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Abstract

Motivation: A conformational search to determine protein structure is unrealistic for large
proteins. We study the extent to which protein conformational space is compressible.

Results: We demonstrate that most representations of protein conformational space are re-
dundant, above and beyond translational and rotational invariance. Using some well known
compression techniques, principle components analysis (PCA) and Fourier transforms, we
show that the 3D coordinates of protein fragments of length 40 may be compressed from
a 3N-3=117 dimensional space into a 10 to 20 dimensional space, and accurately recon-
structed back from the compressed space. Compression of the highly non-linear 2N-2=78
dimensional torsion space representation of the same set was unsuccessful. Compression
of distance matrices having N(N-1)/2=780 dependent variables yielded interesting results
when reduced to 20-40 dimensions. The ability to use a much smaller representation might
enable conformational searches that were previously infeasible because of high dimension-
ality and non-linearity. Applications and improvements are discussed.

Availability: Implementations (some in MATLAB and some in C) may be obtained via
email.
Contact: magdon@rpi.edu; shaoy@rpi.edu;freedd@cs.rpi.edu; bystrc@rpi.edu
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1 Introduction

Protein conformational space is large. A folding polypeptide cannot sample all of the possible
combinations of the 2N backbone angles, but instead explores a small sub-space defined by
the energetics of the system. The final structures representing folded proteins are stored in the
Protein Data Bank (PDB). Many energetic and geometric functions exist that potentially explain
the sequence-dependent structures that proteins can adopt (Liwo et al., 1999), but these functions
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depend on models with atomic detail, and therefore cannot be tested on large polypeptides
because the conformational space is too large to be searched in atomic detail.

A novel approach to the protein folding problem would be to define a (smaller) space in
which the conformational search is possible, then find an energy function in that space that
correctly identifies the correct structure, given the sequence. This is conceptually similar to the
“threading” approach, (Smith et al., 1997), where the search space is essentially the database
of known proteins, and an energy function is determined which correctly assigns sequence to
structure. However, threading, or fold recognition, ignores the physical process of folding. Since
it is well known that the folding protein does not sample all possible conformations, there is no
reason to believe that an energy function exists that solves the descrimination problem.

Compressing conformational space is the process of defining a subspace of minimal dimen-
sionality where any point may represent a protein-like structure. This is similar to the problem
of image compression, where it is desired to reconstruct an image from a small amount of infor-
mation. In this case, the similarity (in atomic detail) between a true protein and the protein like
structure obtained by projecting the compressed protein back into real space is the measure of
the success of the compression algorithm. If proteins may be accurately compressed to a space
that is efficiently searchable, and then decompressed back to real space, existing energy functions
that use atomic detail may finally be rigorously tested in an exhautive conformational search.
(Note: Unlike in the threading approach, such an exhaustive simulation search may consider the
folding pathway, and therefore the folding kinetics.)

In this paper, we apply compression techniques to various representations of the proteins of
known structure. We apply priciple component analysis (PCA) to the coordinate, backbone an-
gle, and distance matrix representations. Additionally, we applied Fourier transform techniques
to distance matrix space. The success of the compression was measured by the structural differ-
ence between the original and the recontructed coordinates for proteins that were not used in the
development of the compression algorithm. It is found that some representations of the model
are more easily compressed that others. We find, unexpectedly, that the models that retain the
most atomic detail may be compressed to the smallest subspace.

We have found no prior work that addresses the compressibility of conformational space. Work
along the lines of compressing the linear structure of proteins has been addressed, see for example
(Nevill-Manning & Witten, 1999). The paper is organized as follows. First we discuss protein
structure representation and the data that is available. Following this we briefly overview the
compression techniques and give the results of our simulations. We conclude with some remarks
on improvements and the use of such techniques to perform conformational searches.

2 Protein Structure Representation

There are at least three ways to represent the 3D structure of a protein backbone at atomic
resolution: as 3-dimensional coordinates, as a set of inter-residue distances, or as a set of backbone
torsion angles. Some of these representations are highly redundant in terms of the information
content, while others are compact. The most compact representation will not necessarily be the
best for compression, and in fact we will see later that the opposite is true. A representation



that is redundant but manages to somewhat linearize the space will be more useful for linear
compression techniques.

1th amino

The most compact representation is the angular one, where the position of the [ +
acid relative to the It amino acid is specified by the two ¢, angles. This results in a total
of 2N — 2 angles where N is the number of amino acids in the protein. All translational and
rotational invariances have already been incorporated into this representation.

