Hoare Logic, continued

Reasoning About Loops

Announcements

- HW0 due today
 - Commit to SVN then Submit in the HW Server
- HW1 will be up after class
 - Check Homeworks for announcement. Then Update src in Eclipse
- QUIZ 1 today. You have 10 minutes

Backward Reasoning:

Rule for Assignment

{ wp("x=expression",Q) }

\[
x = expression;
{ Q }
\]

Rule: the weakest precondition

wp("x=expression",Q) is Q with all

occurrences of x in Q replaced by

expression

Backward Reasoning:

Rule for Sequence

// find weakest precondition for sequence S1;S2 and Q

{ wp(S1,wp(S2,Q)) }

S1; // statement

{ wp(S2,Q) }

S2; // another statement

{ Q }

Simple Example

\[
\{ x + 1 + y > 1 \} \text{ equiv. to } \{ x + y > 0 \}
\]

x = x + 1;

\[
\{ x + y > 1 \}
\]

y = x + y;

\[
\{ y > 1 \}
\]

Rule for If-then-else

// wp: ?? \((b && \text{wp}(S1,Q)) || (\neg b && \text{wp}(S2,Q))\)

if (b) {
 S1;
}

else {
 S2;
}

\[
\{ Q \}
\]

Fall 15 CSCI 2600, A Milanova
Proving Correctness

Goal: Prove that \(\{ P \} \) code \(\{ Q \} \) is a valid triple

- Backward reasoning
 - derive \(\{ P' \} \)
 - code
 - derive \(\{ Q' \} \)
Then show \(P' \Rightarrow P \)

- Forward reasoning:
 - \(\{ P \} \) code
 - \(\{ Q \} \)
Then show \(Q' \Rightarrow Q \)

What Happens When There Is a Loop

Precondition: \(x \geq 0 \);

\[
\begin{align*}
i &= x; & (x \geq 0 \land i = x) \\
z &= 0; & (x \geq 0 \land i = x \land z = 0) \\
\text{while } (i \neq 0) & \\
\{ z = z+1; & \\
i &= i-1; &
\}
\]

Does the postcondition hold? Yes.
The key is to guess the loop invariant.

Outline

- Reasoning about loops
- Total correctness = partial correctness + termination
- Loop invariants
- Computation induction (to prove partial correctness)
- Decrementing function (to prove termination)

Reasoning About Loops

- Reasoning about loops is difficult
 - Unknown number of iterations and unknown number of paths. Recursion poses similar issues
 - We cannot enumerate all paths
 - Key is to guess a loop invariant
- Two things to prove about loops
 1. It computes correct values (partial correctness)
 2. It terminates (does not go into infinite loop)

Example: Partial Correctness + Termination

Precondition: \(x \geq 0 \);

\[
\begin{align*}
i &= x; \\
z &= 0; \\
\text{while } (i \neq 0) & \\
\{ z = z+1; \\
i &= i-1; \\
\}
\]

Postcondition: \(x = z \);

I. If the loop terminated does \(x = z \) hold?
II. Does loop terminate?

Reasoning About Loops by Induction

- \(i+z = x \) is a loop invariant (a fact that holds true before and after each loop iteration)
- Even though \(i \) and \(z \) change, \(i+z=x \) stays true
- We just made an inductive argument over the number of iterations of the loop

\[
\begin{align*}
\text{1. Loop terminates. The precondition } & x \geq 0 \text{ guarantees } i \geq 0 \text{ before loop. At every iteration } i \text{ decreases by 1, thus it eventually reaches 0.}
\end{align*}
\]
Reasoning About Loops by Induction

1. Partial correctness
 - Establish and prove loop invariant using computation induction
 - Loop exit condition and loop invariant must imply the desired postcondition
 - \(i = 0 \) (loop exit condition) and \(i + z = x \) imply \(z = x \)

2. Termination
 - (Roughly) Establish "decrementing function" \(D \). \(D \geq 0 \) before loop, each iteration decrements \(D \), loop invariant and \(D \) at 0 imply loop exit condition

