
J. Parallel Distrib. Comput. 67 (2007) 1168–1186
www.elsevier.com/locate/jpdc

Efficient bufferless packet switching on trees and leveled networks�

Costas Buscha, Malik Magdon-Ismaila, Marios Mavronicolasb,∗,1
aComputer Science Department, RPI, 110 8th Street, Troy, NY 12180, USA

bComputer Science Department, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus.

Received 12 October 2005; received in revised form 2 April 2007; accepted 13 June 2007
Available online 29 June 2007

Abstract

In bufferless networks the packets cannot be buffered while they are in transit; thus, once injected, the packets have to move constantly.
Bufferless networks are interesting because they model optical networks. The objective of this work is to demonstrate that efficient bufferless
packet switching is achievable in particular, interesting network topologies.

We consider the tree and leveled network topologies, which represent a wide class of network configurations. On these networks, we study
many-to-one batch problems where each node is the source of at most one packet, and the destination of an arbitrary number of packets. Each
packet is to follow a preselected path from the source to the destination. Let T ∗ be the optimal delivery time for the packets. We have the
following results:

• For trees, we present two bufferless algorithms: (i) a deterministic algorithm with delivery time O(� ·T∗ · log n), and (ii) a randomized
algorithm with delivery time O(T∗ · log2 n); where, � is the maximum node degree, and n is the number of nodes. Both algorithms are
distributed in the sense that packet forwarding decisionsare made locally at the nodes.
• For leveled networks, we present two algorithms: (i) a centralized algorithm with delivery time O(T∗ · log n), and (ii) a distributed

algorithm with delivery time O(T∗ · log2n), where n is the number of nodes. The first algorithm is centralized in the sense that all decisions
are madeby a single node. The distributed algorithm simulates the centralized one; the cost of this simulation isan extra logarithmic factor.

Our bufferless algorithms are near-optimal, and they improve on previous results for trees and leveled networks by multiple logarithmic factors.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Routing algorithms; Packet scheduling; Hot-potato routing; Congestion; Dilation

� This paper is based on two preliminary papers: (1) “Efficient buffer-
less routing on leveled networks,” Proceedings of the 11th International
Conference on Parallel and Distributed Computing (Euro-par 2005), Lec-
ture Notes on Computer Science, vol. 3648, pp. 931–940, Lisboa, Portugal,
August–September 2005, and (2) “Near-optimal hot-potato routing on trees,”
Proceedings of the 10th International Conference on Parallel and Distributed
Computing (Euro-par 2004), Lecture Notes on Computer Science, vol. 3149,
pp. 820–827, Pisa, Italy, August–September 2004.
∗ Corresponding author.

E-mail addresses: buschc@cs.rpi.edu (C. Busch), magdon@cs.rpi.edu
(M. Magdon-Ismail), mavronic@ucy.ac.cy (M. Mavronicolas).

1 Associated with projects FLAGS and DELIS.

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.06.005

1. Introduction

1.1. Bufferless packet switching

In bufferless networks, the nodes have no buffers for pack-
ets in transit; when a packet is received by a node, it has to
be sent immediately to another node. We study packet switch-
ing algorithms in bufferless networks in which the task is to
deliver the packets to their destinations without dropping any
packets. When packets collide, i.e. two or more packets wish
to follow the same link at the same time, the packets that are
unable to move forward are deflected on alternative links. For
this reason, packet switching algorithms in bufferless networks
are also known as hot-potato or deflection algorithms [7]. Here
we simply call them bufferless algorithms. Bufferless networks
are interesting because they are an accurate model of optical

http://www.elsevier.com/locate/jpdc
mailto:buschc@cs.rpi.edu
mailto:magdon@cs.rpi.edu
mailto:mavronic@ucy.ac.cy

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1169

Fig. 1. Leveled networks.

networks in which packets are hard to buffer as they are con-
structed from light [45]. We consider two network architectures,
trees and leveled networks.

Trees (acyclic connected graphs) are important because many
real-life networks are built upon them, for example, hierarchical
infrastructures. This explains the interest that trees have gener-
ated in the literature (see, for example, [2,3,30,37,41,46,54]).
Furthermore, as articulated by Leighton [30], a spanning tree
can be used to send packets in an arbitrary network.

A leveled network with depth L consists of L + 1 levels of
nodes, numbered 0–L. Every node belongs to exactly one level,
and the only edges are between nodes at consecutive levels (see
Fig. 1). Multiprocessor network architectures such as the but-
terfly network and the mesh network (Fig. 1) can be viewed as
leveled networks, so that packet problems on these architec-
tures are translated to routing problems on leveled networks.
Other multiprocessor architectures on which packet problems
are translated to leveled networks are the shuffle-exchange
networks, multidimensional arrays, the hypercube, fat-trees,
de Bruijn networks, and the multi-butterfly (see [18,30] for
more details). The packet problems on trees that we study here
generally cannot be translated to packet problems on leveled
networks.

In order to analyze bufferless algorithms, we model the net-
work as a connected, unweighted and undirected graph with
n nodes. The network is synchronous: time is discrete, and it
takes one time step to deliver a packet across a link. At each
time step, a node receives packets, and then forwards the pack-
ets to adjacent nodes. A node is allowed to send at most one
packet per incident link per time step. Note that at any time
step at most two packets can traverse a link, one packet in each
direction of the link.

We study many-to-one batch problems in which we are given
a set of N packets where each node is the source of at most
one packet, but may be the destination of many packets. The
many-to-one batch pattern may arise in multiprocessor applica-
tions where processors communicate by means of permutation
routing. It is also the dual of the well-studied multicast prob-
lem, where a single processor sends a message to many other
processors (cf. [53, Section 6.1.3]).

Each packet has a preselected path from its source to its des-
tination. The delivery time of a packet switching algorithm is
the time elapsed between the first packet injection until the last

packet is absorbed at its destination. A packet switching algo-
rithm that specifies how the packets move along their prese-
lected paths is also called a packet scheduling algorithm. In this
paper we are not concerned with how to select the paths, we
are interested in how to schedule the packets given the paths.

Given the preselected paths, the delivery time depends on
the congestion C, the maximum number of packets that tra-
verse any edge, and the dilation D, the maximum length of any
packet path. Since at most one packet can traverse any edge at
a time step, a trivial lower bound for the delivery time of any
packet switching algorithm (bufferless or not) is �(C + D).
Algorithms which give paths that minimize C + D are given
in [4,5,44,50]. The goal of this paper is to design scheduling
algorithms that will deliver the packets using the paths with
delivery time close to the lower bound C+D. In bufferless net-
works, where the packets may be deflected, it may not always
be possible to keep the packets on their preselected paths. We
will consider algorithms in which each packet stays close to its
preselected path and follows every edge in its preselected path.
For such algorithms, the �(C+D) bound on the delivery time
still holds.

Knowledge of C and D has been a standard assumption
in all theoretical works on packet switching algorithms (cf.
[12,31,33,36,40,43]). The rationale for this assumption is that it
is very difficult (if not impossible) to achieve optimality with-
out this assumption. In practice, it would still be possible to
run algorithms using knowledge of C and D with only upper
bounds for C and D, which may reflect some worst case for the
preselected paths. Clearly, the tighter these upper bounds are,
the closer to optimality the resulting algorithms will be with
respect to the actual preselected paths.

For store-and-forward networks, in which nodes have buffers
for storing packets in transit, there are packet switching algo-
rithms for arbitrary networks whose performance is close to the
C+D bound [12,31,33,36,40,43]. For arbitrary bufferless net-
works, a recent result by Busch et al. [21] shows that the pack-
ets can be delivered in time O((C + D) log3 (n + N)). Here,
we show that it is possible to improve this general result and
obtain better delivery times for special network topologies such
as trees and leveled networks, reducing the performance gap
between bufferless and store-and-forward algorithms on these
networks. We proceed with a more detailed discussion of our
contributions.

1170 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

1.2. Contribution on trees

We present two bufferless algorithms on trees. Given a many-
to-one batch problem on trees, the preselected path of each
packet will be the unique shortest path in the tree from the
source to the destination. Let C and D be the congestion and
dilation of the preselected paths. In our algorithms, every source
node determines the time at which its packet will be injected.
From then on, the packet moves greedily to its destination,
that is, whenever possible, a packet follows the link toward its
destination. 2 In particular, we give the following algorithms
for a tree T with n nodes:

(i) Tree-Deterministic with delivery time O((� ·C+D) log n),
where � is the maximum node degree in the tree. For
bounded degree trees, the delivery time is optimal to within
a logarithmic factor. All choices that a node makes while
forwarding packets are done deterministically.

(ii) Tree-Randomized with delivery time less than �(C +
D) log2 n, where � is a constant. This bound holds with
probability at least 1− 1

n
(high probability). Randomization

is used when packets select priorities; the priorities are then
used to resolve packet collisions.

For bounded-degree trees, the algorithm Tree-Deterministic is
better than Tree-Randomized by a logarithmic factor. How-
ever, Tree-Randomized remains near-optimal even for non-
bounded degree trees.

Our algorithms are based on the idea of assigning levels to the
nodes of the tree on the basis of short-nodes: a short-node r of
a tree T with n nodes is a node such that if the tree were rooted
at r , then each subtree contains at most n/2 nodes. Similarly,
one can define short-nodes of r’s subtrees, and so on. As we
descend deeper into subtrees, the levels of the nodes increase.
The level of a packet is the smallest level node that it crosses.
There are O(log n) different levels.

The node levels give a natural decomposition of the tree into
inner-trees at different levels. For every packet, the preselected
path is completely within some inner-tree at a particular level.
In our algorithms, the packets remain in their inner-trees until
they are delivered to their destinations. Inner-trees at the same
level are disjoint. So at the same level, packets of different trees
can be delivered simultaneously.

Inner-trees at different levels are not disjoint. This case is
handled by dividing the packets into O(log n) phases, as many
phases as the number of levels. In each phase, packets of a
particular level are being delivered. In the algorithm Tree-
Deterministic, each phase has a duration O(C +D), while in
the algorithm Tree-Randomized, in order to get a high prob-
ability result, we need to allow the phases to have duration
O((C+D) log n). Combining this with the bound on the num-
ber of phases, O(log n), then leads to our delivery time bounds.

The randomized algorithm uses probabilities to adjust packet
priorities. Low priority packets cannot deflect higher priority

2 This is in contrast with non-greedy algorithms on which a packet may
not progress to its destination even though there is an available link that
takes the packet closer to its destination.

packets. The packets change their priorities (from low to high)
when they get deflected in a probabilistic way, so that a small
number of packets is in the high priority state at the same time.
Packets of high priority are unlikely to collide with each other,
since their number is small. Which is why the performance of
Tree-Randomized is independent of the node degree.

Our algorithms on trees are distributed: at every time step,
each node makes packet forwarding decisions locally based
only on the packets it receives at that particular time step. We
assume that each source node knows the tree topology, as well
as C and D for the batch problem; we emphasize, however, that
a node does not need to know the specific sources and desti-
nations of the other packets. The assumption that C and D are
known is common to distributed packet switching algorithms
[18,31,36,40,43].

1.3. Contribution on leveled networks

For a given many-to-one batch problem on a leveled network,
every preselected path is monotonic in the sense that every edge
in a path connects a lower level node with a node in the next
higher level, i.e. a path moves from left to right on the general
leveled network depicted in Fig. 1.

We present two bufferless algorithms for many-to-one batch
problems in leveled networks:

(i) The algorithm Leveled-Centralized with delivery time
O(C log(DN) + D). The delivery time is a logarithmic
factor from optimal. Since D, N �n, a weaker upper bound
is O((C + D) log n). The algorithm is centralized in the
sense that some node has complete information about the
parameters of the batch problem and schedules all packets.
The algorithm computes the packet schedule in polynomial
time with respect to the graph size and the batch problem
parameters.

