correspondence between optimal separator sets and positive separator sets

will be useful in the our proof.

Lemma 2.5 Let Q∗ be any optimal separator set. Then there exists a hyperplane ` such that

Q+(`) = Q∗ and either:

i. two or more positive points from A reside on `;

ii. exactly one positive point from the A resides on `, and no others.

Proof: Let Q∗ be an optimal separator set, and let `′ be a hyperplane that separates A′ and B′

constructed from A∪B\Q∗. By Lemma 2.2 Q(`′) = Q∗ and `′ separates Q∗. Let a+ be the closest

positive point in A′ to `. Then all hyperplanes `′′ parallel to `′ that are closer to a+ and correctly

classify a+ also separate A′ and B′. Hence, by Lemma 2.2 all such hyperplanes also separate Q∗,

i.e., for all such hyperplanes `′′, Q(`′′) = Q∗. This means there are no points that are on any of

these hyperplanes `′′. Now let ` be the hyperplane parallel to `′ and containing a+, and consider

Q+(`). Any negative points on ` belong to Q+(`), but they already belonged to Q∗. Any positive

points on ` do not belong to Q+(`), and they also did not belong to Q∗. Thus, Q+(`) = Q∗. If `

8

contains exactly one positive point and no others, then we are done. Suppose that ` contains at

least one negative point and no other positive points (other than a+). Then, there exists a small

enough rotation of ` about a+ which still separates A′ and B′ but will classify at least one negative

point b− ∈ Q∗ correctly. This means that Q∗ \ b− is a separator set with smaller weight that Q∗,

contradicting the optimality of Q∗. Thus, if there is only one positive point on `, there can be no

other points. The only other case is that there are two or more positive points on `, concluding the

proof. �

Lemma 2.5 shows that it suffices to consider only the positive separator sets of hyperplanes that

pass through at least one positive point. This is the starting point of the algorithm. We try

every positive point as a candidate ”central” point and compute the best possible separator set

for all hyperplanes that pass through this central point. We then keep the best separator set

over all possible candidate central points. Since there are m possible candidate central points,

the computational complexity will be the time it takes to compute the best separator set for all

hyperplanes passing through a candidate central point multiplied by m. The next lemma gives a

constructive algorithm to compute this best separator set.

Lemma 2.6 The optimal positive separator set over all hyperplanes passing through a candidate

central point can be computed in O(n log n).

Proof: Let’s consider how to efficiently find the best positive separator hyperplane that contains

some fixed positive point a+. In order to do so efficiently, we introduce a mirrored-radial coordinate

system in which all the points except a+ can be linearly ordered with respect to a+.

We start with an arbitrary (base) vector u that defines an axis as shown in Figure 1. The

origin of u is at a+. With a+ as origin, we define the angle θ(x) of a point x with respect to the

base vector u as the angle between the two vectors x − a+ and u. The upper hemisphere of the

unit circle is the set of points on the unit circle with angle in the range [0, π] (shaded in Figure

1). We define the mirrored-radial projection of a point s(x) as the projection of x onto the upper

hemisphere of the unit circle, through the origin a+. The mirrored-radial projections of x1,x2,x3

are illustrated by s1, s2, s3 in the Figure 1). The mirrored-radial coordinate θ(x) is then the angle

of s(x), i.e., θ(s(x)). Notice that many points may have the same mirrored-radial projection, in

which case, they all have the same mirrored-radial coordinate.

Suppose that for some (arbitrary) choice of u, the mirrored radial coordinates of all the points

(except a+) have been sorted. Thus, 0 < θ1 ≤ θ2 · · · ≤ θn−1 < π. For convenience, define θ0 = 0 and

θn = π. An oriented hyperplane ` can also be uniquely specified by giving its angle θ` (see Figure

1), together with its orientation (±1). For a given orientation, all hyperplanes with θ` ∈ (θi, θi+1),

9

a+

x3

x2

θ3

x1

s1s2

s3

`

θ1
θ`

+

u

Figure 1: Mirrored-radial coordinates.

0 ≤ i < n, partition the points into the same two sets, and hence have the same positive separator

set. The other possible values for θ` are the actual mirrored-radial coordinates θi. Since there are

only two possible orientation for a given θ`, we have the following lemma

Lemma 2.7 There are at most 4n−2 possible equivalence classes of positive separator hyperplanes,

corresponding to the following ranges for for θ`,

{(θ0, θ1), θ1, (θ1, θ2), θ2, . . . , θn−1, (θn−1, θn)}.

For any two values of θ` from the same range, and for a given orientation, the positive separator

sets are identical.

