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Scales of COVID-19

Infections {x 1000)

World ~ 8 billion

Confirmed Daily Infections
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Scales

of COVID-19

Infections (x 10)

USA ~ 330 million
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Scales of COVID-19

NY State ~ 20 million

Confirmed Daily Infections
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Scales of COVID-19

Albany/Troy/Cap Dist ~ 1 million

Confirmed Daily Infections
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Scales of COVID-19

Rensselaer ~ 10 thousand

New Infections Over Previous 14 Days
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Scales of COVID-19

Party at Rensselaer ~ 20

Chances to Get COVID on 14-Feb-2021 (no masks)
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Scales of COVID-19

vaccines, virology, genomics




Two Sides of COVID Modeling

Epidemiological Modeling

Harvard-model, Imperial-model, UW-model, Your-model, My-model, ...
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The Race To Predict Ventilator Demand

NYC Capital District
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Infection counts: very noisy dirty data.
Predictions must be local: mobility patterns, density, social distancing, weather, .

@ Smaller regions: more noisy; more sparse.
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate Linear Fit 4+ Extrapolate
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A Stunning Nugget From The Theory of Learning

When there is noise,

What we would like to learn versus what we can learn.

The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, My-model, ...
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A Stunning Nugget From The Theory of Learning

When there is noise,

What we would like to learn versus what we can learn.

The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, Simple-robust—adaptable model, ...
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Let’s Predict For The Capital District
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@ Extrapolation is hard.




Let’s Predict For The Capital District
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Let’s Predict For The Capital District
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Let’s Predict For The Capital District
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o Extrapolation is hard.
@ Changepoints make it impossible.

Disaster!




Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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@ Robustly determine changepoints.

© Robustly fit. Gray is uncertainty.
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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Keep It Simple, Really Simple. But, Adaptive

Confirmed Daily Infections
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Capital District North Carolina
Status Quo (Model picks Social Distancing) Phased Open (target 500 daily infections) Status Quo (Model picks Social Distancing) Phased Open (target 9325 daily infections)
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population 908,843 population 908,843 population 10,488,084 population 10,488,084
confirmed infections 9,406 confirmed infections 9,406 confirmed infections 294,857 confirmed infections 294,857
total infections (model) 52,680 total infections (model) 52,680 total infections (model) 1,902,553 total infections (model) 1,902,553
infectious (model) 0.2317% infectious (model) 0.2317% infectious (model) 3.4063% infectious (model) 3.4063%
immunity (model) 5.5646% immunity (model) 5.5646% immunity (model) 14.7339% immunity (model) 14.7339%
fatalities 295 fatalities 295 fatalities 4,615 fatalities 4,615
fatality rate (model) 0.56% fatality rate (model) 0.56% fatality rate (model) 0.2426% fatality rate (model) 0.243%
confirmed infections, Dec 31 13,435 confirmed infections, Dec 31 16,152 confirmed infections, Dec 31 660,205 confirmed infections, Dec 31 788,645
total infections, Dec 31 84,453 total infections, Dec 31 109,048 total infections, Dec 31 3,645,433 total infections, Dec 31 4,402,542
infectious, Dec 31 0.5521% infectious, Dec 31 1.2001% infectious, Dec 31 2.6067% infectious, Dec 31 3.7023%
immunity, Dec 31 8.7402% immunity, Dec 31 10.7985% immunity, Dec 31 32.1512% immunity, Dec 31 38.2743%
fatalities, Dec 31 473 fatalities, Dec 31 611 fatalities, Dec 31 8,843 fatalities, Dec 31 10,680
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Student interactions in residential
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COVID-Back-To-School

https://covidspread.idea.rpi.edu

Student interactions in residential
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Student interactions in residential
life
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COVID-Back-To-School

Student interactions in residential
life

https://covidspread.idea.rpi.edu
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Student interactions in residential
life
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Tools to Policy

We have tools to model spread at all scales.

In policy making, all scales are relevant. Decisions should take a holistic view.

@ The spread of COVID is just one factor that influences these decisions.

I really enjoyed giving this talk & w