(ii) The algorithm Leveled-Distributed has delivery time
O(C log2 (DN)+D log(DN)) which is a logarithmic fac-
tor worse than the centralized algorithm, and a square
logarithmic factor from optimal. The weaker bound
O((C + D) log2 n) holds too. This algorithm is dis-
tributed, that is, all packet forwarding decisions are made
locally at the nodes. (Assuming that the nodes know the
network topology and parameters C, D and N of the batch
problem.)

Both results use randomization and hold with probability at
least 1−O(1/DN) (high probability). The distributed algorithm
relies on a new technique, reverse-simulation, which provides
an efficient distributed emulation of the centralized algorithm.

A high-level description of our Algorithm Leveled-
Centralized is as follows. We first divide the network into
groups of levels, so that each group consists of 2D levels. The
effect of this division is that each packet path belongs to exactly
one group. Packets in each group are sent independently.

We now focus on one such group. We partition the group
into areas of the network called frames. Each frame consists
of roughly log(DN) levels (there are O(D/ log(DN)) frames in

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1171

the group). The purpose of the frames is that packets are sent
to the destinations by following their paths from one frame to
the next. In order to achieve this, we partition the packets in the
group randomly and uniformly into roughly C disjoint packet
sets; each packet set creates congestion at most log(DN) with
high probability. We send packets of the same set in the same
frame, and packets of different sets in different frames. Thus
packets in different sets do not interfere with each other and
are delivered in a pipelined fashion, one set after the other in
separate frames.

In a phase, the packets of a particular set move from one
frame to the next. In order to achieve this, we use the packet
dependency graph, where two packets share an edge if their
paths in the frame conflict (share an edge). We color the pack-
ets in the dependency graph and send them to the next frame
according to their color, so that packets of different colors do
not interfere. We show that it takes O(log(DN)) time to move
all packets from one frame to the next (which is the phase
duration).

Once a packet is injected, the time needed to deliver the
packet from its source to its destination is computed by mul-
tiplying the phase duration, O(log(DN)), with the number of
frames which are used, O(D/ log(DN)), to obtain O(D) time.
We show that the latest possible injection time for a packet is
O(C log(DN)), which leads to O(C log(DN)+D) latest deliv-
ery time for any packet.

To obtain Algorithm Leveled-Distributed, we color the de-
pendency graph in a distributed way. To accomplish this, we
use a randomized distributed coloring algorithm where pack-
ets randomly pick a color, and are forwarded to the next frame
according to this coloring. If the coloring is successful, then
the packets can move on to the next frame; however, if the
coloring is not successful (some packets collide), then the pack-
ets trace their paths backwards to the previous frame (reverse-
simulation) and the process repeats. We show that the added
inefficiency of the distributed coloring is at most one extra log-
arithmic factor.

1.4. Related work

The first known form of bufferless packet switching algo-
rithms is hot-potato routing. In hot-potato routing, the packets
do not follow preselected paths, but rather they are sent in a
greedy fashion by moving closer to the destinations. Hot-potato
routing was introduced by Baran [7], and since then, hot-potato
routing algorithms have been observed to work well in prac-
tice [8]. They have been used in parallel machines such as the
HEP multiprocessor [48], the Connection machine [27], and
the Caltech Mosaic C [47], as well as in high speed commu-
nication networks [34]. Hot-potato routing is appropriate for
optical networks [1,25,34,52,55].

Hot-potato algorithms have been studied for specific net-
work multiprocessor architectures such as the 2-dimensional
mesh and torus [6,9,17,19,20,23,24,28,29, 39,49], the d-
dimensional mesh [10,11,15], the hypercube [14,16,24,26,42],
trees [3,22,46], and Vertex symmetric networks [35]. (Multi-
processor architectures are extensively covered in [30].) Bhatt

et al. [13] study hot-potato routing on leveled networks, but for
different packet problems than the problems we consider here.

Most of the above papers study special cases of many-to-
one batch problems, such as permutation problems or random-
destination problems. In these batch problems the preselected
paths are not given, only the sources and destinations of the
packets are specified. The paths are found dynamically while
the packets are delivered in the network. Usually, such algo-
rithms cannot give good paths for the packets resulting in de-
livery times that are only worst-case optimal (not optimal for
every instance of the batch problem they solve).

Our algorithms can be used to solve such kinds of batch
problems too. For such a batch problem, we first get good paths
with C+D close to optimal (using known results that give good
paths in [4,5,44,50]). Then we apply our algorithms using the
good paths, to obtain delivery time within logarithmic factors
from optimal, for any instance of the batch problem (and not
only for worst cases). Also our algorithms are applicable to
arbitrary many-to-one batch problems, and not only to special
cases of batch problems.

1.4.1. Related work on trees
Various bufferless packet switching models for trees have

been considered. Matching routing on trees is considered in
[2,41,54]; here, at each time step, a set of edges with disjoint
endpoints is chosen, and then the packets at the endpoints of
each selected edge are exchanged. All of the results in matching
routing consider permutation batch problems (without prese-
lected paths) and provide algorithms with delivery time O(n),
where n is the number of packets. The results are only worst-
case optimal and not optimal for any case, while ours are every
case near-optimal (given good paths).

In [3,22,51], the direct routing model is considered on trees;
here, an injection time schedule is computed such that the pack-
ets follow shortest paths to their destinations without collisions.
Direct routing algorithms are centralized, i.e. some central node
has global information about the batch problem and computes
the injection times of all the packets. In contrast, the bufferless
algorithms for trees that we consider here are distributed and
rely on deflections. In [3,51] direct routing algorithms with de-
livery time O(n) are given, for permutation batch problems with
n packets. Again, this result is worst-case optimal, while ours
is every case near-optimal. In [22], a direct routing algorithm
(on trees) with optimal O(C +D) delivery time is presented;
however, as already mentioned, direct routing algorithms are
centralized while our algorithms are distributed.

Roberts et al. [46] consider greedy hot-potato routing and
show that there exist permutation batch problems for which
any greedy hot-potato algorithm requires �(n) delivery time.
However, there exist simple permutation batch problems with
asymptotically smaller delivery time (for example in a star net-
work topology).

1.4.2. Related work on leveled networks
For leveled networks, the most related work to ours is [18],

which gives a distributed algorithm for leveled networks with
bound O((C+L) log9 (LN)). We improve this result by seven

1172 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

logarithmic factors; moreover, that result was expressed in
terms of L instead of D which we consider here. The algorithm
in [18] shares similarities with our algorithm in the sense that
the network is partitioned into frames and the packets move
along the frames to the destinations.

A recent result in [21] shows that it is possible to obtain
a general bufferless packet switching algorithm for arbitrary
networks with delivery time O((C+D) log3 (n+N)). However,
that result does not take advantage of the special structure of
leveled networks, which allows us to obtain a smaller delivery
time, by one or two logarithmic factors.

Leveled networks have also been studied in the context
of store-and-forward scheduling (with buffers), by Leighton
et al. [32], where they present an O(C+L+log N) randomized
algorithm with constant size buffers. For store-and-forward
scheduling, there have been many results on obtaining optimal
O(C +D) algorithms for arbitrary networks [31,33,36,40,43].
Our results reduce the gap between the performance of buffer-
less algorithms and store-and-forward algorithms for trees and
leveled networks.

Outline of the paper: In the paper, we proceed as follows.
In Section 2 we present our results on trees. In Section 3 we
present our results on leveled networks. We conclude with a
discussion in Section 4.

2. Trees

In this section we present our results on trees. We start with
some necessary preliminaries in Section 2.1, where we describe
the decomposition of a tree into inner-trees. In the same sec-
tion we describe other details, such as how the deflections are
handled in our algorithms. We then continue with the descrip-
tion and analysis of the deterministic algorithm in Section 2.2,
and the randomized algorithm in Section 2.3.

2.1. Preliminaries on trees

A tree T = (V , E) is a connected acyclic graph with |V | =
n and |E| = n − 1. The degree of node v is the number of
nodes adjacent to v. Let v ∈ V ; then, T induces a subgraph on
V−{v}which consists of a number (possibly zero) of connected
components. Each such connected component is a subtree of
v in T . 3 If v is adjacent to k nodes in T , then there are k

disjoint subtrees T1, . . . , Tk of v, one for each node vi ∈ Ti

that is adjacent to v. The distance from v to u is the number of
edges in the (unique) shortest path from v to u. We continue to
examine various properties of trees and how packets are sent
on them.

2.1.1. Inner-trees
The main idea behind our algorithms is to look at the tree

from the point of view of a short node (see Fig. 2). A node
v in the tree is short if every subtree of v contains at most

3 Note that for unrooted trees which we consider here, a subtree of a node
v originates from every adjacent node of v; in contrast, the convention for
rooted trees is that a subtree of v is any tree rooted at a child of v.

shortshort

Original tree Tree "rooted" at the short node

Fig. 2. The short node.

n/2 nodes. At least one short node is guaranteed to exist. (Al-
gorithm Find-Short-Node in the Appendix finds one in O(n)

time.)
We now define recursively the level � of a node, and the inner-

trees of T as follows. The tree T is the only inner-tree at level
� = 0. The only node at level � = 0 is the short node of T (we
pick one of the short nodes of T). Assume we have defined inner-
trees up to level ��0. Every connected component obtained
from the inner-trees of level � by removing the short nodes of
these inner-trees at level � is an inner-tree at level � + 1. The
level � + 1 nodes are precisely the short nodes of the inner-
trees at level � + 1. The process is illustrated in Fig. 3. (We
can easily construct an O(n2) procedure to determine the node
levels and inner-trees using the Algorithm Find-Short-Node
in the Appendix.)

From the above definition we immediately obtain the follow-
ing properties: (i) every inner-tree is a tree, (ii) the maximum
level of any node and inner-tree is no more than log n, (iii)
an inner-tree T ′ at level � contains a unique node x at level �,
which is the short node of the inner-tree (we say that x is the
inducing node of T ′), (iv) any two inner-trees at the same level
are disconnected, and (v) all nodes in a level-� inner-tree other
than the inducing node have a level that is smaller than �.

2.1.2. Paths in trees
A path is any sequence of nodes (v1, v2, . . . , vk), where

(vi, vi+1) ∈ E, for all 1� i�k − 1. The length of the path
is the number of its edges. The preselected path of a packet
� is the shortest path from the source to the destination
node of the packet. We also refer to this path as the original
path.

In our algorithm we will consider shortest paths on trees.
Let � be the minimum level of any node in the original path of
�. Then, there is a unique node v with level � in the path of
� (since otherwise inner-trees of the same level would not be
disconnected). Let T ′ be the inner-tree that v is inducing. The
whole original path of � must be within T ′ (from the definition
of inner-trees). We say that the level of packet � is �, and that
the inner-tree of � is T ′. Note that all the packets of level � and
inner-tree T ′ cross the same (unique) node v at level � in T ′.
For example, see Fig. 4 and inner-tree T ′1, which is rooted at
the node of level �, and all the paths cross the root.

Since inner-trees at the same level are disjoint, the packets
paths on different inner-trees of the same level do not intersect,
that is, they have no common node and edge. This observation
is very useful for our algorithms, because we will deliver and
maintain the packets inside the inner-trees they belong to. Thus,
packets on different inner-trees at the same level will be deliv-
ered simultaneously. For example, two different trees T ′1 and

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1173

1
1

1

0

level 2level 1level 0

22

2

2

22

2

Fig. 3. The process of constructing inner-trees at levels 0, 1 and 2.

Fig. 4. Packet paths on two disjoint inner-trees T ′1 and T ′2 at the same level �.

T ′2 of level � are depicted in Fig. 4. Since the trees are disjoint,
paths on different trees do not intersect.

Assume now that packet � is injected into the network. At
any time step t, the current path of a packet is the shortest
path from the current node that the packet resides at until the
destination node. At the moment that the packet is injected, its
current path is its original path. At any time step, a packet either
moves forward (closer to the destination) or it is deflected.
When the packet moves forward, its current path gets shorter
by removing the edge that the packet follows. Any time that
the packet is deflected, its current path grows by the edge on
which it was deflected.

