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Abstract

Volatility is time-varying by nature, hence, only the most recent data should be used to estimate
volatility. It is therefore crucial to make utmost use of the scant information typically available in
shorter time windows. We propose a volatility estimator using the high and the low information
in addition to the close price, all of which are typically available to investors. The proposed
estimator is based on a maximum likelihood approach. We present simulations that indicate
that our estimator obtains consistently better performance than existing estimators on simulated
data. In addition, our simulations on real price data demonstrate that our method produces
more stable estimates. We also consider the effects of quantized prices and discretized time.
We develop corrections to the high and low estimates that can be used in conjunction with the
maximum likelihood estimator (or in fact any estimator that uses the observed high and low
information).

Keywords: variance, Brownian, joint density, discrete, time, price.

1 Introduction

The volatility of a financial instrument is a crucial parameter for a number of reasons. It enters as a
parameter in pricing formulas for derivative instruments, and plays key roles in asset allocation, and
risk management. As a result, considerable attention has been devoted to the accurate estimation
of volatility. Because it is recognized that volatility is time varying, it is imperative to use only
the most recent price observations to construct an estimate of the volatility. To obtain a good
estimator, one should thus attempt to make the utmost use of the small number of observations
available. In this paper, we propose an estimator that uses the high and low price information in
addition to the closing price used by conventional estimators. In practice this would be of great
interest because most historical data is quoted with both the high and low in addition to the close.

Volatility estimates using high and low prices have been considered to some extent in the
literature. All previous studies have considered securities characterized by geometric Brownian
motion or Brownian motion. Parkinson [4] shows that expectation of the high minus the low squared
is proportional to o2, and thus constructs an estimate based on the high minus the low. Garman
and Klass [3] define a quadratic function of the high, low and close, and derive the parameters of



such a function that result in the estimate being unbiased, (their estimate is unbiased only in the
case of zero drift). Rogers et al [6, 7, 5] propose another formula, and show that it is an unbiased
estimate even for non-zero drift. The problem with these approaches is that they are not necessarily
optimal estimates. In addition, they consider only one period (one day for example). By taking
the average of the estimates over the days considered in the data set, unbiasedness of the estimates
will prevail, but optimality will generally not be valid.

In this paper we propose a new estimate for both the volatility and the drift using the max-
imum likelihood approach. We derive an expression for the joint density of the maximum and
the minimum of a Brownian motion, and construct a likelihood function that we maximize by a
two-dimensional search. Finally, the fidelity of the high and low observations becomes questionable
when the price can be quantized and the Brownian is only observed at discrete time intervals. We
present an analysis of these phenomena and ways to correct for the systematic errors.

One of the advantages of the maximum likelihood approach lies in the the fact that it produces
estimates that are asymptotically efficient. Further, if one assumes independence among the time
periods, as is customarily the case, then multiple time periods can be incorporated by using the
product likelihood function. In addition, within this probabilistic framework, it is straightforward
to employ a fully Bayesian, decision theoretic approach, whereby, one enforces certain priors that
one might have on the drift and the volatility (for example, in a risk averse world, the drift should
be higher than the risk free rate, [1]).

This paper is organized as follows. First, we develop the maximum likelihood formulation of the
problem followed by extensions to discrete time and price. We then present extensive simulations
to compare our method to existing methods (the close estimator, Parkinson’s estimator, Rogers’
et al estimator, and the Garman—Klass estimator). Finally we demonstrate our method on real
data. We compare our method for estimating the volatility using to the method of Parkinson [4]
and to the estimate based on using the close price alone. Our simulations indicate that, the RMS
prediction error of our estimator is about 2.6-2.7 times less than that of the estimator using the
closing price alone. In practical terms, using the closing price alone would require about 35-40
days of data to obtain a comparable accuracy to our method on 5 days. Other methods that use
the high-low information also obtain reductions in the RMS prediction error when compared to the
close, but not by as much as our method. For comparison, Parkinson’s method obtains a reduction
by a factor of about 2.2. On real data, we demonstrate that our method obtains more stable (and
hence more realistic) time varying volatility estimates.

2 Maximum Likelihood Approach

We consider an instrument that follows a standard Brownian motion:
dzy = pdt + odw (1)

where p and o denote respectively the drift and the volatility of the instrument. Usually, financial
instruments are assumed to obey geometric Brownian motion, which can be converted to a standard
Brownian motion using a transformation of variables. Let the instrument value at time 0 be zp = z.
Consider for the time being the single period case, for example one day. We will derive a volatility
estimator using the high and the low information. Later in the section, we will show how to extend
this estimator in a straight forward manner to the multi-period case (several days in the example
we consider).