We will discuss Partial Correctness first

Another Example: Partial Correctness

\[\sum_{j=0}^{i-1} arr[j] \] stands for \(arr[0]+arr[1]+\ldots+arr[i-1] \)
Loop invariant: \(i \leq len \&\& \sum = \sum_{j=0}^{i-1} arr[j] \)
1) \(i \leq len \&\& \sum = \sum_{j=0}^{i-1} arr[j] \) holds before loop
2) Assume \(\sum = \sum_{j=0}^{i-1} arr[j] \) holds after \(k \)th iteration
 \[\sum_{new} = \sum + arr[i] \]
 \[i_{new} = i+1 \]
 Thus \(\sum = \sum_{j=0}^{i-1} arr[j] \) holds after \((k+1) \)st iteration
 \(i \leq len \) also holds (had we had \(i = len \) after \(k \)th iteration, there wouldn’t have been a \((k+1) \)st iteration!)

Another Example: Termination

Precondition: \(len \geq 0 \&\& arr.length = len \)
\[\text{int } \sum = 0.0;\]
\[\text{int } i = 0;\]
\[\text{while (}\langle i < len \rangle \{ \]
\[\text{sum = sum + arr[i];}\]
\[i = i+1;\]
\[\}\}\]
4) We now argue termination (informally).
 At each iteration \(i \) increases by one, while \(len \) stays the same. Thus, eventually \(i \) reaches \(len \).
 \(i = len \) implies loop exit condition.
 More on termination later!

Another Example: Partial Correctness + Termination

Let us prove that \(\sum \) is correct:
Precondition: \(len \geq 0 \&\& arr.length = len \)
\[\text{int } \sum = 0;\]
\[\text{int } i = 0;\]
\[\text{while (}\langle i < len \rangle \{ \]
\[\text{sum = sum + arr[i];}\]
\[i = i+1;\]
\[\}\}\]
Postcondition: \(\sum = arr[0]+\ldots+arr[arr.length-1] \)

Another Example: Partial Correctness

\[\sum_{j=0}^{i-1} arr[j] \] stands for \(arr[0]+arr[1]+\ldots+arr[i-1] \)
3) \(i < len \) which is \(i > len \) plus loop invariant
 \[i \leq len \&\& \sum = \sum_{j=0}^{i-1} arr[j] \]
 imply
 \[\sum = \sum_{j=0}^{i-1} arr[j] , \text{ which with precondition} \]
 \[\text{arr.length} = len \text{ gives us desired postcondition} \]
 \[\sum = arr[0]+\ldots+arr[arr.length-1] \]
 We still must argue termination!

Partial Correctness, More Formally

\{ P \} while (b) S \{ Q \}
We need to "guess" a loop invariant \textit{Inv} such that
1) \(P \Rightarrow \text{Inv} \) // \textit{Inv} holds before loop. Base case
2) \{ b \&\& \textit{Inv} \} S \{ \textit{Inv} \} // Assuming \textit{Inv} held after \(k \)th iteration and execution took a \((k+1) \)st iteration, then \textit{Inv} holds after \((k+1) \)st iteration
3) \(\neg b \&\& \textit{Inv} \) \Rightarrow Q // The exit condition and loop invariant imply desired postcondition
Choosing Loop Invariant

What is a suitable loop invariant?

Precondition: x >= 0;

\[
i = x;
\]
\[
z = 0;
\]
while (i != 0) {
\[
z = z+1;
\]
\[
i = i-1;
\]
}

Postcondition: x=z

Fall 15 CSCI 2600, A Milanova

Choosing Loop Invariant

What is a suitable loop invariant?

Precondition: x >= 0 && y = 0

while (x != y) {
\[
y = y+1;
\]
}

Postcondition: x=y

Fall 15 CSCI 2600, A Milanova

Choosing Loop Invariant

What is a suitable loop invariant?

Precondition: len ≥ 0 && arr.length = len

int sum = 0;
int i = 0;
while (i < len) {
 sum = sum + arr[i];
 i = i+1;
}

Postcondition: sum = arr[0]+...+arr[arr.length-1]

Fall 15 CSCI 2600, A Milanova

Choosing Loop Invariant

What is a suitable loop invariant?

Precondition: n >= 0

i = 0;
while (i < n) {
\[
i = i+1;
\]
\[
r = r*i;
\]
}

Postcondition: r = n!