In particular, consider a packet � with preselected path p
which has path length |p|. Let p(t) denote the current path
at time t. At time 0, the current path is the preselected path,
p(0) = p. Suppose that at time t, packet � is in node vi , with
current path p(t) = (vi, vi+1, . . . , vk). If at time t, packet �
successfully follows the first edge (vi, vi+1) in p(t) (the packet
moves forward), then, at time t + 1, packet � appears in node
vi+1 with current path p(t+1) = (vi+1, . . . , vk). On the other
hand, if at time t + 1 packet � is deflected toward a node
vj , then at time t + 1 it appears in node vj with current path
p(t + 1) = (vj , vi, vi+1, . . . , vk). Thus, if the packet moves
forward, |p(t + 1)| = |p(t)| − 1 and if it is deflected, then
|p(t + 1)| = |p(t)| + 1.

The deflections may take a packet on edges that was not
in the original path. Thus after time 0, the current path may
be different than the original path. However, a packet will tra-
verse all the edges of its preselected path before it is delivered
to the destination. Note that in trees the current path is al-
ways the shortest path from the current node to the destination
node.

2.1.3. Canonical injections and deflections
In our algorithms, a packet remains in its source node until a

particular time step at which the packet becomes active. When

the packet becomes active, it is injected at the first available
time step on which the first link of its original path is not used
by any other packets that reside at its source node. We call such
an injection a canonical injection.

After the packets are injected they move toward the destina-
tion by following their current paths. Two or more packets may
meet if they appear in the same node at the same time step. We
say that two or more packets collide if they meet at some time
step wish to follow the same link forward. In a collision, one
of the packets will successfully follow the link, while the other
packets must be deflected. In a greedy algorithm, a packet al-
ways attempts to follow its forward link unless it is deflected
by another packet with which it collides for the same edge. The
algorithms we consider for trees here are greedy.

In our algorithms, packets are deflected in a particular fash-
ion so as to ensure that the congestion of the edges on the
current paths never increases more that the congestion of the
preselected paths. Consider a node v at time step t. Let Sf de-
note the set of packets which moved forward in the previous
time step t − 1, and now appear in v at time step t. Let Ef be
the set of edges that the packets in Sf followed at time t − 1.
Let � be a packet in node v that will be deflected at time t. Node
v first attempts to deflect � along an edge in Ef . If this fails
(due to other packets that move forward using edges in Ef)
any other edge adjacent to v is used for the deflection. Thus,
� is deflected on Ef unless other packets use all the edges
in Ef . We call this process of deflecting packets canonical
deflection.

If � successfully follows an edge in Ef , then we say that
the deflection is safe. We will show that in our algorithms
when the deflections are canonical then they are also safe. Safe
deflections have the following effect. Let e be the edge of Ef

that � will be deflected on. Let � be the packet of Sf that
followed e at time step t − 1 toward v. Then, the edge e is
transferred from the current path of � to the current path of �;
thus, the edges “recycle” from one current path to another. We
now show that when injections and deflections are canonical,
the deflections are always safe.

Lemma 2.1. If packet injections and deflections are canonical,
then packet deflections are also safe.

Proof. Let v be some node, and S the set of packets that will
be sent from v at time step t. We write S = Sf ∪Sd ∪Si , where
Sf , Sd and Si are disjoint sets such that: Sf are those packets
which moved forward at time step t−1, in order to appear in v

at time step t; Sd are those packets that were deflected at time
step t−1; Si are those packets which are injected at time step t

1174 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

in node v. Let Ef and Ed denote the sets of edges adjacent to v

which the packets in Sf and Sd followed, respectively, at time
step t − 1. Clearly, |Sf | = |Ef | and |Sd | = |Ed |; furthermore,
since Sf ∩ Sd = ∅, it must be Ef ∩Ed = ∅. Let S′ denote the
set of packets of S that will be deflected. We only need to show
that the packets of S′ follow edges of Ef .

We can write Sf = S1 ∪ S2 ∪ S3 ∪ S4, where S1 are packets
that will move forward on edges of Ef , S2 are packets that
will move forward on edges of Ed , S3 are packets that will
move forward on edges not in Ef ∪Ed , and S4 are packets that
will be deflected; sets S1, S2, S3, S4 are disjoint. Furthermore,
we can write Sd = S5 ∪ S6, where S5 are packets of Sd that
will move forward on edges of Ed and S6 are packets that
will be deflected; sets S5 and S6 are disjoint. Clearly, S′ =
S4 ∪ S6.

For every packet of Sf which moves forward on an edge of
Ed , a packet of Sd must be deflected. This implies that |S2| =
|S6|. Let A be the set of edges of Ef that are not used by packets
of S1; in other words, A is the set of edges of Ef on which
safe deflections can occur. We have that |A| = |Sf | − |S1|. We
also have that |S′| = |S4| + |S6| = |S4| + |S2|. Equivalently,
|S′| = |Sf |−|S1|−|S3|. It follows that |S′|� |A|. Subsequently,
all packets can be deflected on edges of Ef . It follows that all
deflections if made canonically are also safe, concluding the
proof. �

Consider some edge e. The congestion of edge e at time t ,
denoted Ct

e, is the number of current paths that go through edge
e at the beginning of time step t. Let Ct = maxe∈E Ct

e, namely,
Ct denotes the network congestion at time t. Note that C = C0.
Safe deflections imply that for any edge e and any time step t,
Ct

e is no more than C0
e , since edges are transferred from one

current path to another one due to deflections, and the number
of original paths crossing e is C0

e . Therefore, from Lemma 2.1
we obtain:

Lemma 2.2. If packet injections and deflections are canonical,
then Ct �C, for any t �0.

2.1.4. Deflection sequences
In the analysis of Algorithm Tree-Deterministic, we will

use a technique developed by Borodin et al. [15, Section 2],
called a “general charging scheme”, with which they analyze
deflection algorithms. Below, we adapt the discussion from [15,
Section 2] so that it is appropriate for trees. Consider a packet
� that was deflected at time t1 by packet �1. Define a deflection
sequence and a deflection path with respect to this deflection
as follows. Follow packet �1 starting at time t1 either to its
destination or up to time t2 > t1, when it is deflected for the
first time after t1 by some packet �2. Follow �2 from time t2
either to its destination or until some other time t3 > t2, when
�2 is deflected for the first time after t2 by some packet �3.
Continue in the same manner until a packet �j is followed to
its destination. Define the sequence of packets: �1, �2, . . . , �j

as the deflection sequence of � at time t1. Define the path that
follows this sequence of packets from the point of deflection to
the destination of �j to be the deflection path. (See Fig. 5.)

deflection path

deflections

�

�1 �2 �j–2 �j–1 �j

Fig. 5. The deflection sequence �1,�2, . . . ,�j .

Claim 2.3 (Borodin et al. [15]). Suppose that for any deflec-
tion of packet � from node v to node u, the shortest path from
node u to the destination of �j (the last path in the deflection
sequence) is at least as long as the deflection path. Then, �j

cannot be the last packet in any other deflection sequence of
packet �.

Claim 2.3 can be applied for greedy packet scheduling on
trees. Claim 2.3 implies that we can “charge” the deflection of
� to packet �j , in the sense that when a packet is deflected
another packet makes it to the destination. This implies the
following corollary.

Corollary 2.4 (Borodin et al. [15]). If the deflection sequence
for each of the deflections incurred by a packet switching al-
gorithm satisfies the conditions of Claim 2.3, then the arrival
time of each packet is bounded by dist (�) + 2(k − 1), where
dist (�) is the length of the shortest path from the source of
packet � to its destination and k is the number of packets.

2.2. A deterministic algorithm on trees

We present the Algorithm Tree-Deterministic (Algorithm
1). Each node is the source of at most one packet. The algorithm
is described in terms of the actions of a packet �. Let v be the
source of �. Node v first computes the level � of the packet.
Then according to the packet’s level, node v makes � active at a
particular time step that corresponds to the delivery of packets
at level �. Then packet � is injected canonically and moves
greedily in the network until it is absorbed at its destination.
All deflections are canonical.

In the analysis of our algorithm, we will show that once
the packet is injected it will remain in its inner-tree until it is
delivered to its destination. Thus, a packet will interfere (i.e.
collide) only with packets of the same inner-tree. Consequently,
packets at different inner-trees at the same level can be delivered
simultaneously. Only packets at different levels can interfere
with each other. In order to avoid this kind of interferences,
packets at different levels are sent separately into phases, where
phase i corresponds to the delivery of packets at level i. Thus,
in Algorithm Tree-Deterministic a packet � becomes active at
the beginning of the �th phase, and it is delivered before the
end of the phase.

2.2.1. Analysis of deterministic algorithm
We proceed with the detailed analysis of the algorithm.

Lemma 2.1 implies that all deflections are safe. Let m be the
maximum level in T (note that m� log n). We divide time
into consecutive phases �0, �1, . . . , �m, such that each phase

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1175

Algorithm 1. Tree-Deterministic.

Algorithm: Tree-Deterministic

Input: A tree T of maximum node degree �; A set of packets �
with preselected paths having congestion C and dilation
D; Each node is the source of at most one packet; Each
node knows T , C, D;

Do for each packet � of level �:
begin
1 Packet � gets active at time � · � (start of �th phase),

where � = 2(� · C − 1)+D (duration of phase);
2 The injection and deflections of packet � are canonical;
3 Packet � moves greedily to its destination;
end

consists of � time steps. Write � = �0, �1, . . . , �m, where
�i are packets of level i. From the algorithm, the packets of
set �i become active at the first time step of phase �i . We will
show that all packets of level i are absorbed during phase �i .
In particular, we will show that the following invariants hold,
where i�0:

Pi : all packets of �0 ∪�1 ∪ · · · ∪�i

are absorbed by the end of phase �i .

In order to show that the properties Pi are indeed invariants, we
will first show that the following induction hypothesis holds,
where i�0, and P−1 is taken to be true by default:

Qi : if Pi−1 holds, then all packets of �i

are absorbed by the end of phase �i .

Now, we will consider a particular level ��0 and phase ��.
Assume that P�−1 holds (namely, all packets of �0 ∪ �1 ∪
· · · ∪��−1 have been absorbed by the end of phase ��−1). We
will show that Q� holds; in other words, we will show that all
packets of �� will be absorbed by the end of phase ��. Notice
that in phase �� the only packets injected are those of ��. So,
from now on, we will consider phase �� and only the packets
��. We will show that each packet remains inside its inner-tree
for the entire duration of ��. (Note that an inner-tree can be
connected with another inner-tree of lower level.)

Lemma 2.5. During phase ��, each packet of �� remains in-
side its inner-tree.

Proof. Assume for contradiction that some packet of �� leaves
its inner-tree during phase ��. Let � be the first packet which
leaves its inner-tree, and let t be the time step at which this
event occurs. That is, at time step t, packet � appears in a node
v which is not in its inner-tree, and at time step t − 1, packet �
was in a node u in its inner-tree. Thus, in node u and time t−1,
packet � is deflected, since the destination of � is in its inner-
tree. Since deflections are safe, there must be another packet �
that moved forward from node v to node u at time step t − 2.

Since inner-trees of the same level are disjoint, we have that
packet � left its inner-tree before packet �, a contradiction. �

From Lemma 2.5, it follows that only packets of the same
inner-tree meet with each other; thus, only packets of the same
inner-tree may collide with each other. From now on, we will
consider only packets of some particular inner-tree T ′ of level
�, and denote the level-� inducing node of T ′ by r. Next, we
show that every packet with inner-tree T ′ will be absorbed in
phase ��.

Corollary 2.4 applies to Algorithm Tree-Deterministic. For
any packet �, we have that dist (p)�D. Moreover, at the be-
ginning of phase ��, the number of packets in inner-tree T ′
does not exceed � ·C, since: (i) the original path of each packet
of T ′ goes through node r, (ii) the degree of r is at most �, and
(iii) each edge adjacent to r has congestion C�·� �C (a conse-
quence of Lemma 2.2). Further, no more packets can be added
in T ′ during phase ��. Thus, from Corollary 2.4, all pack-
ets in inner-tree T ′ will be absorbed within a period of time
2(� · C − 1) + D = �. Subsequently, all packets of inner-tree
T ′ are absorbed by the end of phase ��. This implies that all
packets of �� are absorbed by the end of phase ��. Therefore,
we have shown the following lemma:

Lemma 2.6. Q� holds for all ��0.