Denote the high and the low for the period by h and [ respectively, i.e.,

h = sup z(t) (2)
0<t<T
l= Oglng(t) (3)

where T is the length of the period. The idea behind the proposed method is to evaluate the
conditional density
p(h, 1|z, pu,0,T) (4)
and then obtain the p and the o that maximize this likelihood function. To obtain such a probability
density, we revisit a classical result for the problem of first passage time of a Brownian motion with
drift and with two absorbing boundaries [2]. In the first passage problem we have a Brownian
motion and two boundaries h; and hy with h; < z(0) < hg. The first passage time is the time
till z(¢t) first crosses either of the boundaries. The density function and the distribution function
of the first passage time have been derived (see [2]), and they are in the form of a series. Let the
distribution function be
F(T|hi,ha,x,p,0) (5)

which represents the probability that first passage occurs in the interval [0,7]. One can see that the
distribution function corresponding to the required density p(h, l|z, u, o, T') with respect to the high
and low random variables is equal to 1 — F'. Hence we can obtain the density p by differentiation
as follows:
82

_ mF(T\hl,hg,w,u,U) N (6)
where the right hand side represents the second order partial derivative with respect to the two
barrier levels evaluated at the low and high. Dominé [2] has computed a series expansion for exactly
this first passage time distribution F', hence what remains is to compute the necessary derivatives.
The formulas are tedious and their explicit form is given in the appendix, see equation (31) in
section A, which is a series representation for the density p(h,!|z,u,0,T), and can be computed to
any desired accuracy by taking sufficiently many terms. As a practical point, it is found that as
the volatility decreases, more terms in the series should be computed to maintain the accuracy of
the estimate.

Consider now the multi-day case. Assume one observes a set of prices, which consists of the open
zg of the first day and the triples {h;,;, ci}fil where ¢ indexes the consecutive days for which one
has data, and h, [, c represent high, low, close respectivly. We assume that the close of any given
day is the open of the next day, hence we can define the series of opens by 01 = zg and 0; = ¢;_1,
for i > 1. (If there are gaps in the data between a close and the next open, then the contribution
of this period to the likelihood function can be obtained from a Gaussian distribution, since there
is no high and low information to exploit.) Because of the Markov property, the likelihood for the
set of N days becomes the product of the likelihoods of each day. The log likelihood then becomes
a sum and is given by the formula

p(h, |z, p,0,T) =

N

L(p,0) =Y logp(li, hiloi, p, 0, T) (7)
=1

This represents the function that we wish to maximize with respect to y and o. The values of u
and o that maximize (7) represent our estimates /i and &.



3 Discrete Time and Price

While a maximum likelihood (or Bayesian) approach may be optimal, the volatility estimates
that result in practical situations may contain errors that arise from two possible sources. The
Brownian motion is not directly observed, the observed process being a random walk that samples
the Brownian motion at regular (possibly large) finite intervals. This is true to first approximation
with tick data and certainly the case with (for example) 5 minute data. In addition, the quoted
price may be discretized. This occurs in most financial markets where quotes are usually to the
nearest 1/16.

Suppose that the quoted (observed) high is h,. Let the true high be h, then the difference
d = h — h, will have some distribution. One does not expect the price quantization to significantly
bias this difference, since intuitively one might argue that sometimes the rounding will result in a
positive error and sometimes a negative. On the other hand, the time discretization produces an
error that is systematic and can be significant. Since the actual high could occur between the times
when the price is observed, h, will always be below h. This can lead to significant underestimation
of the volatility.

Here, we present a discussion of these discretization effects. We do not describe all the details
since this is not the main theme of the paper, however we do present formulas that will be derived
elsewhere.

3.1 Discretized Price

We make the approximation that in analysing the discretization effect, we can treat the maximum
and minimum independently. The joint density of the maximum and the close of a Wiener process
has been computed in [8].

2(2h —¢)

fr(hsc) = (27)1/2(02T)3/2

ezp [—((2h — ¢)? — 2ucT + p°T)/20°T] (8)

Using this density, one can compute the conditional density fr(h|c,h € [ho—¢€, ho+e€]). This density
could be used to augment the maximum likelihood density to account for the fact that the actual
observed high is not the quoted high. Another, simpler approach, is to observe that only A and
h? appear in our formulas, so one could use the expectations of these values instead. This requires
computing the expectations for § and §2. These can be computed from the conditional density,
and, in the asymptotic limit € — 0, are given by

B 2e [1 (2h, — ¢)

=2 e l3” W] + o(€?) E[§*] = % + o(€?) (9)
As already mentioned, we expect the effect of the rounding to be minor as can be observed from
the fact that the first order correction is O(e?) which is small if € is small.