The next representation is the set of 3D coordinates for each amino acid, a total of 3N — 3

parameters. But these are highly redundant in their information content. For example, the

coordinates of the [ + 10 residue are highly dependent on the coordinates of the 10 residue.

The last representation we consider is the distance matrix, where one specifies each of the
N(N—1)/2 unique distances, d(l, j) between amino acid / and amino acid j in the sequence. These
numbers can be represented in a symmetric matrix. All translational and rotational invariances
are built into this representation, however, there are many other geometric constraints that such
a matrix must satisfy, such as the triangle inequality amongst every 3 amino acids and bounded
distances between neighboring amino acids.

We will consider the compressibility of protein conformational space in each of these repre-
sentations.

2.1 A Non-Redundant Sample of Constant Length Natural Protein
Fragments

The database of known protein structures, PDB (http://www.rcsb.org; (Berman et al., 2000)
), contains a wealth of structural information. However, it is highly redundant, having many
representatives of a few evolutionary families. A non-redundant set of structures was extracted
from this set, PDBselect (Hobohm & Sander, 1994) where the evolutionary similarities have
been factored out. After removing membrane proteins, metal-binding proteins and proteins with
many disulfide links (these classes of proteins have their own characteristic structures), the list
contains 691 globular proteins having a total length of 120,000 amino acid residues.

For the purposes of this work the input data must be of a constant length. Therefore the
protein chains were divided into non-overlapping 40 or 60 residue pieces. The compression exper-
iments described below on “proteins” used this non-redundant, non-overlapping set. Polypeptide
chains in this set are not necessarily compact nor are they expected to be in a low energy state
by themselves.

2.2 HMMSTR and ROSETTA: Protein-Like Decoy Structures

In an attempt to create a large dataset of protein-like structures that is truly non-redundant
and representative of a physical model, we built protein structures using a combination of two,
well-established statistical models. Unlike natural proteins, these "decoys” cannot be related by
evolution. They are stochastically generated representative samples of the physical model used
to generate them. They are also of a constant length (60) and have been energy minimized at
that length.



HMMSTR, (Bystroff et al., 2000), is a hidden Markov model (HMM) for generalized protein
sequence. Generalized HMMs are directed, cyclic graphs where each node is a single symbol
emitter. HMMSTR is a "parallel HMM” which emits, from one Markov state, a single amino
acid and a symbol for the backbone ¢ and v angles. State pathways represent all known local
structure motifs, as defined in the I-sites Library (Bystroff & Baker, 1998) They are represented
in the model in proportion to the frequency at which they are found in the database of protein
structures.

ROSETTA is a folding simulation algorithm that uses the fragment insertion Monte Carlo
approach (Simons et al., 1997). The promise of this method has been demonstrated in blind
ab initio protein structure predictions as part of the CASP experiments (Moult et al., 1995),
correctly predicting protein fragments of up to 107 residues in length with an accuracy of 5A
root-mean-square deviation in superimposed alpha-carbon coordinates (RMSD) (Bonneau et al.,
2001). A ”fragment insertion” move consists of selecting an insertion point in the target, then
selecting a fragment at random from a list associated with that location. The backbone angles
of the fragment are inserted, and the new coordinates are computed, then accepted or rejected,
depending on ROSETTA’s knowledge-based energy function (Simons et al., 1999).

3 Compression Methods

The general premise of compression is that the actual space in which the objects of interest (in
our case proteins) reside is a lower dimensional manifold of the representation. The benefits of
identifying this lower dimensional manifold are many. For example, sampling the manifold can be
done more efficiently than sampling the entire space, and discrimination techniques will perform
more accurately when highly correlated dimensions are discarded. For both of these reasons,
we are interested in compressing protein conformational space, and here we briefly describe two
linear techniques, principle component analysis (PCA) and the Fourier transform (FT).

3.1 Principle Components Analysis (PCA)

The goal of PCA is to identify a lower dimensional linear subspace that contains as much of the
variance in the data set as possible. A more detailed discussion can be found in (Bishop, 1995).
Let {x;}X, be the N proteins in the PDB. Suppose that the x; have a mean of zero (this can
always be ensured by subtracting the mean in the event that it is not already zero). The details
do not depend on which specific representation we choose to use.