Since P−1 holds, by induction, we have the following result.

Lemma 2.7. P� holds for all ��0.

Lemma 2.7 implies that Pm holds. The fact that Pm holds
further implies that all packets will be absorbed by the end of
phase �m. Since m� log n, all packets are absorbed by time
step � · (m+ 1) which is at most (2(� ·C− 1)+D)(log n+ 1).
We have the following theorem and its immediate corollary:

Theorem 2.8. The delivery time of Algorithm Tree-Deterministic
is bounded by O((� · C +D) log n).

Corollary 2.9. If � is bounded by a constant, then the delivery
time of Algorithm Tree-Deterministic is bounded by O((C +
D) log n).

2.3. A randomized algorithm on trees

Here, we present the Algorithm Tree-Randomized
(Algorithm 2). The difference between Algorithms Tree-
Randomized and Tree-Deterministic is that the packets have
now priorities. As we will show in the analysis, the use of prior-
ities removes the dependence on the node degrees but increases
the delivery time by a logarithm, due to randomization.

There are two levels of priority: low and high. At any time
step, a packet is in one of these two priorities. A packet of
high priority has precedence over a packet of low priority in
a collision. Collisions between packets of the same priority
are resolved arbitrarily in a canonical fashion. Initially, when
a packet becomes active, it has low priority. The packet may

1176 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

Algorithm 2.Tree-Randomized.

Algorithm: Tree-Randomized

Input: A tree T; A set of packets � with preselected paths
having congestion C and dilation D; Each node is the
source of one packet; Each node knows T , C, D;

Do for each packet � at level �:
begin
1 Packet � gets active at time step � · � (start of �th phase),

where � = 16 · (C +D) · (2 log n + log log 2n) + 3D + 1
(duration of phase);

2 The injection and deflections of packet � are canonical;

3 Packet � moves greedily to its destination;

4 When packet � becomes active it has low priority;

5 If � is deflected at time step t, then on the next time step
t + 1, the priority of � becomes high with probability p =
1/(4(C +D)), and low with probability 1 − p (no matter
what the previous priority was). The packet preserves the
new priority until the next deflection;

end

change its priority only after a collision. If a packet is deflected,
its priority is set to high with probability p (where p is specified
in the algorithm), and to low with probability 1−p, independent
of its previous priority. In the analysis, we will show that a
packet with high priority will reach its destination without being
deflected (with high probability).

2.3.1. Analysis of randomized algorithm
We now proceed with the analysis of the algorithm. Lemma

2.1 implies that all deflections are safe. Let m be the maxi-
mum level in T (note that m� log n). We divide time into con-
secutive phases �0, . . . ,�m, and the packets into different sets
�0, . . . , �m, as we did in Section 2.2. We also consider the
properties Pi for 0� i�m, as defined in Section 2.2. We will
show that properties Pi hold with high probability. In order to
do this, we will first show that if Pi−1 holds for any partic-
ular i�0 then Pi holds with high probability (a probabilistic
version of Qi as defined in Section 2.2.

Now, we consider a particular level ��0 and phase ��. Let
t1, t2, . . . , t� denote the time steps of phase ��. Assume that
P�−1 holds (namely, all packets of �0 ∪�1 ∪ · · · ∪��−1 have
been absorbed by the end of phase ��−1). We will show that
Q� holds with high probability; namely, we will show that
all packets of �� will be absorbed by the end of phase ��

with high probability. Notice that in phase �� the only packets
injected are those of ��. So, we will consider only the packets
��. Notice that Lemma 2.5 holds. Thus, from now on, we will
consider only packets of some particular inner-tree T ′ of level
�, and denote the level-� inducing node of T ′ by r. We will
show that every packet with inner-tree T ′ will be absorbed in
phase ��, with high probability. Let T1, T2, . . . , Tw denote the

subtrees of r in T ′. We first show some interesting properties
about these subtrees.

Lemma 2.10. The number of level-� packets with destinations
in Tj , for 1�j �w, is at most C.

Proof. Let e denote the edge that connects Tj with node r. All
the level-� packets with destination in Tj use e, and since the
edge congestion never increases (Lemma 2.1), there can be at
most C such packets. �

Lemma 2.11. Consider any time step ti , 1� i��, and any sub-
tree Tj , 1�j �w. The number of packets that appear in Tj at
time step ti is at most C.

Proof. Let A denote the set of packets with sources in Tj and
B the set of packets with destinations in Tj . Let e be the edge
that connects tree Tj with r. It must be that |A|+|B|�C, since
all the packets in A and B have edge e on their original path,
and the congestion can not exceed C.

Let Xi denote the set of packets which appear in Tj at time
step ti . We can write Xi = Yi ∪ Zi , where Yi are packets with
destinations outside Tj , and Zi are packets with destinations
in Tj . We know that Y1 = A. For i > 1, we can write |Yi | =
|A| + a − b, where a is the number of packets which entered
Tj , and b is the number of packets which left Tj , between
time steps t1 and ti , and all these packets have destinations
outside Tj . Consider a packet � with destination outside Tj ,
which enters Tj in time step ti (i.e. packet � traverses e at time
step ti−1). It must be that packet � has entered the network
due to a deflection. Since deflections are safe, it must be that
another packet � ∈ Yi−2 followed edge e forward at time step
ti−2 (i.e. packet � has its destination outside Tj). Thus, for any
packet similar to � that enters Tj , there is another similar to
� that leaves Tj . This implies that a�b. Therefore, |Yi |� |A|.
Moreover, we know that Zi ⊆ B, which implies that |Xi | =
|Yi | + |Zi |� |A| + |B|�C, as needed. �

We define the depth of a node v, as the distance of the node
from r, and the depth of a packet as the depth of the node in
which it appears.

Lemma 2.12. At time step ti , 1� i��, packets in subtree Tj ,
1�j �w have depth�D.

Proof. We will show a stronger result: at time step ti , packets
in subtree Tj have depth�D, and packets at level D are in
isolation, i.e. no more than one depth-D packet appears in the
same node. We prove the claim by induction on i.

For i = 1, the claim holds trivially, since every node is
the source of one packet which is injected in isolation at time
step t1; moreover, the original path dilation does not exceed D.
Assume that the claim is true for any time step ti , where 1� i <

k�� and consider time step tk . Note that the destination node of
any packet has depth at most D (since the length of the original
paths are at most D and all these paths cross node r). From the
induction hypothesis, at time step tk−1, all packets have depth

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1177

D or lower. Consider the packets at depth D at time step tk−1
(by the induction hypothesis, these packets are in isolation).
It must be that these packets wish to move to depth D − 1,
since none of them have reached their destinations, and all of
them have destinations at depth D or lower. All these packets
successfully follow the links toward depth D − 1, at time step
tk . Therefore, at time step tk , no packet will have depth greater
than D. Moreover, at time step tk the packets at depth D can
only be packets which had depth D−1 at time step tk−1 (since,
from the induction hypothesis, there are no packets at depth
D + 1 at step tk−1). These packets will appear in isolation at
depth D on time step tk , since each of these packets follows
a different edge leading to depth D. Thus the claim holds for
time step tk , and the lemma follows by induction. �

Let R = [ta, tb], where 1�a�b��, denote a time period
containing time steps ta, ta+1, . . . , tb.

Lemma 2.13. Consider a time period R = [ta, tb], 1�a�b��,
and a tree Tj , 1�j �w. The number of different packets that
appeared in Tj during period R are at most C + b − a.

Proof. From Lemma 2.11, we know that the number of pack-
ets that appears in Tj at time step ta are at most C. At any
subsequent time step, at most one new packet enters subtree
Tj , which implies that during period R, the number of different
packets that appeared in Tj is at most C + b − a. �

We can bound the number of different packets that a packet
� may collide with in a period as follows:

Lemma 2.14. Consider a time period R = [ta, tb], 1�a�b��,
in which a packet � is not deflected. During period R packet �
may have collided with at most 2C + b − a different packets.

Proof. Assume that at time step ta, packet � is in subtree Tj

and wishes to move to subtree Tk , where its destination resides,
so that k 	= j . (If � has destination node r, or at time step ta
is either in r or Tk , then the analysis is similar.) Assume that
packet � resides in subtree Tj for period R′ = [ta, tc], where
1�a�c < b. In order for � to collide with some packet �
in Tj , it must be that packet � resides in Tj during period R′.
From Lemma 2.13, the number of packets similar to � is at
most C + c − a�C + b − a.

In time period [tc+1, tb], packet � follows a path that includes
the node r and a path in the subtree Tk . At the nodes of this path,
packet � may collide only with packets that have destinations
in Tj . From Lemma 2.10, the number of these packets is at
most C. Therefore, the total number of different packets that �
may collide with during period R is at most 2C + b − a. �

Consider a time period R = [ta, tb] in which packet � is not
deflected. From Lemma 2.14, it follows that during period R,
packet � may collide with at most 2C + b − a packets. Let �
be any such packet. It is easy to see that � will collide at most
once with � during period R (otherwise, packet � and � would
meet at two nodes at two different time steps during R, and this

would imply that there are two different paths connecting the
two nodes, which is impossible). Using this observation, we
now prove:

Lemma 2.15. Consider a time step ti , where 1� i��−2D, at
which packet � is in high priority. The probability that packet
� reaches its destination in subsequent time steps without de-
flections is at least 1

2 .

Proof. From Lemma 2.12, � has depth at most D. The desti-
nation of � also has depth at most D (since the original paths
have length at most D and cross node r). Hence, at time step ti
the current path � has length at most 2D. Now, consider time
period R = [ti , ti+2D−1]. If during R packet � is not deflected
(including time step ti+2D−1), then it successfully reaches its
destination node.

Since packet � has high priority, it can be deflected only by
other packets of high priority. Any other packet � has only one
chance to deflect packet �. This chance is given to packet � with
probability at most p: first packet � increases its priority with
probability p on its last deflection, and then it is on a collision
course with packet �. From Lemma 2.14, we have that the
number of packets in a similar situation to that of � is at most
2C + i + 2D − 1− i = 2C + 2D − 1�2(C +D). Therefore,
the probability that packet � will be deflected by any of these
packets is at most 2(C +D)p = 2(C +D)/(4(C +D)) = 1

2 .
Thus, with probability at least 1

2 , no packet will deflect packet
�. �

Using Lemma 2.15, we obtain:

Lemma 2.16. If a packet � gets deflected at time step ti ,
1� i��− 2D− 1, then the probability that in subsequent time
steps packet � reaches the destination node without deflections
is at least p/2.

Proof. After the packet is deflected at time step ti , it becomes
a high priority packet at time step ti+1 with probability p. From
Lemma 2.15, we know that packet � is not deflected until it
reaches its destination with probability at least 1

2 . Thus, after
the deflection, packet � will have high priority and will reach
its destination without deflections with probability at least p/2.

�

From Lemma 2.16, we have that every time a packet is de-
flected, it has a chance to increase its priority and reach its des-
tination without deflections. We next estimate how many times
a packet gets deflected in a particular time period.

Lemma 2.17. Consider a packet � which is in the network for
the entire time period R = [t1, tx], where D�x��. Packet �
gets deflected at least (x −D)/2 times in period R.

Proof. Let a denote the number of times that � moves forward
and b the number of times it is deflected, up to (and including)
time step tx−1, then a + b = x − 1. Every time that the packet
moves forward its distance to the destination decreases, while

1178 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

every time it moves backward the distance increases. Let dx

denote the distance of � from its destination at time step tx . We
have that dx = d1− a+ b. Equivalently, dx = d1− x+ 2b+ 1,
which implies: b = (dx − d0 + x − 1)/2. We know that dx �1
(since � is in the network at time step tx), and that d1 �D, since
in the original path of � the distance from its destination is at
most D. Thus, b�(x −D)/2. �

Next we compute the probability that packet � reaches its
destination in phase ��.

