
HW 7
50pts. You can work on your own or in teams of two.

Posted Tuesday, November 29, 2022
Due Friday, December 9, 2022

Problem 1 (7pts). Consider the twice combinator:

twice = λf.λx.f(f x)

Reduce expression twice twice f x into normal form using normal order reduction. For full
credit, show each step on a separate line.

Problem 2 (8pts). Now consider the Haskell implementation of twice:

twice f x = f (f x)

(a) What is the type of twice?
(b) What is the type of expression twice twice?
(c) If the type of fun is Int->Int, what is the type of expression twice twice fun?
(d) If the type of fun is Int->Int and expression twice twice fun v is well-typed, what

is the type of twice twice fun v?

Note: You do not need to justify your answer, just state the corresponding type expression.

Problem 3 (10pts). This is a skeleton of the quicksort algorithm in Haskell:

quicksort [] = []

quicksort (a:b) = quicksort ... ++ [a] ++ quicksort ...

(a) Fill in the two elided expressions (shown as ...) with appropriate list comprehensions.
(b) Now fill in the two elided expressions with the corresponding monadic-bind expressions.

Problem 4 (5pts). In the following code, which of the variables will a compiler consider to have
compatible types under structural equivalence? Under strict name equivalence? Under loose
name equivalence?

type A = array [1..10] of integer

type B = A

a : A

b : A

c : B

d : array [1..10] of integer

Problem 5 (10pts). Show the type trees for the following C declarations:

double *a[n];

double (*a)[n];

double (*a[n])();

double (*a())[n];

double (*a(int, double(*)(double, double[])))(double);
1



2

Problem 6 (10pts). Consider the Pascal-like code for function compute. Assume that the
programming language allows a mixture of parameter passing mechanisms as shown in the
definition.

double compute(first : integer /*by value*/, last : integer /*by value*/,

incr : integer /*by value*/, i : integer /*by name*/, term : double /*by name*/)

result : double := 0.0

i := first

while i <= last do

result := result + term

i := i + incr

endwhile

return result

(a) (2pts) What is returned by call compute(1, 10, 1, i, A[i])?
(b) (2pts) What is returned by call compute(1, 5, 2, j, 1/A[j])?
(c) (2pts) compute is a classic example of Jensen’s device, a technique that exploits call by

name and side effects. In one sentence, explain what is the benefit of Jensen’s device.
(d) (4pts) Write max, which uses Jensen’s device to compute the maximum value in a set of

values based off of an array A.