The mathematical formulation of the problem is to find a set of (K) directions - the PCA
directions such that the projection of the vectors x; onto the space spanned by these K directions
is as close to the original x; as possible in the mean squared error. Letting the K directions be

given by the K unit vectors {y;, }JKzl, this reduces to the following optimization problem

K

maximize E y! Yy subject to the constraint yiy; = 0ij (1)
Yi
i=1



where Y = % Zf\il x;X;! is the covariance matrix for the x’s and 95 is the Kronoeker 4 function
that equals 1 when ¢+ = j and zero otherwise. This optimization problem can be solved by
choosing the y; to be the eigenvectors of ¥ with the K largest eigenvalues. In algorithmic form,
the steps are as follows

1. Perform a translation to obtain zero mean vectors: z; = x; — % > X
2. Compute the covariance matrix: ¥ = + >, z;z;" .
3. Obtain the eigen-vector matrix of X which we label p, the columns of which are the eigenvectors
of 3. Let the eigenvalue corresponding to eigenvector y; be given by )\; and assume that the
eigenvalues are sorted in decreasing order. The {y;} can be chosen to be orthonormal, and for
any 0 <i < K, y;'3y; = \i.
4. Thus the maximal amount of variance that can be picked up by at most K eigen directions
is achieved by taking the first K eigen-directions. Usually one continues to add eigen directions
until the percentage of variance accounted for exceeds a threshold.
5. The compressed data point is given by the K projections onto the K PCA directions chosen,
and thus is a K dimensional vector. The reconstruction back in the original space based upon
these K projections is given by

Z; = YKY£ZZ
where Y g is a matrix whose columns are given by the K PCA eigenvectors. The smaller K is,
the greater the compression. Compression is useful only if the discarded dimensions (informtion)
is non-essential.

3.1.1 Reconstruction Error

To determine whether the compression is successful, we take a data set, compress it according
to the compression scheme, and then reconstruct it from the compressed space back into the
original space. If the compression was perfect, the resulting data set will be identical to the
original one. However, more often than not, some information will be lost in the compression,
and so there will be some reconstruction error. We can analyse this error. Suppose that x is the
orriginal data point and x’ is the reconstructed one. Then the squared error can be defined as
(x —x')"(x — x'). The average value of this quantity over the entire data set can be used as a
measure of the reconstruction error. Taking the square root, one then arrives at the root mean
square deviation,

1 T !
RMSD:\/NZX:(X_X) (x — x')

. A question arises as to what data set we should we use to compute the reconstruction error
(RMSD). A data set was used in developing the compression method. This data set could
be used to compute the reconstruction error in which case, we have computed what can be
called the training reconstruction error. However, though the value computed may be a useful
measure of the compression, this might be an overly optimistic estimate of the true success of
the compression, analogous to trying to predict the weather in the past. One can always learn
from past data how to predict rainy from sunny days, however the true measure of success is to
be able to predict the weather in the future. Thus a more effective measure of the performance is



the reconstruction error on a data set that was never used in the development of the compression
scheme. In this case we have computed the test reconstruction error.

One can compute a formula for the reconstruction error on an arbitrary data set. For com-
pleteness, we provide the formula here, without derivation. Suppose that the (arbitrary) data
set for which we wish to compute the reconstruction error is given by {z;}¥ ,, and let the mean
of this data set be u, = % >, z; and let the covariance matrix be 3, = % iz — pa) (2 — )™
Then the reconstruction error is given by

RMSD = \firacel(f— V¥ i )5+ (4 — i) 0- YeYe - ) (2

where y is the mean for the data that the PCA directions were developed from and Yy is
a matrix that was defined earlier. If the training and test data sets were sampled from the
same distribution the two means will be approximately the same and hence the second term is
negligible and can be ignored.

3.2 Fourier Transform (FT)

The second class of compression algorithms which we implemented was based on the Fourier
transform, analogous to many image compression techniques (for example the JPEG algorithm),
see for example (Anderson & Huang, 1971). A distance matrix may be thought of as a digital
image, in which the distance plays the role of intensity. As a result, standard schemes from image
processing may be brought to bear on the problem. Using FT analysis of distance matrices, we
can identify protein-like features that manifest themselves as periodicities in the inter-residue
distances. If d(I,j) denotes the entries in the distance matrix between amino acid [ and amino
acid 7, then the discrete Fourier coefficients are given by

N
]_ 2mi 2mikj
F(hk) =5 Y d(lj)e™ e (3)
l,j=1

where 7 = y/—1. The reason that these coeficients are useful is because knowing the Fourier
coefficients, one can reconstruct the dixtance matrix as follows

N
1 2mi 2mikj
d(l, ) = % 3 F(h ke e (4)
h,k=1

Thus, given the Fourier coefficients, on can reconstruct the distance matrix and vice versa.
Compression can now be achieved by constructing the Fourier coefficients from the distance
matrix and then ignoring (i.e., setting to some mean value, usually chosen to be zero) some subset
of the Fourier coefficients. The remaining Fourier coefficients can now be used to reconstruct the
distance matrix. If the ignored Fourier coefficients are negligible then the resulting reconstructed
distance matrix should be close to the original one. We can compute a reconstruction error by
taking the RMSD between the reconstructed distance matrix and the original one.