Lemma 2.18. Packet � reaches its destination in phase �� with
probability at least 1− 1/(n2 log 2n).

Proof. Consider the time period R = [t1, t�−2D−1], and sup-
pose that � did not reach its destination yet. From Lemma 2.17,
we have that � is deflected at least x = (�− 2D− 1−D)/2 =
8(C+D)(2 log n+ log log 2n) times in period R. From Lemma
2.16, it follows that every time the packet is deflected in period
R it has probability at least p/2 to reach its destination with-
out further deflection. In other words, packet � fails to reach its
destination without deflection with probability at most 1−p/2.
Therefore, � fails to reach its destination after x deflections with
probability at most (1− p/2)x . 4 We have that,

(
1− p

2

)x =
(

1− 1

8(C +D)

)8(C+D)(2 log n+log log 2n)

� 1

e2 log n+log log 2n
= 1

n2 log 2n
.

Thus, packet � reaches its destination in phase �� with proba-
bility at least 1− 1/(n2 log 2n). �

Now, we consider all packets �� in phase ��.

Lemma 2.19. The probability that all packets in �� are ab-
sorbed in phase �� is at least 1− 1/(n log 2n).

Proof. From Lemma 2.18, any particular packet of �� reaches
its destination with probability at least 1−1/(n2 log 2n). Thus,
a packet will not reach its destination with probability at most
1/(n2 log 2n). The number of packets in �� is at most n (each
node in the network injects at most one packet). By the union
bound, the probability that one of these packets does not make
it to the destination in phase �� is at most n · 1/(n2 log n) =
1/(n log 2n). Subsequently, all the packets make it to the des-
tination with probability at least 1− 1/(n log 2n). �

Corollary 2.20. For 0���m, if P�−1 holds, then P� holds
with probability at least 1− 1/(n log 2n).

4 Note that each deflection is treated as an independent event for reaching
the destination node. We can do this because we have computed the p/2
lower bound for this probability for the worst possible scenario for each
deflection. The consideration of the dependencies between deflections cannot
possibly decrease the p/2 lower bound for each deflection.

We are now ready to show that properties P� hold with high
probability:

Lemma 2.21. For 0���m, P� holds with probability at least
1− (�+ 1)/(n log 2n).

Proof. Let P i be the complementary event to Pi . Then
Pr [P i] = Pr [P i ∩ Pi−1] + Pr [P i ∩ P i−1].

Pr[P i ∩ Pi−1] = Pr[P i |Pi−1]Pr [Pi−1]�Pr[P i |Pi−1],
Pr[P i ∩ P i−1] � Pr[P i−1],

so, using Corollary 2.20 we have that Pr[P i]�1/(n log 2n)

+Pr[P i−1]. Since P0 �1/(n log 2n), the claim now follows by
an easy induction. �

From Lemma 2.21 and the fact that m� log n, we obtain the
following corollary:

Corollary 2.22. Pm holds with probability at least 1− 1/n.

Since m� log n and � = O((C +D) log n), Corollary 2.22
implies that with probability at least 1 − 1/n, all packets are
absorbed by time step � · (m+ 1)��(C +D) log2 n, for some
constant � ≈ 33. Thus we have:

Theorem 2.23. With probability at least 1− 1/n, the delivery
time of Algorithm Tree-Randomized is bounded by �(C +
D) log2 n, for some constant � > 0.

3. Leveled networks

In this section we give our results for leveled networks. We
start in Section 3.1 where we describe the decomposition of the
network into frames and groups. In the same section we also
describe how to construct the dependency graphs and properties
of them. We then continue with a description and analysis of the
centralized in Section 3.2 and distributed algorithms in Section
3.3.

3.1. Preliminaries on leveled networks

We give some necessary preliminaries that will be used in
our algorithms in leveled networks. Consider throughout this
section a leveled network G = (V , E) with L + 1 levels. We
will need a Chernoff-type tail inequality.

Lemma 3.1 (Chernoff bound, Motwani and Raghavan
[38, Exercise 4.1]). {Xi}ni=1 be independent Bernoulli random
variables, with Pr[Xi = 1] = pi . Let X = ∑n

i=1 Xi , and set
� = E[X] =∑n

i=1 pi . For any � > 2e, Pr[X > ��] < 2−��.

We now introduce packet paths, oscillations, frames, and the
dependencies between packets.

3.1.1. Paths and oscillations in leveled networks
Similar to the trees, a packet path is a sequence of nodes

(vi, vi+1, . . . , vk), where every pair of consecutive nodes in

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1179

Fig. 6. Network partition into frames

the path is an edge of the network. The preselected path is
monotonic, it is a sequence of nodes from lower levels to higher
levels. Similar to the trees, packets have current paths, initially
the preselected path, which changes every time that the packets
moves forward or gets deflected.

Suppose packet � has current path (vi, vi+1, . . . , vk). We
say that � oscillates on edge e = (vi, vi+1) if it moves back
and forth on e: if at time t, � appears in vi , then at time t + 1,
� appears in vi+1, and at time t + 2 it is back in vi , and so on.
When a packet oscillates, the length of its current path increases
and decreases by one each time. Oscillations are useful because
they provide a way to “buffer” packets on edges instead of at
nodes.

3.1.2. Frames
We partition the levels of the network into 	 non overlapping

frames F1, F2, . . . , F	, where each frame is a collection of
levels, each containing
 levels (except possibly for the last
frame, which may contain fewer). Frame Fi , 1� i < 	, consists
of the
 levels (i − 1)
, . . . , i
− 1. Frame F	 consists of the
levels (− 1)
, . . . , L. Note that 	 = �(L + 1)/
�. We will
pick
 = 4� log(DN), where � is a parameter to be defined
later; thus, the frames have logarithmic size. (We assume that
log(DN) is an integer, if not we use � log(DN) �.) The partition
of the network into frames is depicted in Fig. 6.

We refer to the levels that comprise frame Fi as the inner-
levels of Fi , and we number them from 1 to
. Thus, inner-level
k of frame Fi corresponds to real level (i−1)
+(k−1), where
1�k�
. The odd inner-levels are numbered 1, 3, . . . ,
 − 1
(recall that
 is even). The inner level of an edge is the smaller
of the inner-levels of the nodes it is incident with. Thus, corre-
sponding to odd inner-levels are odd inner-edges, and similarly
even inner-levels and even inner-edges.

3.1.3. Packet sets and dependency graphs
Let � be a set of packets in a many-to-one batch problem,

with |�| = N . We partition the set of packets � into s = 8�eC

sets, �1, �2, . . . , �s . Each packet is placed into one of these
sets uniformly at random. Thus, � =⋃s

i=1 �i , and �i∩�j =
∅ for i 	= j , so |�| =∑s

i=1 |�i | = N .
Consider the packets in �i , and two consecutive frames Fj

and Fj+1. For each packet � ∈ �i denote by q� the sub-path of
the preselected path that consists only of edges in Fj and Fj+1.

�1
�2

�3
�4

�1, �2,�3, �4

λλ

Fig. 7. Example of a dependency graph Gi,j

We define the packet dependency graph G(i,j) = (V(i,j), E(i,j))

as follows. The nodes of V(i,j) correspond to the packets in �i ,
so |V(i,j)| = |�i |. (See Fig. 7 for an example.) Let �, � ∈ �i ,
then (�, �) ∈ E(i,j) if and only if the paths q� and q� share
some edge in (Fj , Fj+1), i.e. if the paths collide.

The degree of a packet � in G(i,j), denoted d(i,j)(�), is the
number of edges incident with �. The degree of G(i,j), denoted
d(i,j), is the maximum degree of any packet in V(i,j). Let d =
max{i,j} d(i,j), i.e. d is the maximum degree of any of the graphs
G(i,j), for any i and j.

We show that d cannot be too big. In fact, a packet path
collides with at most 2
C other paths over two consecutive
frames. Only approximately 2
C/s = O(
/�) of these packets
are in the same set, so we expect that d = O(
/�). The next
lemma formalizes this notion.

Lemma 3.2. d �
/� = 4 log(DN), with probability at least
1− 1/DN .

Proof. Consider d(i,j)(�), for � ∈ �i . Note that |q�|�2
.
Let R denote the set of packets that collide with � on q�,
|R|� |q�|C�2
C. Let � ∈ R, then Pr[� ∈ �i] = 1

s
. There-

fore, � = E[d(i,j)(�)] =∑
�∈R Pr[� ∈ �i] = |R|s �

4�e
. Since

the events � ∈ �i are independent Bernoulli trials, we can ap-
ply Lemma 3.1 with � = 2e +

2�� to obtain

Pr

[
d(i,j)(�) >

�

]
< 2−(2e�+
/2�) �2−
/2�,

where d is the maximum degree over any node in any G(i,j).
Since every packet has path length at most D, a packet appears
as a node in at most D of the G(i,j)’s. Thus,

∑
i,j |V(i,j)|�DN.

We now successively apply the union bound to obtain the de-
sired result:

Pr

[
d(i,j) >

�

]
= Pr

[
max

�∈V(i,j)

d(i,j)(�) >

�

]

� |V(i,j)|2−
/2�

Pr

[
d >

�

]
= Pr

[
max

i∈[1,s],j∈[1,] d(i,j) >

�

]

�
∑
i,j

|V(i,j)|2−
/2� �DN 2−
/2�.

Since
 = 4� log(DN), the lemma follows. �

1180 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

3.1.4. Groups
We partition the network into groups, such that each group

is a collection of 	′ consecutive frames, where 	′ = 2�D/
 �
(namely, the group consists of at most 2D + 2
 levels). We
define two sets of groups (see Fig. 8.) The first set of groups
is S1 = {g1, g2, . . . , gk1}, where group gi consists of frames
F(i−1)	′+1, . . . , Fi	′ . The group gk1 consists of the rightmost
frames in the network and may contain fewer than 	′ frames.
Note that the groups in S1 do not share any levels. The second
set of groups is S2 = {h1, h2, . . . , hk2}, where group hi consists
of frames F(i−1/2)	′+1, . . . , F(i+1/2)	′ . The group hk2 , consists
of the rightmost frames in the network and may contain fewer
than 	′ frames. Note that the groups in S2 are shifted by 	′/2
frames with respect to the groups in S1.

A packet belongs to a group if it lies entirely within the
group. In S1, a packet belongs to at most one group, since the
packet length is at most D and the group size is approximately
2D+2
. Similarly, in S2 a packet belongs to at most one group.
In the case where a packet belongs to two groups, one in S1
and one in S2, we assign the packet to the group in S1; thus,
a packet has always a unique group. A packet may belong to
at most two groups, one group in S1 and one group in S2 (the
packet is in the intersection of the group). In such a case, we
assign the packet to the group of S1. A packet belongs to group
set Sj if its group is in Sj . We denote by �(Si) the packets
that belong to group Si , and by �(x, Sj) the set of packets that
belong to group x of Sj . Further, �i (x, Sj), denotes the subset
of packets of �i belonging to group x of Sj .

3.2. A centralized algorithm for leveled networks

Here, we give Algorithm Leveled-Centralized (Algorithm
3). In the algorithm, we send the packets in two sessions, which
we denote as sess1 and sess2. In the first session, sess1, we
send the packets �(S1) (belonging to group set S1) and in
second session, sess2, we send the packets �(S2) (belonging to
group set S2). The second session begins after the first session
ends.

In the main part of the Algorithm Leveled-Centralized we
use the network decomposition into frames and the packet par-
tition into sets as described in Section 3.1. The algorithm then
invokes Algorithm Deliver-Group (Algorithm 4) which han-
dles the delivery the packets in a group. Since in each group
the packets are level-wise disjoint, the packets in one group can
be sent simultaneously with all the packets in another group
without any possibility of interfering. Thus, it suffices to de-
scribe the algorithm to deliver the packets in only one group;
the rest of the groups are treated similarly. In the same group
set, the packets in different groups can be delivered simultane-
ously, since the groups do not overlap.

