!'_ Semantic Analysis

Read: Scott, Chapter 4.1-4.3

Announcements

= HW 1 grades are up
= Quiz 1,2,3 grades up

= We will release answers in review lecture
= Rainbow grades

= Please check if your grade shows up correctly
= Exam 1 a week from today --- Oct 11t

= Links to practice problems on Submitty forum
= HW3 is posted

= Due in 10 days

Programming Languages CSCI 4430, A. Milanova

Lecture Outline

s Quiz 4

= Attribute grammars
= Attributes and rules

= Synthesized and inherited attributes
= S-attributed grammars
« L-attributed grammars

s Attribute evaluation

Programming Languages CSCI 4430, A. Milanova

Attribute Grammars:
Foundation for Static Semantic Analysis

= Attribute Grammars: generalization of
Context-Free Grammars

= Associate meaning with parse trees
= Aftributes

« Each grammar symbol has one or more values called
attributes associated with it. Each parse tree node has
its own instances of those attributes; attribute value
carries the “meaning” of the parse tree rooted at node

= Semantic rules

« Each grammar production has associated rule, which
may refer to and compute the values of attributes

Programming Languages CSCI 4430, A. Milanova 4

Example: Attribute Grammar to Compute Value
of Expression (denote grammar by AG1)

SoE ESE+T|T T >T*F |F F — num
Production Semantic Rule
S >E print(E.val)

E >E+T <~ Eval:=E,val+ Tval

E—>T Twal E.val := T.val
eT>T*F ' Tval:=T,val* Fval

T L F ‘f el Tval == F.val

e F 5>num wuw. ° F.val = num.val
val T val- Attributes

Programming Languages CSCI 4430, A. Milanova 5

E stands for expr

AnOther Grammar T stands for term

T'T stands for term_tail

= Now, the right-recursive LL(1) grammar:

E>TTT
TT—»-TTT

IT —>¢
T — num

= Goal: construct an attribute grammar that
computes the value of an expression

= Values must be computed “normally”, i.e.,
5-3-2 must be evaluated as (5-3) -2, not as

0
>~ %o

Programming Languages CSCI 4430, A. Milanova

Question

= \WWhat happens if we wrote a “bottom-up

. . *5’@2
attribute flow”™ grammar? 5'@%)

ESTTT E.val = T.val — TT.val

TT >-TTT, TT.val = T.val - TT,.val /('g

TT >¢ TT.val =0 _ 71 o~

T > num T.val = num.val S :7;/:?/7\(@

A hack: ty-bo by te b (Bt *”%L 7 /T:.S

E>TTT E.val = T.val — TT.val 2’
—> TT - TTT, TT.val = T.val + TT,.val |

TT —>¢ TT.val = 0 S

T > num T.val = num.val

Unfortunately, this won't work ifweadd TT —+ T TT,

Programming Languages CSCI 4430, A. Milanova 7

Attribute Grammar to Compute Value of
Expressions (denote by AG3)

E-TTT TT»-TTT|+TTT|e _ T —>num
| | 3Ll wb=>
Production Semantic Rules [N7, b= 3,
- (5°3)
E—->TTT (1) TT.sub:= T.val (2) E.val := TT.val

TT —» - TTT, (1) TT,.sub:= TT.sub - T.val (2) TT.val ;= TT,.val
TT >+ TTT, (1) TT,.sub:= TT.sub + T.val (2) TT.val := TT,.val
TT > ¢ (1) TT.val := TT.sub

I — num (1) T.val := num.val (provided by scanner)

Attributes flow from parent to node, and from “siblings” to node!

Programming Languages CSCI 4430, A. Milanova 8

;i Attribute TT;.sub: computed based on parent
AttrIbUte FIOW TT and sibling T: TT.sub - T.val

T holds value 3 (i.e., the value of next term)
T'T, gets subtotal 21 (for25 - 1 - 3)

Passed down the tree of TT,to next TT on chain
Eventually, we hit TT — € and value gets subtotal 15

Value 15 is passed back up 9

PARSING AUD EVALUAT NG /| N>
5-3~2 - T Tr< ""E]

Programming Languages CSCI 4430, A. Milanova

Attribute Flow

s Attribute .val carries the total value
a Attribute .sub is the subtotal carried from left

Cb>L ..]

= Rules for nonterminals E, T do not perform
computation

= No need for .sub attribute
s [.val attrlbute flows to the right

s INE > T TT: val of T is passed to sibling TT
«INTT »-TTT I'T,: valof Tis passed to sibling 7T,

Programming Languages CSCI 4430, A. Milanova 11

Attribute Flow

= Rules for nonterminal 7T do perform
computation

= [T needs to carry subtotal in .sub

« E.g., in TT = - T TT, the subtotal of TT,is computed
by subtracting the value of T from the subtotal of 7T

= [T.val attribute flows up

s INE —>TTT:valof TT is passed to parent E

«INTT - =T TT,:valof TT,is passed to parent
TIT

Programming Languages CSCI 4430, A. Milanova 12

Lecture Outline

» Quiz4

= Attribute grammars
= Attributes and rules

= Synthesized and inherited attributes
= S-attributed grammars
= L-attributed grammars

s Attribute evaluation

Programming Languages CSCI 4430, A. Milanova

13

Synthesized and Inherited Attributes
TN AN

s Synthesized attributes £ 1T EEaT

= Attribute value computed from attributes of
descendants in parse tree or attributes of self