Usually the best compression is obtained by ignoring the highest order Fourier coefficients or
the ones with smallest variance, where the variance can be determined on the training set.
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Figure 1: Reconstruction error using PCA derived from decoy structures of length 40 amino
acids in the DM representation. (a)Test set: Decoy structures; (b) Test set: PDB structures.
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4 Results

We performed experiments on proteins in the PDB as well as the decoy proteins generated using
ROSETTA. Two data sets were constructed from the PDB. One containing structures for non-
overlapping sequences of length 40 amino acids and one with non-overlapping sequences of length
60 amino acids. We report only the results on the data set with protein sequences of 40 amino
acids, since these are more statistically significant.

These data sets were randomly split into training and test sets, the training set was used to
develop the compression scheme which was then tested by computing the reconstruction error
on various data sets. The following table illustrates the extent of the results that we report.

Training set Test set Desired Goal:
composed of: | composed of:
Decoy Proteins | Decoy Proteins | Conformational space of decoy proteins

is compressible.

Decoy Proteins | PDB Proteins | Compression methods developed on decoy
proteins can be used to compress true proteins.
PDB Proteins | PDB Proteins | Conformational space of PDB proteins is
compressible.

In addition to the above three types of experiments, a further bifurcation occurs depending on
the type of representation used for the proteins - the three representations for which we report
results are the distance matriz (DM), angular (ANG), and coordinate (XYZ) representations.
We present a qualitative survey of the results in the table below. The quantitative results along
with the detailed methodology are presented in what follows.
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Figure 2: Reconstruction error using PCA derived from PDB structures of length 40 amino acids.
(a)Distance matrix representation. (b) Coordinate representation. (c) Angular representation.

Training | Test | Comp. | Rep. | Experimental Result
set set | scheme

Decoy Decoy | PCA DM | Compressible conformational space. Compression factor
of about 20.

Decoy PDB PCA DM | Compression not very succesful. The first few decoy
PCA directions seem to contain significant information
about PDB conformational space, but the rest appear
to be random directions.

PDB PDB PCA DM | Compressible conformational space. Compression factor
of about 8.

PDB PDB PCA XYZ | Compressible conformational space. Compression factor
of about 6.5.

PDB PDB PCA | ANG | Not compressible.

PDB PDB FT DM | Compressible conformational space. Compression factor
of about 2.

4.1 Principle Component Analysis (PCA)

A test set of size 50 was sampled from the entire data base, and the remaining data was used to
develop the compression method. Hence, the compression scheme was independent of the test
set, thus, the test reconstruction error is an unbiased estimate of the compression performance.
The quantitative results are represented in Figures 1 and 2. The reconstruction error is plotted
as a function of the number of PCA directions used for reconstruction. The training and test
reconstruction errors are both averaged over 1000 runs. Figure 1 shows the result when the decoy
structures are used to develop the compression scheme and Figure 2 shows the result when the
PDB structures are used to develop the compression scheme. For example from Figure 2 (a) we
can read off that using 10 PCA components to do the reconstruction, the average error incurred
in each distance matrix entry is 2.5 Angstrom.
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Figure 3: Contour plots of the protein structure in the distance matrix representatoin. (a)
Original distance matrix. (b) Reconstruction based on 20 PCA directions.
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Figure 4: Contour plots of the protein structure in the distance matrix representatoin. (a)
Original distance matrix. (b) Reconstruction based on 40 PCA directions.

A more intuitive picture of what the compression techniques are doing can be seen by com-
paring the original and reconstructed test structures (Figures 3, 4 and 5). From the figures it is
apparent that with fewer PCA directions used in the reconstruction, the reconstructed structures
are “smoother” than the original. What appears to be happening is that the lower order, or base
structure is picked up by the first few PCA directions and the higher order detail gets filled in
gradually by the higher PCA directions. Thus, the compression succesfully finds a sub manifold
that “represents” the structure although it does not pick up all of the detail.