The correction for the minimum can be obtained in a similar manner. The joint density for the
magnitude of the minimum and the close can be obtained by changing y — —u, ¢ = —c in the
density for the maximum. All the calculations are then analogous, and, if we write [ = [, — d, the
expectations of § and 62 are also given by (9).



3.2 Discretized Time

The effect of observing the Brownian motion at discrete time intervals is expected to have the
systematic effect of under estimating the maximum and over estimating the minimum. We follow
the approximation used in [6]. Once again, write h = h, + J, where now d is necessarily positive.
A non-zero ¢ arises from the fact that the Brownian motion can fluctuate above h, in the intervals
where the Brownian is not observed. As a first approximation, we assume that the largest 6 > 0
occurs in one of the two intervals adjacent to the time at which h, is observed, once again following
[6]. Let 7 be the size of the time interval. Then, it is necessary to obtain the distribution of the
maximum of a Brownian process given that it is h, at ¢ = 0 and less than zero at ¢ = +7. This
conditional distribution for § can be computed, and is given by

P[6 > h] = Fr(h|u,0) + Fr(h| — p,0) = Fr(hlp, 0) Fr(h| = p,0) (10)
where ( )
2uh/o® ¢ 2}2”#1‘72 1 oo 2
F.(h|p,0) = Ni ) and é(z) = W/ du e /2 (11)
¢ (t5m) ’

We present the derivation elsewhere as it is not essential to the intuition. Once again, the two
approaches could be to either incorporate this function into the likelihood, or to replace h and h?
in the formulas for the likelihood by their expectations. In order to do this, we need to compute
the expected values of § and 2. In the asymptotic limit when 7 — 0, one finds that

o2\ /2
E[d] = (—) + 0(71/2) FE [52] = As(0?T) + o(T) (12)

™

where A\; = 0.4511. Comparison with [6] shows that this more accurate value of E[d] is higher by
a factor of about 1.25 and the more accurate value of E[6%] is higher by a factor of about 1.6. An
exactly analogous calculation can be performed for the distribution of the minimum with identical
results, and we do not repeat the exercise here.

4 Simulation Results

In our first simulation, we will assume that p is known and does not need to be estimated. It is
frequently the case that this assumption is made by equating the drift to the risk free rate (this can
be done provided that 4 >> ¢2). In our simulations, we compare different estimators by looking at
their estimates based on observed data over a window ranging from 5 days to 50 days. We obtain
the RMS prediction error (1/E[(6 — 0)?]) using 2000 realizations of each window size. For our
simulations, we set T =1, 4 = 0.02, ¢ = 0.5 and ¢y = 0. We assume that the drift 4 is known and
only the volatility ¢ needs to be estimated. Shown in first four columns of Table 1 is a comparison
of four methods. The first method uses the close prices only and the estimate is given by

N

. 1

Oclose = ﬁ E (Ci —0; — HT)Q (13)
=1



Days RMS Prediction Error

used u known 4 unknown p=20
Close | Park R-S ML Close ML GK ML
5 0.1597 | 0.0713 | 0.0642 | 0.0621 | 0.1752 | 0.0639 | 0.0591 | 0.0640
10 | 0.1090 | 0.0489 | 0.0448 | 0.0426 | 0.1152 | 0.0434 | 0.0399 | 0.0417
15 | 0.0900 | 0.0410 | 0.0375 | 0.0353 | 0.0930 | 0.0354 | 0.0337 | 0.0346
20 | 0.0781 | 0.0360 | 0.0317 | 0.0303 | 0.0808 | 0.0307 | 0.0292 | 0.0304
25 | 0.0702 | 0.0317 | 0.0289 | 0.0273 | 0.0709 | 0.0270 | 0.0260 | 0.0271
30 | 0.0645 | 0.0292 | 0.0270 | 0.0246 | 0.0654 | 0.0248 | 0.0233 | 0.0245
35 | 0.0605 | 0.0272 | 0.0245 | 0.0230 | 0.0615 | 0.0229 | 0.0224 | 0.0232
40 | 0.0556 | 0.0252 | 0.0227 | 0.0215 | 0.0559 | 0.0215 | 0.0205 | 0.0215
45 | 0.0526 | 0.0238 | 0.0215 | 0.0200 | 0.0534 | 0.0202 | 0.0192 | 0.0196
50 | 0.0499 | 0.0222 | 0.0204 | 0.0192 | 0.0505 | 0.0191 | 0.0186 | 0.0191

Table 1: Comparison of different volatility estimation methods.