We now describe Algorithm Deliver-Group. The input is the
set of packets that belongs to the group. In order to simplify the
description of Deliver-Group, we focus on group x = g1 of S1.
The algorithm for other groups is identical except for a change
in the indices. Since we focus on the first group in the first
session, we will simplify the notation by dropping the x and

Algorithm 3. Leveled-Centralized

Algorithm: Leveled-Centralized

Input: A leveled network G with n nodes; A batch problem
with packets � where |�| = N ; Packets have prese-
lected paths with congestion C and dilation D;

begin
� = 2 + 1/(2 log(DN));
 = 4� log(DN); 	 =
� (L+ 1)/
 �; 	′ = 2�D/
�; s = 8�eC; m = 2s + 	′ − 1;
� =
/�+ 1; � = 2(�+
− 1);

1 Partition G into frames F1, . . . , F	 of width
;
2 Construct the group sets S1 and S2;
3 Partition � uniformly at random into sets �1, . . . , �s ;
4 Construct all dependency graphs G(i,j);
5 Greedily color the nodes of each G(i,j) with at most �

colors;
6 Divide time into two consecutive sessions each consisting

of m · � time steps
7 for j = 1, 2 do
8 for session sessj , and for each group g ∈ Sj do
9 Deliver-Group(g, Sj);

end
end

end

Sj dependence. Hence, in Algorithm Deliver-Group, � will
denote �(g1, S1), and �i will denote �i (g1, S1). The session
consists of m phases, each of duration � time steps.

The basic idea of Deliver-Group, is that packets move on
waves to their destinations. The waves move from left to right in
the network, such that at each phase a wave moves one frame to
the right. Each packet set �i has associated with it a particular
wave which the packets follow until they are delivered to their
destinations. At each phase, the packets move from frame to
frame along their waves . We also have the notion of a “boat”,
which packets of independent sets follow in order to move
along their waves. The detailed description of Deliver-Group
follows below.

3.2.1. Waves
A wave is a pointer to a frame (see Fig. 9). Initially the

wave is NULL. The wave enters the network (points to frame
F1) at some phase �i . At each subsequent phase the wave points
to the next higher frame, so in phase �i+k , it points to frame
Fk+1. Eventually, points to the last frame F	′ , after which
it leaves the network and becomes NULL. There are s waves
1, 2, . . . , s (as many waves as there are packet sets). Wave
i enters the network at phase �2i−1. Note that waves are
spaced 2 frames apart, which will be useful for moving packets
(see below). The last wave s enters in phase �2s−1 and after
	′ phases, it has left the network, so the number of phases is
m = 2s + 	′ − 1. We use the wave to also denote to the frame
it points to.

The purpose of wave i is to move the packets in set �i

along with it, as it moves from lower to higher levels. Packet
� ∈ �i is injected when wave i contains �’s source. The
packet is absorbed either when the wave contains its destination
or its destination is one frame ahead of the wave.

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1181

Fig. 8. Network partition into groups of frames.

Algorithm 4. Deliver-Group.

Algorithm: Deliver-Group(g1, S1)

//Same algorithm applies for any group g ∈ S1 and also for
grouping S2;
Input: Batch problem with packets �(g1) in group g1; Group

g1 consists of frames F1, . . . , F	′ ;

begin
1 Divide time into phases �1, . . . , �m, each phase consisting

of � time steps;
2 Define waves 1, . . . , s , where wave i enters the net-

work at phase �2i−1;
3 for each packet set �i do
4 Packets of set �i follow wave i as follows;
5 for each phase � in which wave i points to frame Fj

do
6 // Packets in Fj will move to Fj+1;
7 Initially, only packets of �i oscillate in Fj , and Fj+1

is empty;
8 Phase � consists of time steps t1, t2, . . . , t�;
9 Define boats b1, . . . , b�, where boat bk enters the

network at time t4k−3;
10 Packets of color k follow boat bk to target inner-

level �k =
 − (2k − 1) in Fj+1, where they will
oscillate until the next phase;

end
end

end

At the beginning of each phase, packets appear inside their
respective waves, and frames between waves are empty of pack-
ets; this property is essential for moving packets along their
waves. Consider a phase � during which wave i points to
frame Fj . At the beginning of �, Fj contains only packets from
�i , and Fj+1 is empty of packets. By the end of phase �, the
packets in Fj will move from frame Fj to frame Fj+1. Thus,
at the beginning of the next phase, all these packets are still in
the wave i , and frame Fj is empty (which allows packets of

Fig. 9. The waves.

�i+1 to move along wave i+1). We continue by describing
in detail how the packets of �i move from Fj to Fj+1 during
phase �.

3.2.2. Initial and target levels
Consider again phase � during which wave i points to

frame Fj , and the packets will move during the phase from Fj to
Fj+1. Suppose that phase � consists of time steps t1, t2, . . . , t�.
At the beginning of phase �, the packets of �i that are already
in wave i are oscillating on odd inner-edges of Fj . Suppose
� ∈ �i is oscillating on odd inner-edge e = (v�, v�+1) of Fj ,
where the inner level of v� is � (which is odd). The packet
oscillates on e so that at odd time steps t1, t3, . . . , packet �
appears in v�. We say that � oscillates at inner-level �, which
is the initial inner-level of � in phase �. (See Fig. 10.)

Now suppose that the current path of � at its initial inner-
level � is a sub-path of its preselected path. During phase �,
packet � will follow its current path until it reaches a target
inner-level �′ in Fj+1, where it will oscillate for the remainder
of the phase. At its target level, �’s current path will remain a
sub-path of its preselected path. The target level will become
the new initial level at the next phase, when the wave i points
to Fj+1.

We define �(i,j) different target inner-levels �1, �2, . . . ,

��(i,j)
in Fj+1, where �k is inner-level
 − (2k − 1) in Fj+1.

(Note that target inner-levels are odd, because
 is even.) The

1182 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

λ λ

Fig. 10. The initial and target levels.

parameter �(i,j) is the chromatic number of the dependency
graph G(i,j). Since d(i,j) �d , a trivial greedy polynomial time
coloring algorithm using d + 1 colors shows that �(i,j) �� =
d + 1. Each packet in �i is thus assigned a color between 1
and �(i,j). Denote by �i (k) the respective subset of �i with
color k. Packets in �i (k) have target level �k . By construction,
the paths of packets of same color are conflict-free, i.e. do not
share any edge, and thus can be sent together in a collision-free
manner using “boats” (see below).

Note that in the above discussion we assume that j < 	′.
If j = 	′ then all the target inner-levels are set to real level
2D − 1, which are still in Fj . The fact that the last frame may
extend beyond level 2D does not cause a problem because no
packet will ever need to move into that region, as it will be
absorbed before that.

3.2.3. Boats
A boat b is a pointer to a level. We have �(i,j) boats

b1, . . . , b�(i,j)
. Initially, bk is NULL. At time step t4k−3, boat

bk points to the first inner-level of Fj (the boat enters the
wave). At each subsequent step, the boat points to the next
higher inner-level, so that at time step t4k−3+l it points to
inner-level l + 1. After the boat reaches the last inner-level
of Fj it continues to the inner-levels of Fj+1 until the boat
reaches the target level �k of Fj+1, after which bk becomes
NULL again. Note that boats are spaced 4 levels away from
each other, which will be important when an oscillating packet
needs to be deflected (see below). When the context is clear,
we use the boat to refer to the inner-level it points to. Note
that the last boat enters at t4�(i,j)−3, and takes 2
− 2�(i,j) + 1
steps to leave the wave, so the number of time steps per phase
is � = 2(
+maxi,j �(i,j) − 1)�2(
+ �− 1).

The packets of �i (k) will use boat bk to move to their target
level �k in Fj+1. Suppose � ∈ �i (k) is oscillating with initial
level � at the beginning of phase �. Packet � will continue
to oscillate until its boat bk is at inner-level �, at which time
packet � will “catch its boat” and move along with it. While on
its boat bk , � follows its current path until it reaches its target
inner-level �k in Fj+1. If, during this trip, � passes through its
target node it is absorbed; otherwise � reaches its target inner-
level �k at which it will oscillate for the remainder of the phase.

Note that bk passes through odd inner-levels (in particular �’s
initial level) at odd time steps, so � is at its initial level when
bk passes through it.

Packet injection: A packet � ∈ �i (k) with source node in
frame Fj , is injected into the network when its boat bk passes
through the source node. � then moves along with bk , following
its current path, until it reaches its target level �k . While a
packet moves along its boat it may collide with other packets;
we now describe how to handle such collisions.

3.2.4. Packet collisions
Suppose � ∈ �i (k) is on its boat bk , progressing along its

current path to its target level �k . � cannot collide with another
packet of �i (k) because their current paths are conflict-free
(�i (k) is an independent set in G(i,j)). Earlier boats bk′ with
k′ < k are ahead of bk , so � cannot collide with packets in
�i (k

′). � can only collide with packets in �i (k
′′) for k′′ > k,

which are oscillating in Fj . In such a collision, the oscillating
packet is deflected (i.e. oscillating packets have lower priority
than packets on boats). We show below that this does not disrupt
the algorithm.

Suppose � deflects packet � ∈ �i (k
′′) which oscillates on

edge e = (v�, v�+1) (� is �’s inner-level in Fj). Packet � deflects
� at the (odd) time step tk at which � passes through �. Assume
that � followed edge e′ = (vl−1, vl) to reach v�. We deflect �
along edge e′ to inner-level � − 1, (so that at time step tk+1,
� appears in vl). Note that this is always possible because
no other packet oscillating at v� arrived there using edge e′,
because the packets that are oscillating at v� all followed the
same boat, and hence had edge disjoint paths. Note also that a
packet oscillating on the first inner-level may be deflected into
the previous frame Fj−1 by an injected packet, but this causes
no problem. Packet � now follows edge e′ to appear back in
vl at the (odd) time step tk+2. This is possible because at time
step tk+1 there is no boat passing through inner-level � − 1
(boat bk+1 is two levels away), and thus � cannot be deflected
further. When packet � is back at inner-level �, it continues to
oscillate in �. Therefore, � is always at level � at odd time steps,
and thus it can move with boat bk′ , when it passes through �.
Clearly, deflected packets remain on their path.

3.2.5. Delivery time
The only parameter that remains to be specified is �. This pa-

rameter determines the frame size
 which must be large enough
to accommodate 2� levels (at least � odd target inner-levels) in
Fj+1. Since ��d+1, it suffices that
 = 4� log(DN)�2(d+1).
From Lemma 3.2, d �
/� = 4 log(DN) (with high probabil-
ity), so � = 2 + 1/(2 log(DN)) will do. (We ignore the trivial
case D = N = 1.)

The delivery time is at most m ·� (m phases, each of duration
�). Since m = O(s + 	′) = O(C + D/ log(DN)), and � =
O(
 + �) = O(log(DN)) with high probability (Lemma 3.2),
we obtain:

Theorem 3.3. The delivery time of Algorithm Leveled-
Centralized is O(C log(DN) + D), with probability at least
1− 1/DN.

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1183

3.3. A distributed algorithm for leveled networks

We show how to make the Algorithm Leveled-Centralized
(see Section 3.2) distributed. The new algorithm will be called
Leveled-Distributed. We will describe how to obtain the new
distributed algorithm. We assume that all nodes know the pa-
rameters C, D, and N. Given C, D, N , every node can compute

, 	′, s, m, �, �. Note that nodes do not need to know the paths
of the other packets, they only need to know the path of the
packet they inject.

The setup of the distributed algorithm is similar to the cen-
tralized algorithm: packets follow boats on waves to reach their
destinations. The entire centralized algorithm would work ver-
batim if not for the coloring of the dependency graphs G(i,j),
which is the main centralized computation (since nodes need
to know all the packet paths). Thus, we need a distributed col-
oring algorithm, which will compute a coloring as the packets
follow the waves. We introduce the notion of reverse simulation
to accomplish this.