4.2 Fourier Transform (FT)

In a preliminary experiment we compressed distance matrices for
60 residue decoys by Fourier transforming them and then removing
all but the N low-order Fourier coefficients. Comparing the back-
transformed image to the original, it was found that the original
distance matrix could be faithfully reconstructed (2.5A ) using as
few as N=200 Fourier coefficients, regardless of the shape of the
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Figure 5: 3D structures in the coordinate representation. The original (red) and reconstructed
(blue) are shown on the same axes. (a) Reconstruction based on 20 PCA directions. (b) Recon-
struction based on 40 PCA directions.
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Figure 6: (a) The dme for a protein versus the number of PFC’s used in reconstruction(Vmax).
(b) The original distance matrix. (c) The reconstructed distance matrix using 80 PFC’s.

original structure. Fourier termination errors were minimized by arranging the distance matrix
image in a p4mm 2-D space group (Figure 7), thus ensuring that the Fourier coefficients are real’

In a second experiment, the variance in each Fourier coefficient (F') was summed over 12,000
transformed 60-residue decoys. The low-variance F’s represented relatively invariant periodicities
in distance. A higher degree of compression was obtained by back-transforming using only the NV
most variable F’s (the principle Fourier coefficients, PFC’s), and fixing the others to their mean
values (Figure 6). Using N = 80, an average reconstruction error of 2.5A was obtained. Accurate
3D structures may be readily recovered from these distance matrices using distance geometry
methods (Aszodi et al., 1997). Absolute, rather than relative, variance was the best measure of
relative importance in reconstruction. The approach of extracting distance periodicities by F'T
was thought to capture the overall size of the molecule and the |d(l, 7)—d(l, j+1)| < 3.8A distance
contraint. The characteristic size of compact protein-like 60-mers would have a corresponding
characteristic reverse turn frequency, which would manifest itself in invariant low-order F’s. The

!The Fourier equations (3 and 4) will then have an internal summation over the 8 space group symmetry
operators.
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persistence length of polypeptides also restricts the allowable high-frequency periodicities, since
d(l,l + 2) would be relatively invariant, therefore |d(l,j) — d(l,j + 2)| would also be bounded,
and high order F’s would be small. In fact, low order invariant F’s were not found, but of the
high order F’s, those directed along the diagonal had relatively higher variance, reflecting (in
reciprocal space) the predominantly diagonal features of protein contact maps (Figure 6 (b))
caused by beta sheets. Along the axes, the F’s with periodicities of 7 to 10 residues were the
most variant, perhaps reflecting the vertical and horizontal stripes caused by alpha helices.

5 Discussion and Future Work

Our work addressed the redundancy in conformational space that may explain the apparent
dilemma regarding how nature appears to search a huge conformational space in order to fold
proteins in real time. The way in which this may be resolved is that proteins have characteristic
stable substructures that are recurrent in nature. The geometric constraints imposed by these
substructures define a lower dimensional manifold in conformational space, in which all proteins
reside. Thus, nature only needs to sample this manifold. Our approach was to assume the
existence of such a manifold and attempt to identify it in a data driven manner, rather than
from a first principles approach. We used both PCA and FT, which are equivalent in that they
are both linear. However, they exploit different properties of the data. PCA detects high variance
patterns, while the FT attempts to extract periodicities in structure.

Our results indicate that in certain representations, a significant compression to a linear
submanifold can be achieved, indicating for example that while a 40 amino acid protein lives in
an 80 dimensional space, we can represent it in a 10-20 dimensional space. By this we mean
that, in this significantly lower dimensional representation, we can recover within an acceptable
error the original structure of the protein fragment.

One of the many challenges remaining is to assign a sequence-dependent energy to a point
in the compressed space. This may be possible if the reconstructed chain is at or close to
atomic resolution, where energy calculations are most likely to be accurate. The most successful
compression converts a polypeptide to a smooth trace through the chain. The reconstruction
violates certain stereochemical constraints of peptides. By enforcing these constraints upon
reconstruction (for example that the [ to [ + 1 distance is a known constant, 3.8A), it may be
possible to recover the structure even more accurately.

We have shown that given a test protein structure, we can recover its base structure from
knowledge only of the compressed structure. In a blind test case, we would not know the
structure, however we do know that the compressed space is faithful to the true space, and
hopefully representative of that space, and therefore believe that the test structure lives in that
space. Hence, by sampling in the compressed space, a considerably more feasible operation, we
may be able to simulate the search through conformational space more efficiently and perhaps
even develop folding pathways in this compressed space. This is the topic of our future research.
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