The importance of Lemma 2.7 is that we now only have to check one representative from each

equivalence class. Further, this can be done very efficiently with two linear time scans (one for

each orientation) as follows. Lets consider hyperplanes with orientation +1 as shown in Figure

1 (the same argument applies to orientation −1). First consider the line ` with θ` = θ0, and we

compute Q+(`) and W (Q+(`)). This takes linear time O(n). Now, we sequentially step through

the hyperplane equivalence classes. Each time we move from one equivalence class to the next,

some points will enter Q+(`) and some points will leave Q+(`), and correspondingly W (Q+(`))

must be updated.

(i) Move from equivalence class (θi, θi+1) to θi: All positive points with coordinate θi+1 are

removed from Q+(`) (if they previously belonged to Q+(`)) and W (Q+(`)) is updated. All

negative points with coordinate θi+1 are added to Q+(`) (if they are not already in Q+(`))

10

and W (Q+(`)) is updated. This process only requires a single scan through all the points

with coordinate θi+1 to determine their sign.

(ii) Move from equivalence class θi to (θi, θi+1): All positive points with coordinate θi that now

become misclassified are added to Q+(`) and W (Q+(`)) is updated. All negative points with

coordinate θi that now become correctly classified are removed from Q+(`) and W (Q+(`)) is

updated. This process also only requires a single scan through all the points with coordinate

θi to determine their sign and if they are now misclassified or not.

In order to efficiently implement these updates, we store the current positive separator set Q+(`)

in an array q of size n. We set q[k] = 1 iff xk ∈ Q+(`). When we process one of the changes in

the hyperplane equivalence class described above, we process all the points with some value θi for

their mirrored radial coordinate. Suppose that there are ni such points. The status (misclassified

or not) for these points for the new hyperplane θ` can be tested in constant time per point. Some

(or all) of these points will then change their set membership in Q+(`) which can be updated in

constant time in q, and simultaneously, W (Q+(`)) is updated in O(1) operations per point. Each

time W (Q+(`)) is updated, in O(1) operations, we can keep track of the minimum value attained.

Thus the total cost of one such move is O(ni). On each move, only the points corresponding to

some mirrored radial coordinate θi are processed (O(ni)), each θi is processed at most twice, once

in the move from (θi−1, θi) to θi and once in the move from θi to (θi, θi+1). Thus each θi contributes

O(2ni) to the computational cost, resulting in a total computational cost of O(2
∑

ni) = O(n) for

the scan. This scan is repeated for orientation −1 of the hyperplane, for a total cost O(n). Once

the weight of the best separator is computed using the two scans above, an analogous single scan is

all that is required to reconstruct the optimal positive separator set itself by performing the scan

until the optimal weight positive separator set is reached.

Recap: For every positive point, a+, we first compute the mirrored-radial coordinates of all the

other points, requiring O(n) operations. We then sort these coordinates in O(n log n) operations.

We now make two scans (in sorted order), one for each orientation of the hyperplane, updating the

weight of the positive separator set, keeping track of the optimal weight. After the scan, one more

scan suffices to construct the optimal weight positive separator set for this central point a+. These

scans are linear time, O(n). Since the sorting operation has the dominant run time, this entire

process is in O(n log n), and it constructs the optimal positive separator set. �

By Lemma 2.5, every optimal separator set is equivalent to a positive separator set passing through

at least one positive point. Since the algorithm in Lemma 2.6 considers all such positive separator

11

sets, it must have considered all optimal separator sets. All that remains is to argue that the

optimal positive separator set is also an optimal separator set. The next lemma will be useful.

Lemma 2.8 Any positive separator with weight W is also a separator set (with weight W).

Proof: Consider any positive separator set with weight W , together with its positive separator

line `. Let b− be the closest point to ` on the negative side of `. Make a parallel shift of ` to `′

by a small enough distance so as not to cross b−. Now all the positive points on ` are correctly

classified and all the negative points on ` are incorrectly classified. The classifications of no other

points have changed, therefore Q(`′) = Q+(`), i.e., Q+(`) is also a separator set. �

Suppose that the optimal positive separator set with weight W constructed in Lemma 2.6 is not an

optimal separator set. Suppose that the weight of an optimal separator set is W ∗ < W . Since every

optimal separator set corresponds to some positive separator set, this positive separator set must

have been considered in the the optimization over positive separator sets. Further, every positive

separator set is also a separator set (Lemma 2.8) therefore W ≤ W ∗, which is a contradiction. Thus

the optimal positive separator set constructed is also an optimal separator set. To conclude the

proof of Theorem 2.3, we observe that the runtime of the entire algorithm is obtained by multiplying

the runtime in Lemma 2.6 by m, since the algorithm in Lemma 2.6 must be run for every candidate

central point.

