Attentive Betweenness Centrality (ABC): Considering Options and Bandwidth when Measuring Criticality

Sibel Adalı, Xiaohui Lu, M. Magdon-Ismail

September 5, 2012

Who is the Most Critical?

Would you use the president of your university to reach a colleague?

How is it Done Today?

Network	\# Nodes
Karate Club	34
RPI	8,000
DBLP	74,443
IMDB	33,557
Facebook	1 Billion
Twitter	1 Billion
World	7 Billion

- degree-centrality
- pagerank
- closeness-centrality
- betweenness-centrality

A node has high betweenness centrality if many shortest paths use the node.

Motivation: capture how critical a node is to the flow of information between other pairs of nodes.

Betweenness

What's Wrong?

- Nodes on shortest paths are over emphasized (A, B); Nodes on almost shortest paths are marginalized (C).
- Information flow from X to Y uses just one path?
- How does X know the shortest path to Y ?

Methods have evolved to address this:
flow-betweenness; random walk betweenness

Flow-Betweenness

Random Walk-Betweenness

How it's Done Today

(scores renormalized so that max is 1)

Attentive Betweenness-Centrality (ABC)

- Imagine a unit of "information flow" starting at A
- Only $\frac{1}{2 n-1}$ of the flow to C makes it to B.
- The total flow to B is therefore $\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2 n-1}$.
- The fraction of this total that flowed through C is $\frac{1}{2 n}$

Attention Devalues High Degree Nodes

"In critical and baffling situations, it is always best to return to first principle and simple action"

\author{

- Sir Winston Churchill
}

Information Flow is the Basis of Betweenness

- A sends information to B
- X is critical to some of this $A \rightarrow B$ flow.

$$
\operatorname{Bet}_{A \rightarrow B}(X)=\frac{A \rightarrow B \text { information flow through } X}{A \rightarrow B \text { information flow }}
$$

- The betweenness of X is the average.

$$
\operatorname{Bet}(X)=\operatorname{average}_{A, B}\left[\operatorname{Bet}_{A \rightarrow B}(X)\right]
$$

Four "Axioms" of Information Flow

I. Forward Propagation

An actor will not send information back along edges from where the information came.

II. Locality

An actor cannot process global information and perform global algorithms in determining how to forward.

III. Attention

Actors have a finite attention they can give a piece of information - cannot service all neighbors all the time.

IV. Multipath

Information may flow along multiple paths; longer paths are less valuable than shorter ones.

ABC-Centrality Satisfies the Four Axioms

	Betweenness measure			
	Bet.	ABC	Flow	Rand Walk
Forw. Prop.	\checkmark	\checkmark	\checkmark	\mathbf{X}
Locality	\mathbf{X}	\checkmark	\mathbf{x}	\checkmark
Attention	\mathbf{X}	\checkmark	\mathbf{X}	\mathbf{X}
Non-shortest	\mathbf{X}	\checkmark	\checkmark	\checkmark
Complexity	$O(m n)$	$O(m n)$	$O\left(m^{2} n\right)$	$O\left(m n^{2}\right)$

- Efficient BFS-like algorithm.
- Applies to directed and weighted graphs.

Attenuation parameter $\boldsymbol{\alpha}$ determines how important longer paths are.
$\alpha \rightarrow 0: \mathrm{ABC}$ is similar to betweenness with attention.

ABC Works Well in Stylized Networks

Measure	A	B	C	D	E	X	Y
BET	0.71	1.00	0.09	0.16	0.18	0.00	0.00
FLOW	0.62	1.00	0.46	0.46	0.62	0.08	0.08
Random Walk	0.75	1.00	0.48	0.50	0.60	0.50	0.38
PageRank	0.83	1.00	0.40	0.40	0.83	0.66	0.66
ABC	0.63	1.00	0.24	0.27	0.29	0.10	0.10

Random Walk has Trouble Differentiating (Karate Club)

Centrality score correlation matrix

	BET 2	ABC^{1}	$\mathrm{ABC}^{0^{+}}$	RW	DEG	CL	FLOW	PG
$\mathrm{BET}^{\mathrm{ABC}^{1}}$	1	.98	1^{-}	.51	.92	.72	.95	.92
$\mathrm{ABC}^{0^{+}}$	1^{-}	1	.98	.98	.51	.96	.77	.96
.97								
RW	.51	.51	.51	.51	.92	.73	.96	.93
DEG	.92	.96	.92	.41	.41	.32	.53	.42
CL	.72	.77	.73	.32	.77	1	.91	1^{-}
FLOW	.95	.96	.96	.53	.91	.59	1	.74
PG	.92	.97	.93	.42	1^{-}	.74	.93	1

BET=betweenness; RW=Random Walk; DEG=degree; CL=closeness; PG=PageRank

ABC Works in Real Networks (IMDB)

Betweenness and ABC are correlated

- Very high betweenness gets dampened;
- Low betweenness nodes can improve.

Most "critical" actors are diverse

ABC scores correlate better with diversity

Wrapping Up

Critical nodes are Caring Conduits

- Information flow is at the hear of betweenness.

	Betweenness measure			
	Bet.	ABC	Flow	Rand Walk
Forw. Prop.	\checkmark	\checkmark	\checkmark	\mathbf{x}
Locality	\mathbf{x}	\checkmark	\mathbf{x}	\checkmark
Attention	\mathbf{x}	\checkmark	\mathbf{x}	\mathbf{x}
Non-shortest	\mathbf{x}	\checkmark	\checkmark	\checkmark
Complexity	$O(m n)$	$O(m n)$	$O\left(m^{2} n\right)$	$O\left(m n^{2}\right)$

Our principles of information flow are very general.

- ABC-centrality satisfies the basic principles, yet captures the essence of betweenness.
- Validated on stylized and real networks.
- Software: http://www.cs.rpi.edu/Ifdlab

Thank You

Questions?