The second method (Parkinson’s estimator) uses only the high and low values [4], and the estimate
is given by

N

1
5park = | s O (hi — 1;)? 14
OPark AN In2 i:1( i z) ( )

The third method (the Rogers-Satchell estimator) uses the high low and close prices [6], and is
given by

1 N

TRS = \| 37 Z(hz’ —0i)(hi — ¢i) + (li — 0i) (Il — ;) (15)

The fourth method is our maximum likelihood based method,

mr, = argmax L(u, v) (16)
14

We show the results of these simulations in the first four columns of Table 1. The results are also
sumarised in Figure 1. From these results it is clear that our method produces a superior estimate.

One might note that the Parkinson and Rogers-Satchell estimates do not rely on knowledge of p.
Thus, one might argue that one should not assume that u is known in comparing these estimators
with our Maximum likelihood estimator. One can repeat the previous simulation without assuming
that p is known. In this case, both p and o need to be estimated — this is only relevant for the
close estimator and our maximum likelihood estimator. The results of this simulation are shown in
Table 1 in the “g unknown” columns. These results are also summarised in Figure 2. Our method
not only remains superior to all the other methods, but the fact that y needs to be estimated as
well has not significantly worsened the performance.

As one further comparison, we consider the special case of 4 = 0. For this particular condition,
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Figure 1: Comparison of volatility prediction methods using the RMS prediction error when the
drift parameter is known.

Garman—Klass [3] have constructed the optimal (in the least squares sense) quadratic estimator as

N
1 - . .
o6k = \| % > 0.511(h; — I)? — 0.019(Gi(h; + I;) — 2[h;) — 0.383¢2 (17)
i=1

The tilde over the symbols indicates that one “normalizes” the quantities by subtracting the open
prics. For example h; = h; — 0;. A comparison between this estimator and our maximum likelihood
estimator for the case y = 0 is given in the last two columns of Table 1. In this special case of zero
drift, our estimator does not beat the optimal quadratic estimator for small window sizes, but it
approaches the optimal estimator as the window size increases. These results are summarised in
Figure 3, along with the performance of the other estimators for this special case of 4 = 0. From
Figure 3, it is seen that the Garman—Klass estimator is slightly better than the maximum likelihood
estimator, but, however, one can also note that the maximum likelihood estimator is asymptotically
approaching the Garman—Klass estimator as one might expect due to the asymptotic efficiency of
maximum likelihood estimators. Also note that the Garman—Klass estimator only applies to the
case of zero-drift.

We have also applied our method to real data. Since no ground truth is available in this case,
we compare the methods based on stability measures for the volatility estimate. We estimate the
volatility from a 10 day moving window using the close estimator, Parkinson’s high-low estimator
and our maximum likelihood high-low—close estimator. The volatility should not vary drastically
from day to day. At most, it should be slowly varying, especially since the model assumes a constant
volatility. We have experimented with several stocks and in all cases, the maximum likelihood
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Figure 2: Comparison of volatility prediction methods using the RMS prediction error when the
drift has to be estimated as well.

estimate is clearly the most stable. Representative volatility time series predictions based on a 10
day prediction window are shown for IBM in Figure 4. In general, it is desirable to use such a
small prediction window as the volatility can change over time. The figures on the left show the
volatility predictions. The figures on the right show the variability in the volatility predictions over
a moving window of size 20 days. The figures on the left clearly show that the maximum likelihood
estimate is qualitatively more stable, due in part to the fact that it is a more accurate estimate of
the volatility. This qualitative difference is quantified in the figures on the right.

5 Conclusions

We have presented a formula for obtaining the joint distribution of the high and low given the open
and the parameters of the Wiener process. Using this formula, one can construct a likelihood for
the observed data given the parameters and hence obtain a maximum likelihood estimate. One
could also employ a fully Bayesian framework to obtain a Bayes optimal estimator under some risk
measure, if one has some prior information on the possible values of the volatility. We have shown
that in simulations, our estimator obtains a significant improvement over the conventional close
estimator as well as other estimators based on the high, low and close values. Further we have
demonstrated that our method produces a much more stable estimator on real data, thus enabling
one to make reliable volatility estimates using the few most recent data points. It is expected that a
more accurate estimate of the time varying volatility will lead to more effecient pricing of volatility
based derivative instruments such as options.
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Figure 3: Comparison of volatility prediction methods using the RMS prediction error for the
special case of zero drift.