2.1 Maximizing The Margin Subject to Minimum Weight

The algorithm in the previous section outputs a separator set Q which is guaranteed to have optimal

weight. After removing this separator set, we may then construct the maximum margin separating

hyperplane efficiently using the results in Fact 1.7. Since we know that Q and A ∪ B \ Q are

simultaneously separable (with opposite orientation) by the same set of hyperplanes (Lemma 2.2),

one could instead flip the classes of the points in Q to obtain an optimal separable set, which can

then be fed into the algorithms in Fact 1.7. However, the algorithm does not guarantee that the

resulting fat separator has maximum margin among all separators having optimal weight. This

issue is illustrated in Figure 2. In the figure, removing (or flipping the class of) the circled discs

gives a larger margin boosted classifier than removing (or flipping the class of) the circled squares.

A minor modification of the algorithm allows us to break ties optimally with respect to the margin

of the classifier, without any increase in asymptotic computational complexity. We make use of the

hierarchical convex hull representations developed in [6, 11].

12

g2

g1

Figure 2: Maximizing the margin among optimal separator sets. The sum of the weights of the
circled squares equals that for the circled discs.

Fact 2.9 ([6, 11]) Given the hierarchical representation of two convex hulls on a total of n points

in 2 or 3 dimensions, they can be merged into one hierarchical representation of a convex hull in

O(log n). In particular, a single point may be added to a convex hull in O(log n).

Fact 2.10 ([6, 11]) The 2 or 3 dimensional hierarchical representation of a convex hull can be

maintained in such a way that points can be removed from the convex hull in the reverse order in

which they were added to the convex hull in time O(log n) per point.

Fact 2.11 ([6, 11]) Given the 2 or 3 dimensional hierarchical representation of a pair of convex

hulls, the maximum margin separator (and its weight) can be found in O(log n).

These tools are all the operations needed to extend the algorithm given in Lemma 2.6 to keep track

of the margin of a separating set in addition to its weight. We will give the details for the case

where we are interested in the margin of separation after the separator set is removed (analogous

results hold when class of points in the separator set is flipped).

Definition 2.12 For the set A ∪ B, the margin of separator set Q, mar(Q), is the margin of the

optimal fat separator for A ∪ B \ Q.

Theorem 2.13 An optimal separator set Q∗ for A∪B can be found in time O(mn log n) such that

for any other separator set W (Q∗) ≤ W (Q), and if W (Q∗) = W (Q) then mar(Q∗) ≥ mar(Q).

13

Proof: The essence of the proof is exactly analogous to the proof of Theorem 2.3, the main

difference is Lemma 2.6. In constructing the constructing the optimal weight separator set, we also

need to keep track of its margin. The analogous lemma is

Lemma 2.14 The optimal positive separator set with maximum margin over all hyperplanes pass-

ing through a candidate central point can be computed in O(n log n).

Proof: We consider the set of hyperplanes in the equivalence classes defined in Lemma 2.7, and we

assume that the data points have already been sorted according to their mirrored radial coordinates.

The initial hyperplane θ0 (with positive orientation) defines a separator set Q0. For this separator

set, we construct the positive and negative hierarchical convex hulls on A0,B0, and obtain the

maximum margin separator, together with its margin. This can be accomplished in O(n log n).

The positive convex hull consists of all positive points that have un-mirrored radial coordinate in

the upper hemisphere, and the negative hull consists of all negative points whose un-mirrored radial

coordinate is in the lower hemisphere. We assume that the points in the positive and negative convex

hull were added in order of decreasing un-mirrored radial coordinate. These convex hulls, including

the maximum margin separator and the margin can be constructed in O(n log n) (Facts 2.9, 2.11).

We now consider the transition from one equivalence class (say θi) to the next (say (θi, θi+1)).

Points get removed from the positive/negative convex hull in order of increasing un-mirrored radial

coordinate, which is the reverse order in which they were added. The updated convex hull can be

computed in O(log n). Unfortunately, points may also get added to the convex hulls, which may

cause a problem for later removal. Thus we maintain two new positive and negative convex hulls

for negative/positive points that need to be added to their respective convex hulls. The full positive

(negative) convex hull will be the merged hulls from the two positive (negative) convex hulls, one

for the original convex hull with points being removed, and the second for the convex hull with

points being added.

By Facts 2.9 and 2.10, these two convex hulls can be maintained using O(log n) operations per

point. Further, the two negative and positive convex hulls can be merged and their maximum

margin separator found in O(log n) (Facts 2.9 and 2.11). Thus, using O(log n) operations per

point, we can update both the weight and the margin of the positive separator set, keeping track of

the minimum weight, and among minimum weight positive separator sets, the maximum margin.

This constitutes a total of n log n operations for the entire scan. After this scan is performed, we

have the optimal weight and maximum margin corresponding to this optimal weight. A single

additional scan suffices to construct the separator set as the one which achieves this optimal weight

and margin. �

14

The remainder of the proof of the theorem follows the same line as the proof of Theorem 2.3, for a

total runtime of O(n log n).