Fall 15 CSCI 2600, A Milanova

A “tedious” Invariant

Inv: sum = a[0]+a[1]

Precondition: len ≥ 0 && a.length = len
int sum = 0;
int i = 0;
while (i < len) {
 invariant sum = a[0]+...+a[i-1] && i<=len
 sum = sum + a[i];
 i = i+1;
}
Postcondition: sum = a[0]+...+a[a.length-1]

Fall 15 CSCI 2600, A Milanova

A “tedious” Invariant

Inv: sum = a[0]+a[1]+a[2]

Precondition: len ≥ 0 && a.length = len
int sum = 0;
int i = 0;
while (i < len) {
 invariant sum = a[0]+...+a[i-1] && i<=len
 sum = sum + a[i];
 i = i+1;
}
Postcondition: sum = a[0]+...+a[a.length-1]
As the induction variable i moves through the array, sum contains the correct partial result. At the end of the array, sum contains the correct total. Similar invariants for min, max, avg, sorting algorithms, etc. These invariants are easy to guess.

An “tedious” Invariant

Inv: \(i+z = x\)

A “tedious” Invariant

Inv: \(i+z = x\)

An “elegant” Invariant

What is a suitable loop invariant?

Precondition: $x \geq 0$;
\[i = x; \]
\[z = 0; \]
\[\text{while} \ (i \neq 0) \ { \}
\[\quad z = z+1; \]
\[\quad i = i-1; \]
\[\} \]
Postcondition: $x=z$

Choosing Decrementing Function

What is a suitable decrementing function?

Precondition: $x \geq 0$;
\[i = x; \]
\[z = 0; \]
\[\text{while} \ (i \neq 0) \ { \}
\[\quad z = z+1; \]
\[\quad i = i-1; \]
\[\} \]
Postcondition: $x=z$

Choosing Decrementing Function

What is a suitable decrementing function?

Precondition: $x \geq 0 \& y = 0$
\[\text{while} \ (x \neq y) \ { \}
\[\quad y = y+1; \]
\[\} \]
Postcondition: $x=y$
Choosing Decrementing Function

What is a suitable decrementing function?

Precondition: len ≥ 0

\[D = \text{len} - i \]

A arr.length = len

double sum = 0.0;

int i = 0;

while (i < len) {
 sum = sum + arr[i];
 i = i+1;
}

Postcondition: sum = arr[0]+...+arr[arr.length-1]

Choosing Decrementing Function

What is a suitable decrementing function?

Precondition: n >= 0

i = 0;

r = 1;

while (i < n) {
 i = i+1;
 r = r*i;
}

Postcondition: r = n!

Reasoning About Loops is Difficult

For non-looping code, weakest precondition enables proof

For loops, we have to guess

- The loop invariant
- The decrementing function

Then use the proof techniques we discussed

- If the proof doesn’t work
 - Maybe you chose wrong invariant/function: Fix
 - Maybe the loop is incorrect!

Why Study Formal Proofs

- Helps us write correct programs!
- Most of the time, our loops don’t need proofs
 for i in seq: print i

- Sometimes we have to write more complex loops
 - Establish precondition and postcondition
 - Establish a loop invariant
 - Reason about correctness and termination

Reasoning About Loops, Recap

Total correctness = partial correctness + termination

1. Partial correctness
 - “Guess” and prove loop invariant
 - Loop exit condition and loop invariant must imply the postcondition
 - This gives us: “If the loop terminated then the postcondition holds”. But does the loop terminate?

2. Termination
 - (Roughly) “Guess” decrementing function D. Each iteration decrements D, D at its minimum value (usually 0) must imply loop exit condition
Example: Another Factorial

Precondition: n >= 0
r = 1;
n = t;
while (n != 0) {
 r = r*n;
 n = n-1;
}
Postcondition: r = t!

Example: Integer Division x/y

Precondition: x >= 0 && y >= 0
r = x;
q = 0;
while (y <= r) {
 r = r-y;
 q = q+1;
}
Postcondition: x = y*q + r && r < y

Example: Greatest Common Divisor

Precondition: x1 > 0 && x2 > 0
y1 = x1;
y2 = x2;
while (y1 != y2) {
 if (y1 > y2) {
 y1 = y1-y2
 } else {
 y2 = y2-y1;
 }
}
Postcondition: y1 = gcd(x1,x2)