A Joint Density of the High and Low

In this appendix, we compute a series expansion for the joint density of the high and the low
given the open, the drift and volatility parameters. This is the expression that is needed for the
computation of the likelihood as given in (7). We start with the distribution function (5). A series
expansion is derived in [2] which we reproduce here for convenience.

0o
F(T|hla ha, z, 22 U) = Z 204kﬂé(k, T,u,0, ha, h?)f(ka p,0,T, (h'l - h'2)2) (18)
k=1

where the functions C and f are given by

A _ Ho _1)k+1 Hop
Clhym 1,01 h) = [ean( Ly (ha = 2)) (<11 + eap( Ly (- )]
) z—h
X sin kﬂ-hz—hl) (19)
and
eap (—2gspl)
fk,p,0,T,u) = 20
where
g(k, p,0,u) = p’u+ o'k*r’ (21)



Volatility

Volatility

Volatility

Maximum Likelihood Estimator based on High-Low-Close

16

1.4r

1.2

i

Stock = IBM; Window Size=10 days

o

Standard Deviation (o)

o

1500 2000 2500

Day Number

500 1000

3000

Parkinsons Estimator based on High—-Low prices

16

1.4}

1.2f

[N

Stock = IBM; Window Size=10 days

Standard Deviation (o)

16

1500 2000 2500

Day Number

500 1000

Close Estimate

1.4f

[N

o
©

o
)

0.4}

0.2

Stock = IBM; Window Size=10 days

Standard Deviation (o)

1500 2000 2500

Day Number

500 1000

Figure 4: Volatility

3000

estimates

o

o

o

o

.
o

o

o

o

o

o

.
o

o

o

o

o

Variability in Maximum Likelihood Estimator

on IBM’s return series for various predictors.

10

6 L ‘ ‘ ‘ ‘ ‘ ‘ 4
.5 Stock = IBM; Average 0=0.028611 q
4t 1
3l 1
2 1
Ar 1
00 560 1060 1500 2000 2500 3600

Day Number

Variability in Parkinson Estimator

6 L ‘ ‘ ‘ ‘ ‘ ‘ 4
5+ Stock = IBM; Average 6=0.036473 R
4t 1
3l 1
2 1
1 1
00 500 1060 1500 2600 2500 3600

Day Number

Variability in Close Estimator

6 L ‘ ‘ ‘ ‘ ‘ ‘ 4
5r Stock = IBM; Average 0=0.061613 1
4t 1
3l 1
2
1
00 560 1060 1500 2600 2500 3600

Day Number



In order to make the notation more concise, we will suppres the k, =, u, o, T dependence when
referring to the above functions (keeping only the hi, ho dependence), for example we will write
f(u) instead of f(k,p,o,u). The derivatives of C(hy,hs) and f(u) will be needed. We will use
the usual subscript notation to denote the partial derivatives with respect to the arguments, for
example, éi,j(hl,hg) is the " partial derivative with respect to the first argument and the ;%
partial derivative with respect to the second argument. Using this notation, the joint density (6)
is given by

p(h,l|m,,u,a, T) = — Flvl(hl’h2)|h,1:l,h2:h (22)

We will need the partial derivatives f1(u), f2(u), Co,1(hi,h2), C10(h1,he) and Cy1(hi, hg). Tedious
but straightforward computations yield the following expressions.

i) = fa) [%Tu (1) - 2] o3
TN EY P S R

In order to write the derivatives of C’ more compactly, introduce the function A(h1, ko) = kn(x —
hi1)/(he — h1). The derivatives of A are then given by

Agi(hi,he) = —% (25)
Avo(hiyhe) = A(ha,ho) (h2 L - _1h1> (26)
Avalhn, ho) = thl—’ Z? (37 hi  hg — hl) 27
One then finds for the derivatives of C

Coalhishz) = Aoy cot(A)C + (—1)*1 L sin(A)eap (£ (hs — o) (28)
Crolhi,hy) = Argcot(A)C + % sin(A)exp (%(h1 . w)) (29)

Cri(hi,he) = Apjcot(A)C + %0 + Ay cot(4)Coq
+%AO,1 cos(A)ezp (%(h1 - m)) (30)

where we have suppressed the (hi, ho) dependence of the A and C functions on the right hand side.
Finally the function —Fj 1(h1,ho) can be obtained from the following expression

F171 = 204’/1'2]{) [él,lf(u) + 2(h2 — hl)fl(’u,)(él,o — é(),l)
k=1

—4C fo(u)(hy — h)? = 2C f1 ()] (31)

11
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