3 Leave-one-out error

An important issue in the design of efficient machine learning systems is the estimation of the

accuracy of learning algorithms, in particular its sensitivity to noisy inputs. One classical estimator

of the generalization performance is the leave-one-out error, which is commonly used in practice.

Intuitively, the leave-one-out error is defined as the average error obtained by training a classifier

on n−1 points and evaluating it on the point left out. For some learning algorithms, one can obtain

estimates of the leave-one-out error, for example for Support Vector Machines: in the separable

case, the leave one out error can be bounded in terms of the number of support vectors, [19]. To

estimate the leave-one-out error algorithmically, we remove one point, train the classifier and test in

on the point left out. This entire process is repeated n times, once for every possible data point that

could be left out. The average error on the points left out during this process is the leave-one-out

error. More formally,

Let X denote all the points, X = A ∪ B. Let X (i) denote the points with point xi left out,

X (i) = X \ xi. Let C(i) denote the classifier built from X (i) – in our case this is an optimal weight

fat separator. Let ei denote the error of C(i) applied to the input point xi.

ei =

{

0 if xi is classified correctly,

wi = W (xi) otherwise.

The leave-one-out error, Eloo is given by Eloo = 1
n

∑n
i=1 ei. A brute force application of Theorem

1.4 to the computation of Eloo results in a factor of n increase in the run time (since the opti-

mal boosting must be computed n times), which would result in an O(mn2 log n) algorithm. We

show how to modify the algorithm so that it outputs Eloo with no increase in the computational

complexity, establishing Theorem 1.5, which we restate here for convenience.

Theorem 3.1 An optimal fat separator, together with its optimal separator set Q(A,B) and the

leave-one-out error can be be found in time O(mn log n) time.

Before we prove this theorem, we will need some preliminary results.

Let Q(X) be an optimal separator set for the set of points X , and let V be any subset of Q(X).

We consider the set X ′ = X \ V, i.e., a set resulting from the removal of some part of an optimal

separator set from the original set. Note that Q(X) is misclassified by the optimal fat separator

trained on X . Consider Q(X ′), i.e. an optimal separator set for the reduced set of points, and its

corresponding fat separator hyperplane `′.

15

Lemma 3.2 Let Q(X) be an optimal separator set for X , let V ⊆ Q(X) and let X ′ = X \ V. Let

Q(X ′) be an optimal separator set for X ′. Then W (Q(X ′)) = W (Q(X))−W (V), and any separator

hyperplane `′ associated to Q(X ′) misclassifies every point in V.

Proof: Certainly Q(X) \ V is a separator set for X ′, and so

W (Q(X ′)) ≤ W (Q(X) \ V) = W (Q(X)) − W (V). (∗)

Now consider adding back the points in V to X ′. Let `′ be any separator associated to Q(X ′), and

let V ′ ⊆ V be the points in V that `′ misclassifies. Note that W (V ′) ≤ W (V). If we add back into

Q(X ′) all the points in V ′, then we get a separator set for X where `′ is a corresponding separator

line. To see this, note that `′ separates the points in X ′ \ Q(X ′) = X \ (V ∪ Q(X ′)). Since by

definition of V ′, `′ separates the points in V \ V ′, it follows that we can add back the set V \ V ′ and

`′ will continue to separate the resulting set. Thus, `′ separates X \ (V ′ ∪ Q(X ′)), i.e. V ′ ∪ Q(X ′)

is a separator set for X . Therefore, by the optimality of Q(X),

W (Q(X)) ≤ W (V ′ ∪ Q(X ′)) = W (V ′) + W (Q(X ′)) ≤ W (V) + W (Q(X ′)). (∗∗)

We conclude that W (Q(X ′)) = W (Q(X))−W (V). We now argue that V ′ = V, i.e., `′ misclassifies

every point in V. Suppose to the contrary, that V ′ ⊂ V, i.e. W (V ′) < W (V). Then (∗∗) becomes

strict, i.e. W (Q(X)) < W (V) + W (Q(X ′)), which contradicts (∗), concluding the proof.

By lemma 3.2, if xi ∈ Q(X) and Q(i)(X (i)) is an optimal separator set for X (i) with fat separator

`(i), then `(i) misclassifies xi. So, ei = 1 for any xi ∈ Q(X). We thus conclude that

Corollary 3.3 Eloo =
W (Q(X))

n
+

1

n

∑

xi∈X\Q(X)

ei.

Lemma 3.3 immediately gives a lower bound Eloo ≥ W (Q(X))
n

for any optimal separator set Q(X).

Further, it suffices to compute ei only for xi ∈ X \Q(X). With only a slight change in the algorithm

given in the proof of the Theorem 2.3 we will be able to compute these terms, and hence obtain

the exact value of the leave-one-out error. First observe that the following simple lemma holds.