3.3.1. Reverse simulation
Let � = 2
/� (
/� is an upper bound on d, with high prob-

ability, by Lemma 3.2). During phase �, suppose that wave i

points to frame Fj . Packets of set �i follow wave i . In Fj

and Fj+1 we define the initial and target levels as in the cen-
tralized algorithm. Consider the set of packets A ⊆ �i which
are oscillating at their initial inner levels in frame Fj , at the be-
ginning of the phase. These packets will move to Fj+1, where
they will oscillate in their target levels.

As in the centralized algorithm, packets will use boats to
move to their target levels. There are � boats. In order to follow
the boats in a collision-free manner, the packets need to be
colored so that packets of same color have conflict-free paths. In
order to obtain the colors, the packets will simulate a distributed
coloring algorithm, which consists of several rounds. In the
first round each packet chooses a color randomly and uniformly
among � colors. Packets can then be divided into two disjoint
sets: those that obtained a valid color (one that is different
from the color of each of their neighbors in G(i,j)); those that
obtained an invalid color (one that coincides with the color
of at least one neighbor). Packets now attempt to reach their
target inner-levels. Packets assigned invalid colors will detect
this when they collide with non-oscillating packets, and will
attempt to correct this in the next round. This process continues
until all packets have obtained valid colors. We now give the
details.

A phase is divided into � rounds r1, r2, . . . , r�, and each
round consists of 2� time steps, which is twice the duration of a
phase in the centralized algorithm; this is because packets will
need to attempt to reach their target level, and return to their
initial level in each round. Each round has � boats and target
levels (similar to the centralized algorithm). At the beginning
of round r1, each packet in A chooses a color uniformly and
randomly among � colors. Let A1 be the set of packets with a
valid color, and A′1 the packets with an invalid color. Note that
A = A1 ∪ A′1.

During round r1, all packets in A will follow their respec-
tive boats. The packets in A1 will not be deflected, and they
follow their respective boats to successfully reach their target
levels where they will oscillate for the rest of the round. Some
packets, A′′1 ⊆ A′1, will collide with non-oscillating packets as
they follow their boats. Such packets can mark themselves as
members of A′1. These packets need to choose new colors and
try again. At the end of round r1, all packets in A return to their
initial level (see below). In round r2, packets in set A′′1 choose a
new color, and a subset A′2 ⊆ A′′1 will still have an invalid color.
A subset A′′2 ⊆ A′2 will collide with non-oscillating packets,
and will need to choose new colors in the next round. Contin-
uing in this way, in round k, the packets in A′′k−1 choose new
colors, and those in A′k ⊆ A′′k−1 still do not have a valid color.
Of these packets, A′′k will collide with non-oscillating packets.
We will show A′� is empty w.h.p, i.e. all packets have a valid
color by the last round. Thus, in the last round, all the packets
reach their target inner-levels, where they will oscillate till the
next phase. We give the details below.

We define 4 levels of priority, 0, 1, 2, 3. When two or more
packets collide, the packet with highest priority always wins,
and ties are broken randomly. A packet which successfully
reaches its target level in round k (without being deflected by
non-oscillating packets) keeps its color in all subsequent rounds
and attains priority 3 for the remainder of the phase, whenever it
is not oscillating. An oscillating packet has priority 1. A packet
that chooses a new color in a round attains priority 2 for the
round. If, during the round, it collides with any priority 2 or
3 packet, it immediately attains priority 0 for the remainder
of the round, and will select a new color in the next round.
Such priority 0 packets do not “distract” other forward going
packets, and they follow arbitrary paths, due to deflections, for
the remainder of the round.

At the end of a round, all packets in A (with valid or invalid
coloring) need to appear back at their initial levels. Let t be the
time step that the last boat in the round leaves the network. After
time t, all packets follow, in reverse, the path that they followed
from the beginning of the round. Thus, by the end of the round,
they appear at their initial level where they oscillate until the
next round. The path reversal is accommodated by having the
nodes store all their computations from the beginning of the
round up to time t. After time t, the nodes simply do the reverse
computations. (This is why we need the round to be twice as
long as �.)

3.3.2. Packet injections
So far we considered only the oscillating packets in �i , that

already appear in Fj at the beginning of phase �. We also need
to consider the set of packets B ⊆ �i that will be injected in
Fj during �. Packets of B can be further partitioned into two
sets: B1, which are the packets of B whose source are at odd
inner-levels of Fj , and B2, which have sources at even inner-
levels of Fj . Packets of B1 and B2 are treated separately so that
they cannot interfere with each other.

We divide phase � into three sub-phases �A, �B1
, and �B2

in
which we send the packets of the respective sets A, B1 and B2

1184 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

to Fj+1. Each sub-phase consists of � rounds. We also divide
the frame Fj+1 into three disjoint regions FA, FB1 , and FB2 ,
each consisting of 2� inner-levels and containing � target levels.
Region FA occupies the upper one-third (right) inner-levels of
Fj+1, FB1 the middle one-third inner-levels, and FB2 at the
lower (left) one-third inner-levels. Packets of set A, B1 and B2,
have their target levels in FA, FB1 and FB2 , respectively.

During phase �A the packets of set A will move to region
FA, using the algorithm we described in Section 3.3.1. During
�B1

, the packets of B1 are injected into the network, and then
they move to their target levels in region FB1 using the reverse
simulation technique that was used for packets in set A. The
initial levels of the packets in B1 are the inner-levels of their
sources, and the packets are injected at the beginning of phase
�B1

. Since a node injects at most 1 packet, the packets are
guaranteed to be able to oscillate on their initial inner-levels
during the reverse simulation. At the beginning of phase �B2

,
the packets of set B2 are injected into the network. Those pack-
ets will move to their target levels in region FB2 during phase
�B2

using the reverse simulation technique that was used for
packets in set A. Those packets will also oscillate on their ini-
tial inner-levels, which are even (as opposed to packets in A
and B1 which have odd initial inner-levels). In order to handle
the even levels, during this phase the boats enter the frame Fj

from inner-level 2.

3.3.3. Delivery time
First we determine an acceptable value of parameter �. A

frame needs 2� inner-levels for each of FA, FB1 , and FB2 , so

�6 · � Since � = 2
/�, we obtain ��12, so � = 12 will do.

We now choose the parameter � so as to ensure that the
packet delivery is successful with high probability. Assume that
��2d. Then, in a round, a packet picks a valid color with prob-
ability at least 1

2 . We denote a phase in which a packet even-
tually picks a valid color in one of the rounds as a successful
phase for the packet. If � = 2 log(LN), then a particular phase
will be unsuccessful for a particular packet with probability
2−2 log(DN) = 1/(DN)2. The distributed algorithm will be suc-
cessful if every phase that a packet participates in is successful.
A packet participates in at most D/
 phases (as its path length
is at most D). A packet is unsuccessful if one of its phases is
successful, therefore, by the union bound, a packet will be un-
successful with probability at most D/
(DN)2. The distributed
algorithm will be unsuccessful if one of the packets is unsuc-
cessful, so applying the union bound again, the probability of
failure is at most DN/
(DN)2 < 1/DN. Finally, by the union
bound and Lemma 3.2, the probability that � < 2d or some
packet fails in some phase is at most 2/DN.

There are m phases, and each phase has 3� rounds (since
each sub-phase to send A, B1, B2 consists of � rounds), each of
length 2� time steps. Therefore, the delivery time is O(m��).
Since � = O(log(DN)), m = O(C + D/ log(DN)), and � =
O(log(DN)), we obtain:

Theorem 3.4. The delivery time of Algorithm Leveled-
Distributed is O(C log2(DN) + D log(DN)), with probability
1−O(1/DN).

4. Discussion

We studied many-to-one batch problems with preselected
paths on trees and leveled networks. We gave two algorithms
for trees. The deterministic algorithm which is appropriate for
trees whose degree is bounded by a constant and achieves deliv-
ery time O(T ∗ · lgn). The randomized algorithm is appropriate
for arbitrary trees and achieves delivery time O(T ∗ · lg2n) with
high probability. In both cases, T ∗ refers to the minimum pos-
sible routing time achievable by any routing algorithm (with
or without buffers) for the given sources, destinations, and pre-
selected paths. For leveled networks, we obtained similar re-
sults; we gave an O(T ∗ · log(n)) centralized algorithm, which
can be made distributed at a cost of an extra logarithm. Thus,
bufferless packet switching on trees and leveled networks is
within one logarithmic factor from optimal. Making the model
stronger, i.e. considering distributed or randomized algorithms,
we have an additional logarithmic factor.

It is very simple to see that the amount of memory used at
each node for implementing our algorithms is polylogarithmic
in C, D, and n; this implies the possibility for a viable imple-
mentation of these algorithms in real systems. (We note that
minimizing the amount of memory used at nodes remains be-
yond the scope of the paper.)

Our algorithms show that bufferless packet switching can be
efficient, and can achieve performance almost as good as in
store-and-forward algorithms. Further, we show that the prob-
lem of efficient packet switching on trees and leveled bufferless
networks can be reduced to the problem of starting with good
preselected paths on them. Finding good paths is a classic re-
search problem. We thus give a framework for systematic anal-
ysis of bufferless algorithms, where the routing task (finding
paths) is separated from the scheduling task. In the other liter-
ature, the bufferless algorithms are studied in an ad hoc man-
ner, giving good bounds only for worst cases of special batch
problems. Our results are general and consider a wide range of
batch problems.

Natural directions for future investigation are to remove the
requirements that the nodes need to know C, D, N in the dis-
tributed algorithms. Further, an interesting problem is to de-
termine whether there exist optimal algorithm for trees and
leveled networks or for arbitrary networks without the extra
logarithmic factors.

Appendix

Algorithm A. Find-Short-Node

Algorithm Find-Short-Node (Algorithm 5) computes a
short node for a tree.

Lemma A.1. For a tree T with n nodes, Algorithm Find-Short-
Node finds a short node of T in O(n) time.

Proof. Suppose that the node X in the algorithm is not short.
Then in T r there is a subtree T ′ of X with size M, where M >

n/2. Let X′ be the node of T ′ adjacent to X. With respect to X′,

C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186 1185

Algorithm 5. Find-Short-Node

Algorithm: Find-Short-Node(tree T)

Input: A tree T with n nodes v1, . . . , vn.
Output: A short node of T .
begin
1 r ← any arbitrary node of T ;
2 Let T r be the rooted tree with root r . Using a standard

pre-order traversal on T r , compute for every node vi , the
number of nodes in the subtree of T r which is rooted at vi ;

3 X← r;
4 while X is not short do
5 Let T ′ be a subtree of X in T which contains more

than n/2 nodes;
6 Let X′ be the node of T ′ which is adjacent to X

(i.e., the “root” node of T ′);
7 X← X′;

end
8 return X;
end

the subtree containing the old node X has n−M < n/2 nodes
and therefore if X′ is not short, it cannot be due to its subtree
containing X. Therefore the procedure will traverse a sequence
of nodes without repeating a node. Since there are only n nodes,
this process must stop, either at a short node in which case we
are done, or when there is no where left to go (i.e. at a “leaf”
node). The second case is impossible because the node from
which it came will define a subtree with n − 1�n/2 nodes,
which contradicts the fact that it must have < n/2 nodes.

Note that X′ is a child of X in the rooted tree T r . Thus,
the sizes of the subtrees computed in the pre-order traversal of
T r , give the correct size for T ′. The pre-order traversal on T r

requires O(n) time to compute the sizes of all the subtrees in
T r . Thus, the entire procedure to find a short node takes O(n)

time. �

References

[1] A.S. Acampora, S.I.A. Shah, Multihop lightwave networks: a comparison
of store-and-forward and hot-potato routing, in: Proceedings of IEEE
INFOCOM, 1991, pp. 10–19.

[2] N. Alon, F.R.K. Chung, R.L. Graham, Routing permutations on graphs
via matching, SIAM J. Discrete Math. 7 (3) (1994) 513–530.

[3] S. Alstrup, J. Holm, K. de Lichtenberg, M. Thorup, Direct routing on
trees, in: Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 98), 1998, pp. 342–349.