Lemma 3.4 If Q is a separator set for X (i), then Q ∪ xi is a separator set for X .

Thus, all separator sets of X (i) are subsets of separator sets of X . The complication that arises in

the computation of the leave-one-out error is that neither the optimal separator set nor the optimal

fat separator is unique. A point xi ∈ X can be one of three types:

Type I xi is classified correctly by all distinct optimal fat separators constructed for X (i). Such

an xi makes no contribution to the leave-one-out error.

16

Type II xi is misclassified by all optimal fat separators constructed for X (i). Such an xi con-

tributes wi to the leave-one-out error.

Type III There are distinct optimal separator sets for X (i). In the algorithm, an optimal separator

set is the result of selecting a central point and selecting one of the separator sets for a line

that passes through the central point. We denote this an occurrence of the optimal separator

set. A reasonable probabilistic model is to say that one of these occurrences will be selected

randomly with uniform probability. Let Nc of these occurrences result in fat separators that

classify xi correctly and Ne of them misclassify xi. In this case, there is ambiguity in how

we compute the error ei, and we choose the expected value of ei under the assumption that

each of these optimal separator set occurrences is selected with probability 1/(Nc + Ne), so

ei = wi
Ne

Ne + Nc

.

The leave-one-out error can be computed by summing the contributions of every point. Points of

type I can be ignored. We now focus on points of type II and III. Let Wopt be the weight of any

optimal separator set for X . The next lemma gives a useful characterization of points that are

misclassified after leaving them out and computing an optimal fat separator. The usefulness of the

lemma lies in that it relates to the weight of separator sets for the entire data set (not the leave

one out data set). We will use the notation QX (`) Q+
X (`) to denote separator (positive separator)

sets implied by hyperplane ` with respect to the points in set X .

Lemma 3.5 Let xi be a positive point which is misclassified by some optimal fat separator ` for

X (i). Then there exists a positive representative hyperplane `∗ that passes through a positive point

a+ 6= xi such that xi ∈ Q+(`∗) and Wopt ≤ W (Q+
X (`∗)) ≤ Wopt + wi.

Proof: Since ` is an optimal fat separator for X (i), no point of X (i) can lie on ` as otherwise we

could slightly shift ` to obtain a better separator set. Since ` misclassifies xi, xi is either on ` or on

its negative side. Let u be the closest point in X (i) to ` that is on its positive side. Let `∗ be the

hyperplane parallel to ` passing through u. By definition of u, there are no points in the region

between ` and `∗. If `∗ contains no positive points, then this would contradict the optimality of `,

as there would be a small enough shift of `∗ further to its positive side which would now correctly

classify all the negative points on `∗ (at least one). This shifted hyperplane would have strictly

smaller error than `, contradicting the optimality of `. Thus there is at least one positive point

a+ 6= xi on `∗. For `∗ to satisfy the requirements of the lemma, it only remains to show the bounds

on the weight of its positive separator set, where the positive separator set is defined with respect

to the entire set X .

17

Since any positive separator set is also a separator set (Lemma 2.8), Wopt ≤ WX (Q+(`∗)). Since

there are no points between ` and `∗, all the positive points on `∗ are not included in Q+
X (`∗) and xi

is a positive point not on `∗ that is misclassified by both ` and `∗, we have that Q+
X (`∗) = QX (`).

Consider any optimal separator set Q for X . This is a separator set for X (i), and so by the optimality

of ` for X (i), W (QX (i)(`)) ≤ Wopt. Since xi is misclassified by `, QX (`) = QX (i)(`) ∪ {xi}, and so

W (Q+
X (`∗) = W (QX (`)) = W (QX (i)(`)) + wi ≤ Wopt + wi.

In words, Lemma 3.5 states that if a positive point xi is misclassified by its leave-one-out fat

separator, then there is some hyperplane passing through a different positive point that satisfies

two conditions: it misclassifies xi; and, the weight of its positive separator set cannot be too large,

at most Wopt + wi. If there is no hyper-plane passing through a positive point satisfying these

two conditions, then we conclude that the point is of type I. The algorithmic implication of this

lemma is that to find points that are misclassified by their leave-one-out fat separator, it suffices

to consider the positive separator sets in X which have sufficiently small weight. These positive

separator sets are enumerated by the positive central points. The next lemma shows that if the

upper bound Wopt + wi is strict, then every leave-one-out optimal fat separator for xi misclassifies

it.

Lemma 3.6 Let xi be positive point and `∗ any hyperplane that passes through a positive point

a+ 6= xi that strictly misclassifies xi, i.e., xi ∈ Q+(`∗). Suppose that W (Q+(`∗)) < Wopt + wi.

Then, every optimal fat separator for X (i) will misclassify xi.

Proof: By construction, W (Q+
X (i)(`

∗)) = W (Q+
X (`∗))−wi < Wopt, where the inequality is implied

by the assumption in the lemma. Let Q be an optimal separator set for X (i) with fat separator `.

Suppose that ` correctly classifies xi. Since Q is optimal for X (i), W (Q) ≤ W (Q+
X (i)(`

∗)) < Wopt

(Lemma 2.8). Further, since the fat separator for Q correctly classifies xi, Q is a separator set for

X , which means that W (Q) ≥ Wopt, a contradiction. Thus, ` must misclassify xi.

The implication of Lemma 3.6 is that if a hyperplane `∗ which passes through a positive point (not

xi) is found which has sufficiently small weight W (Q+(`∗)) and it strictly misclassifies xi, then xi is

a type II point. Thus we can identify type I and type II points. Analogs of Lemmas 3.6 and 3.5 can

also be shown for negative points, where we define negative separator sets and their corresponding

negative separator lines as we did their positive siblings. Specifically,

18

Lemma 3.7 Let xi be a negative point which is misclassified by some optimal fat separator ` for

X (i). Then there exists a negative representative hyperplane `∗ that passes through a negative point

a− 6= xi such that xi ∈ Q−(`∗) and Wopt ≤ W (Q−
X (`∗)) ≤ Wopt + wi.

Lemma 3.8 Let xi be negative point and `∗ any hyperplane that passes through a negative point

a− 6= xi that strictly misclassifies xi, i.e., xi ∈ Q−(`∗). Suppose that W (Q−(`∗)) < Wopt + wi.

Then, every optimal fat separator for X (i) will misclassify xi.

The four lemmas above give us following algorithm for identifying the type I and II points.

1: : //Algorithm to identify type I and II points.

2: Run the algorithm to determine an optimal weight separator set with weight Wopt.

3: for all positive points a+ do

4: Consider all other points in their sorted angle coordinates (not mirrored angle coordinates)

centered at a+.

5: Consider (in sorted order) all the different separator sets generated by positive representative

lines that pass through a+.

6: For every positive representative line ` with weight W`

(a) Mark all positive points in Q+(`) with weight greater than W` − Wopt as type II (the

contribution of such a point to the LOO error is equal to its weight).

(b) Mark all positive points in Q+(`) with weight equal to W` − Wopt as type III.

7: end for

8: Repeat steps 3-7 for negative points and negative representative lines.

Note that a type II point once marked, cannot be unmarked. A type III point could subsequently

become marked as type II. All points which are left unmarked are of type I.

We show how to implement step 6 in total time O(n log n) for a given a+. This will mean

that the runtime of the entire algorithm is O(n2 log n), since the for loop must be run for every

positive and negative point. We give the argument for the positive representative lines. For every

positive representative line `, we construct the opening angle o(`) ∈ [0, π) and the closing angle

c(`) = o(`) + π, and label each with the weight W(`), which is the weight of the positive separator

set induced by `. The angle interval [o(`), c(`)] is the interval of angles in which points are classified

−1 by `, and hence will be in Q+(`). Thus, we have a set of “negative” subintervals on the interval

[0, 2π), each corresponding to one positive representative line. Each subinterval is associated to a

weight. For a positive point xi, we would like to determine the minimum weight negative subinterval

19

which contains it. This can be done for all positive points with respect to a given central point

as follows (note that each negative interval corresponds to two marks in [0, 2π), and each point to

one mark on [0, 2π)): first, sort all the interval opening and closing marks, together with all the

marks corresponding to points (O(n log n)); now process marks in sorted order; if a mark is an open

interval, add it to a balanced binary search tree (BST) [8] where the search key is the weight of the

interval; if a mark is a close interval, find and remove the corresponding weight from the BST; if

the mark is a positive point, obtain the minimum weight interval currently in the BST, and mark

the type of the point according to this minimum weight, Wopt and the weight of the point. Since

each BST operation takes O(log n) for a total time of O(n log n) spent on BST operations, and the

sorting takes O(n log n), the total run time is in O(n log n).

We now give a characterization of positive points which have been marked as type III. The same

argument holds for the negative points that have been labeled type III. Remember that for such a

point xi, there was a positive representative line ` such that xi ∈ Q+(`) and W (Q+(`)) = Wopt+wi.

Lemma 3.9 Suppose that the positive point xi is labeled type III by positive representative line `.

Then either Q+
X (`) \xi is an optimal separator set for X (i) or xi is of type II and will be labeled so

at some time in the algorithm.

Proof: Suppose that Q+
X (`)\xi is not an optimal separator set for X (i). Then there is some positive

representative line `i for X (i) for which W (Q+
X (i)(`i)) < W (Q+

X (`) \ xi) = Wopt. If `i correctly

classifies xi, then Q+
X (i)(`i) is a separator set for X with smaller weight than Wopt, a contradiction.