[4] J. Aspens, Y. Azar, A. Fiat, S. Plotkin, O. Waarts, Online load balancing
with applications to machine scheduling and virtual circuit routing,
in: Proceedings of the 25th ACM Symposium on Theory of Computing,
1993, pp. 623–631.

[5] B. Awerbuch, Y. Azar, Local optimization of global objectives:
competitive distributed deadlock resolution and resource allocation,
in: Proceedings of 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, 1994, pp. 240–249.

[6] A. Bar-Noy, P. Raghavan, B. Schieber, H. Tamaki, Fast deflection routing
for packets and worms, in: Proceedings of the Twelfth Annual ACM
Symposium on Principles of Distributed Computing, Ithaca, New York,
USA, August 1993, pp. 75–86.

[7] P. Baran, On distributed communications networks, IEEE Trans.
Commun. (1964) 1–9.

[8] C. Bartzis, I. Caragiannis, C. Kaklamanis, I. Vergados, Experimental
evaluation of hot-potato routing algorithms on 2-dimensional processor
arrays, in: EUROPAR: Parallel Processing, 6th International EURO-PAR
Conference, Lecture Notes in Computer Science, 2000, pp. 877–881.

[9] I. Ben-Aroya, T. Eilam, A. Schuster, Greedy hot-potato routing on the
two-dimensional mesh, Distributed Comput. 9 (1) (1995) 3–19.

[10] I. Ben-Aroya, I. Newman, A. Schuster, Randomized single-target hot-
potato routing, J. Algorithms 23 (1) (1997) 101–120.

[11] A. Ben-Dor, S. Halevi, A. Schuster, Potential function analysis of greedy
hot-potato routing, Theory Comput. Systems 31 (1) (1998) 41–61.

[12] P. Berenbrink, C. Scheideler, Locally efficient on-line strategies for
routing packets along fixed paths, in: Proceedings of the Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM, NY,
January 17–19 1999, pp. 112–121.

[13] S.N. Bhatt, G. Bilardi, G. Pucci, A.G. Ranade, A.L. Rosenberg,
E.J. Schwabe, On bufferless routing of variable-length message in leveled
networks, IEEE Trans. Comput. 45 (1996) 714–729.

[14] A. Borodin, J.E. Hopcroft, Routing, merging, and sorting on parallel
models of computation, J. Comput. System Sci. 30 (1) (1985) 130–145.

[15] A. Borodin, Y. Rabani, B. Schieber, Deterministic many-to-many hot
potato routing, IEEE Trans. Parallel Distributed Systems 8 (6) (1997)
587–596.

[16] J.T. Brassil, R.L. Cruz, Bounds on maximum delay in networks with
deflection routing, IEEE Trans. Parallel Distributed Systems 6 (7) (1995)
724–732.

[17] A. Broder, E. Upfal, Dynamic deflection routing on arrays,
in: Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, May 1996, pp. 348–358.

[18] C. Busch, Õ(congestion + dilation) hot-potato routing on leveled
networks, in: Proceedings of the Fourteenth ACM Symposium on Parallel
Algorithms and Architectures, August 2002, pp. 20–29.

[19] C. Busch, M. Herlihy, R. Wattenhofer, Hard-potato routing,
in: Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing, May 2000, pp. 278–285.

[20] C. Busch, M. Herlihy, R. Wattenhofer, Routing without flow control,
in: Proceedings of the Thirteenth ACM Symposium on Parallel
Algorithms and Architectures, July 2001, pp. 11–20.

[21] C. Busch, M. Magdon-Ismail, and M. Mavronicolas. Universal bufferless
routing, in: Proceedings of the 2nd Workshop on Approximation and
Online Algorithms (WAOA), Lecture Notes in Computer Science,
vol. 3351, September 2004, pp. 239–252 (Extended version accepted to
SIAM Journal on Computing).

[22] C. Busch, M. Magdon-Ismail, M. Mavronicolas, P. Spirakis, Direct
routing: algorithms and complexity, Algorithmica 45 (1) (2006) 45–68.

[23] U. Feige, Nonmonotonic phenomena in packet routing, in: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing,
ACM, New York, May 1–4 1999, pp. 583–591.

[24] U. Feige, P. Raghavan, Exact analysis of hot-potato routing,
in: Proceedings of the 33rd Annual Symposium on Foundations of
Computer Science, Pittsburgh, PN, IEEE, New York, October 1992, pp.
553–562.

[25] A.G. Greenberg, J. Goodman, Sharp approximate models of deflection
routing, IEEE Trans. Commun. 41 (1) (1993) 210–223.

[26] B. Hajek, Bounds on evacutation time for deflection routing, Distributed
Comput. 1 (1991) 1–6.

[27] W.D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.
[28] C. Kaklamanis, D. Krizanc, S. Rao, Hot-potato routing on processor

arrays, in: Proceedings of the 5th Annual ACM Symposium on Parallel
Algorithms and Architectures, Velen, Germany, June 30–July 2 1993,
pp. 273–282.

[29] M. Kaufmann, H. Lauer, H. Schroder, Fast deterministic hot-potato
routing on meshes, in: Proceedings of the 5th International Symposium
on Algorithms and Computation (ISAAC), Lecture Notes in Computer
Science, vol. 834, Springer, Berlin, 1994, pp. 333–341.

[30] F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays–Trees–Hypercubes, Morgan Kaufmann, San Mateo, 1992.

[31] F.T. Leighton, B.M. Maggs, S.B. Rao, Packet routing and job-scheduling
in O(congestion + dilation) steps, Combinatorica 14 (1994) 167–186.

1186 C. Busch et al. / J. Parallel Distrib. Comput. 67 (2007) 1168–1186

[32] F.T. Leighton, B.M. Maggs, A.G. Ranade, S.B. Rao, Randomized routing
and sorting on fixed-connection networks, J. Algorithms 17 (1) (1994)
157–205.

[33] T. Leighton, B. Maggs, A.W. Richa, Fast algorithms for finding
O(congestion + dilation) packet routing schedules, Combinatorica 19
(1999) 375–401.

[34] N.F. Maxemchuk, Comparison of deflection and store and forward
techniques in the Manhattan street and shuffle exchange networks,
in: Proceedings of IEEE INFOCOM, 1989, pp. 800–809.

[35] F. Meyer auf der Heide, C. Scheideler, Routing with bounded buffers
and hot-potato routing in vertex-symmetric networks, in: Paul G.
Spirakis (Ed.), Proceedings of the Third Annual European Symposium
on Algorithms, Lecture Notes in Computer Science, vol. 979, Corfu,
Greece, 25–27 September 1995, pp. 341–354.

[36] F. Meyer auf der Heide, B. Vöcking, Shortest-path routing in arbitrary
networks, J. Algorithms 31 (1) (1999) 105–131.

[37] M. Mitzenmacher, Constant time per edge is optimal on rooted tree
networks, in: Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1996, pp. 162–169.

[38] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge
University Press, Cambridge, 1995.

[39] I. Newman, A. Schuster, Hot-potato algorithms for permutation routing,
IEEE Trans. Parallel Distributed Systems 6 (11) (1995) 1168–1176.

[40] R. Ostrovsky, Y. Rabani, Universal O(congestion+ dilation+ log1+εN)

local control packet switching algorithms, in: Proceedings of the 29th
Annual ACM Symposium Conference on the Theory of Computing, New
York, May 1997, pp. 644–653.

[41] G.E. Pantziou, A. Roberts, A. Symvonis, Many-to-many routing on trees
via matchings, Theoret. Comput. Sci. 185 (2) (1997) 347–377.

[42] R. Prager, An algorithm for routing in hypercube networks. Master’s
Thesis, University of Toronto, Computer Science Department, 1986.

[43] Y. Rabani, É. Tardos, Distributed packet switching in arbitrary networks,
in: Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, 22–24 May 1996, pp.
366–375.

[44] P. Raghavan, C.D. Thompson, Randomized rounding: a technique for
provably good algorithms and algorithmic proofs, Combinatorica 7
(1987) 365–374.

[45] R. Ramaswami, K.N. Sivarajan, Optical Networks, A Practical
Perspective, Morgan Kaufmann, Los Altos, CA, 1998.

[46] A. Roberts, A. Symvonis, D.R. Wood, Lower bounds for hot-potato
permutation routing on trees, in: M. Flammini, E. Nardelli, G. Proietti,
P. Spirakis (Eds.), Proceedings of the 7th International Colloquim
Structural Information and Communication Complexity, SIROCCO,
Carleton Scientific, 20–22 June 2000, pp. 281–295.

[47] C.L. Seitz, The caltech mosaic C: an experimental, fine-grain
multicomputer, in: Proceedings of the 4th Symposium on Parallel
Algorithms and Architectures, June 1992. Keynote Speech.

[48] B. Smith, Architecture and applications of the HEP multiprocessor
computer system, in: Proceedings of the 4th Symposium on Real Time
Signal Processing IV, SPIE, 1981, pp. 241–248.

[49] P. Spirakis, V. Triantafillou, Pure greedy hot-potato routing in the
2-D mesh with random destinations, Parallel Process. Lett. 7 (3) (1997)
249–258.

[50] A. Srinivasan, C-P. Teo, A constant factor approximation algorithm for
packet routing, and balancing local vs. global criteria, in: Proceedings
of the ACM Symposium on the Theory of Computing (STOC), 1997,
pp. 636–643.

[51] A. Symvonis, Routing on trees, Inform. Process. Lett. 57 (4) (1996)
215–223.

[52] T. Szymanski, An analysis of “hot potato” routing in a fiber optic
packet switched hypercube, in: Proceedings of IEEE INFOCOM, 1990,
pp. 918–925.

[53] J. Wu, Distributed System Design, CRC Press, Boca Raton, 1999.
[54] L. Zhang, Optimal bounds for matching routing on trees, in: Proceedings

of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
1997, pp. 445–453.

[55] Z. Zhang, A.S. Acampora, Performance analysis of multihop lightwave
networks with hot potato routing and distance age priorities,
in: Proceedings of IEEE INFOCOM, 1991, pp. 1012–1021.

Costas Busch received a B.Sc. (1992) and a M.Sc. (1995) in Computer
Science from University of Crete, in Heraklion, Greece. In 2000, he received
a Ph.D. in Computer Science from Brown University, in Providence, Rhode
Island. Between 2000 and 2007 he has been employed as an Assistant
Professor of Computer Science in Rensselaer Polytechnic Institute, in Troy,
New York. He is currently an Assistant Professor of Computer Science in
Louisiana State University, in Baton Rouge, Louisiana. His research interests
are in the area of distributed computing with specialization in the design and
analysis of distributed algorithms, communication algorithms for wireless and
optical networks, and distributed data structures. He has several journal and
conference publications in his area of research, and served in the program
committees of related conferences.

Malik Magdon-Ismail obtained a B.S. in Physics from Yale University in
1993 and a Masters in Physics (1995) and a Ph.D. in Electrical Engineering
with a minor in Physics from the California Institute of Technology in 1998.
Since then, he has been a research fellow in the Learning Systems Group at
Caltech (1998–2000), and is currently an Associate Professor of Computer
Science at Rensselaer Polytechnic Institute (RPI), where he is a member of
the Theory group. His research interests include the theory and applications
of machine and computational learning (supervised, reinforcement and unsu-
pervised), communication networks and computational finance. He has served
on the program committees of several conferences, and is an Associate editor
for Neurocomputing. He has numerous publications in refereed journals and
conferences, has been a financial consultant, has collaborated with a number
of companies, and has several active grants from NSF.

Marios Mavronicolas is a Professor of Computer Science at University of
Cyprus. His research interests span the Theory of Algorithms and Complexity,
with focus on Game Theory, Distributed and Parallel Computing, Networking
and the Internet, where he has published widely in leading journals and
conferences. He is on the Editorial Board of Theoretical Computer Science,
Journal of Interconnection Networks and Networks. He previously held faculty
positions at the University of Connecticut and the University of Crete. He
holds a Ph.D. in Computer Science from Harvard University.