Thus, xi is of type II. Further, for the positive representative line `i, W (Q+
X (`i)) < Wopt+wi, which

means that xi will be marked as type II when this representative line is encountered.

Lemma 3.9 essentially says that every time a type III point xi is labeled as one, we have encountered

an optimal separator set for xi. However, we do not know whether it will be classified correctly or

not. Since every optimal separator set for X (i) will manifest in this way, we may count the number

of occurrences of optimal separator sets by simply counting the number of times that we try to

label a point as type III. Thus, we can add a counter Ci for every point xi ∈ X , to count this,

and it will not increase the algorithm’s time complexity. We also update the BST data structure

for processing the negative intervals (positive intervals for the negative points) to keep track of

the multiplicity of a weight in the BST, which keeps track of the number of positive intervals of

a particular weight which are open. Thus, when Ci is updated, it is increased by the number of

minimum weight intervals in the BST. At the end of the algorithm, Nc(xi)+Ne(xi) = Ci. We now

show how to compute Nc. Let ` be a representative line and W (Q(`)) = Wopt + α. We partition

20

Q(`) into three sets: S1, those points with weight less than α; S2, those points with weight equal

to α; S3, those points with weight greater than α; Then the following lemma holds:

Lemma 3.10 For representative line ` and corresponding separator set Q(`), define S1, S2, S3 as

above. Let `fat be the optimal fat separator for X \ Q(`). Then

(i) `fat misclassifies every point in S3;

(ii) `fat correctly classifies at most one point in S2;

(iii) if `fat correctly classifies any point in S1, then it misclassifies all points in S2.

Proof: Suppose `fat correctly classifies point v ∈ S3. Then Q(`) \ v is a separator set for X with

weight Wopt + α − W (v) < Wopt, a contradiction. Suppose that `fat correctly classifies a point

u ∈ S2. To conclude the proof, we show that `fat cannot correctly classify any other point w in

S1 ∪ S2. Suppose, to the contrary, that `fat also correctly classifies w. Then Q(`) \ {u,w} is a

separator set for X with weight Wopt + α − W (u) − W (w) < Wopt, a contradiction.

Suppose we are given a representative line `, the convex hulls built from the positive and negative

points in Q(`), and the convex hulls of the positive and negative points in X \ Q(`). Then in time

O(log n) we can construct the optimal fat separator `fat for X \ Q(`) (Fact 2.11). In O(log n)

time, one can determine if any point xi in Q(`) is correctly classified [5, 11, 6]. By Lemma 3.10,

if wi = W (Q(`)) − Wopt, then it is the only such point correctly classified, and we can increment

the counter Nc(xi) and move on. If, on the other hand, wi < W (Q(`)) − Wopt, then no type III

points for this representative line can be classified correctly by `fat, and we can move on. This

entire process takes O(log n) per representative line, given the convex hull representations.

We now show that Nc(xi) for every type III point xi can be computed in time O(n2 log n) as

follows. For every central point, sort all the other points according to their angle coordinates. Start

enumerating all the representative lines (in sorted order). For every representative line `, compute

the optimal fat separator `fat and the necessary convex hulls on Q(`) and X \Q(`). Then, increase

the Nc counter for the type III point from Q(`) with weight W (Q(`))−Wopt (if any exists) that is

classified correctly by `fat.

What remains is to show that we can update the necessary convex hulls for a new representative

line ` from the convex hulls for the separator set of a previous representative line `prev in total time

O(n log n) for all the updates of the representative lines for a given central point. This can be

accomplished using Facts 2.9 2.10 and the trick we used in Section 2.1 to maintain these convex

hulls - for positive and negative points, we have the add list and the remove list which we maintain

21

separately. The points in the remove list are removed in the reverse order they were added. The

details are discussed in Section 2.1. We are now ready to prove Theorem 3.1, which amounts to

recapping and summarizing the results we have shown up to now in this section.

Proof: (Theorem 3.1.) We first run the algorithm to determine Wopt from the previous section,

and then the algorithm to determine the type I, type II and type III points, where we use a counter

Ci to keep track of Nc(xi) + Ne(xi). For the type I points xi, ei = 0; for the type II points xj ,

ej = wj . For all the type III points xk, we determine Nc(xk) in O(n2 log n) time using Lemma 3.9

and the algorithms to efficiently update the convex hulls. The leave one out error for these type

III points is then given by wk · (Ck − Nc(xk))/Ck.

4 Discussion

We have given O(n2 log n) algorithms for obtaining the (globally) optimal linear boosting of a pair of

classification functions. We made heavy use of some powerful results on convex hull operations and

representations. These algorithms are a significant improvement over the brute force exponential

algorithm, and an improvment over the O(n3) which only considers lines through all pairs of points.

Our main contribution is to give a clever way to enumerate these lines to result a speed up of a

factor close to n. We showed that our algorithm can be extended to maximize the margin among all

optimal separator sets. We also showed how to extend the algorithm to compute the leave-one-out

error without any increase in the asymptotic computational complexity.

Similar ideas can be used to extend Lemma 2.5 to an analogous (though more complicated)

Lemma in 3 dimensions. The generalized lemma can then be used to (efficiently) enumerate all

possible separator hyperplanes and obtain an algorithm to compute the optimal separator set for

the 3 dimensional case.

Theorem 4.1 (3-dimensions) An optimal fat separator and its corresponding optimal separator

set Q(A,B) can be found in O(mn2 log n) time.

This theorem then gives an efficient algorithm to obtain the optimal linear boosting of 3 classifi-

cation functions. However, in parallel to the convex hull algorithms which have the same compu-

tational complexity in both 2 and 3 dimensions, one expects that a similar result for our problem

of boosting 3 classification functions should be possible, without any increase in computational

complexity. This is certainaly an interesting direction for research.

Another interesting direction would be to compute the optimal linear boosting which maximizes

some linear combination of the weight of the separator set and the margin, or more generally some

22

error function E(W,mar), where W is the weight and mar is the margin. A crucial step in this

direction would be to obtain analogous Lemmas to 2.2 and 2.5 in this setting.

A natural direction for progress is to extend the approach further to to obtain an optimal

boosting of an arbitrary number (d) of classification functions. Unfortunately, a straightforward

extension of the approaches suggested here suffer from a curse of dimensionality (the algorithms

become exponential in d). We expect that a fruitful direction for our future research is to obtain

some heuristics for the d-dimensional case which have provable approximation properties to the op-

timal solution. Some plausible directions are a greedy algorithm which succesively optimally boosts

pairs of functions according to some greedy criterion until only one is left. Another alternative is a

hierarchical (recursive) approach, which divides the classifiers into roughly two groups (say based

upon some hierarchical clustering algorithm) and then recursively obtains the optimal boosting of

each group. The optimal boostings of each group of classifiers results in two classifiers, which are

then optimally boosted together to give the final boosted classifier.

We note that as an alternative to the arbitrarily weighted optimal boosting, one could define

a problem in which the weights are somehow related to the linear boosting iteslf (such as the

minimum or average distance to the linear boosting hyperplane). In this case linear and quadratic

programming techniques can be brought to bear, which have weakly polynomial running time O(n3)

where the constant has exponential dependence on d. For 2 dimensions, however, these algorithms

are inferior to our algorithm, and in multi-dimensions, they solve a different problem.

References

[1] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E. Schapire. Boosting the margin: a

new explanation for the effectiveness of voting methods. Annals of Statistics, 1998.

[2] K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two

linearly inseparable sets. Optimization Methods and Software, pages 23–34, 1992.

[3] Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in SVM classifiers. In

Proc. 17th International Conf. on Machine Learning, pages 57–64, 2000.

[4] Leo Breiman. Bagging predictors. Machine Learning, 1996.

[5] Timothy M. Chan. Output-sensitive results on convex hulls, extreme points, and related

problems. In Proc. 11th Annual Symposium on Computational Geometry, pages 10–19, 1995.

[6] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. In

IEEE Sympos. on Found. of Comp. Sci. (FOCS), volume 30, pages 586–591, 1989.

23

[7] V. Chvtal. Linear Programming. W. H. Freeman and Company, New York, 1983.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. Mcgraw-Hill, Cambridge, MA, 2nd edition, 2001.

[9] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines (and other

kernel-based learning methods). Cambridge University Press, 2000.

[10] I. I. Dikin. Iterative solution of problems of linear and quadratic programming. Sov. Math.

Doklady, 8(66):674–675, 1967.

[11] D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separation of convex

polyhedra,. J. Algorithms, 6:381–392, 1985.

[12] David P. Dobkin and David G. Kirkpatrick. Determining the separation of preprocessed poly-

hedra - a unified approach. In Proc. 17th International Colloquium on Automata, Languages

and Programming, pages 400 – 413, 1990.

[13] Yoav Freund and Robert E. Schapire. A decision theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 1997.

[14] N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

4:373–395, 1984.

[15] L. G. Khachiyan. A polynomial algorithm in linear programming (in russian). Doklady

Akademii Nauk SSSR, 244:1093–1096, 1979.

[16] Ron Meir and Gunnar R atsch. An introduction to boosting and leveraging. pages 118–183,

2003.

[17] Y. Nesterov and A. Nemirovsky. Interior Point Polynomial Algorithms in Convex Program-

ming. SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics,

1994.

[18] V. Tresp. A bayesian committee machine. Neural Computation, 2000.

[19] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer–Verlag, 1995.

24