« E.qg., attributes val in AG1, val in AG3
val Vo9
= E.g., attributes nptrin AG2 (Couihuck fte A<r)

s Inherited attributes

= Attribute value computed from attributes of parent
in tree, or attributes of siblings in tree /77
= E.g., attributes sub in AG3 ~ b

‘“ ”” ¢ co "01.
= In order to compute value "normally” we needed to

pass sub down the tree (sub is inherited attribute).
Programming Languages CSCI 4430, A. Milanova 14

S-attributed Grammars

= An attribute grammar for which all attributes

are synthesized is said to be S-attributed
= "Arguments” of rules are attributes of WB\
from the production right-hand-side " b
| o E-~C, +7
= |.e., attributes of children in parse tree =

= 'Result” is placed in attribute of the symbol on
the left-hand-side of the production

= |.e., computes attribute of parent in parse tree
= |.e., attribute values depend only on descendants

In tree. They do not depend on parents or
siblings in tree!

15

Questions

= Can you give examples of
S-attributed grammars?
= Answer: AG1 and AG2

o

= How can we evaluate
S-attributed grammars?

= |.e., can we evaluate the attributes during a
bottom-up parse?

= Answer: Yes

Programming Languages CSCI 4430, A. Milanova

16

L-attributed Grammar

= An attribute mar is L-attributed if each
inher#ed attrib ;on the right-hand-side
of A > X, X,..X_X.. X,depends only on

« (1) the attributes of symbols to the left of X;: X,
Xy, .. X4

= (2) the inherited attributes of A

Programming Languages CSCI 4430, A. Milanova 17

Questions

RTTEIBUTG PLOW:

Vg
= Can you give examples of TT
L-attributed grammars? - >b Sub
= Answer: AG3 - 7 Tﬁl
S]
1T, &b»
=_How can we evaluate TT. $ubo — /q#at

L-attributed grammars?
= Answer: in a top-down (recursive descent) parse

Programming Languages CSCI 4430, A. Milanova 18

Attribute Evaluation

= S-attributed grammars
= A very special case of attribute grammars
= Most important case in practice
= Can be evaluated on-the-fly during a bottom-up
(LR) parse
= L-attributed grammars

= A proper superset of S-attributed grammars

« Each S-attributed grammar is also L-attributed
because restriction applies only to inherited attributes

= Can be evaluated on-the-fly during a top-down
(LL) parse 9

Bottom-up Parsing

= Also called LR parsing

= LR parsers work with LR(k) grammars

@ = L stands for “left-to-right” scan of input
== R stands for “rightmost” derivation

o = Kk stands for “need k tokens of lookahead”

= We are interested in LR(0) and LR(1) and variants
in between LALR(L)

= LR parsing is better than LL parsing!
onum—

= Accepts larger class of languages
= Just as efficient!

Programming Languages CSCI 4430, A. Milanova

20

Main Idea

s Stack < Input

= Stack: holds the part of the input seen so far
= A string of both terminals and nonterminals

= Input: holds the remaining part of the in%lt

= A string of terminals Y. 0\
= Parser performs two'actions E+T 3

= Reduce: parser pops a “suitable” production right-hand-
side off top of stack, and pushes production’s left-hand-
side on the stack

= Shift: parser pushes next terminal from the input on top of

the stack OTHER Two ACTIows! ERRIR , ACcePT

Programming Languages CSCI 4430, A. Milanova 21

Example

= Recall the grammar

® | expr — expr + term | term
term — term * num | num

« Thisis not LL(1) because it is left recursive
= LR parsers can handle left recursion!

= Consider string

num + num * num

Programming Languages CSCI 4430, A. Milanova

num + num*num

Stack Input
ElPTY

STHck. num+num*num
num +num*num
—)

term +num*num
expr +num*num
expr+ num*num
expr+num *num

Programming Languages CSCI 4430, A. Milanova

4
Action ’L,e”“
shift num husa

reduce by ferm— num
reduce by expr— term
shift +

shift num

reduce by ferm — num

expr — expr + term | term
term — term * num | num 5

num + num*num expm—%w

Stack Input Action

expr+term *num shift *

expr+term#* num Shift num

expr+term*num reduce by term—term *num

expr+term - reduce by expr—expr+term
Wery

expr ACCEPT, SUCCESS

[NPuf

expr — expr + term | term
term — term * num | num

Programming Languages CSCI 4430, A. Milanova 24

num + num*num

Sequence of reductions performed by parser

- num+num*num e Arightmost derivation in

term+num*num feverse
e The stack (e.g., expr)

* . .
exprrnum™num ., catenated with remaining
expr+term*num input (e.g., +num*num) gives

g— .
expr+term a sentential form |
— (expr+num*num) in the
expr rightmost derivation

expr — expr + term | term
term — term * num | num

Programming Languages CSCI 4430, A. Milanova 25

Evaluation 5 + 3*2

Stack Input Action

num+num*num shift num

num +num*num ®reduce by ferm— num
B, wl = nui.yal

term +num*num © reduce b xgra term
@ olals g val

ex% +num*num Shlf +

expr+ num*num shift num

G/

expr+num *num reduce by term — num

Programming Languages CSCI 4430, A. Milanova 26

Evaluation 5 + 3*2

Stack Input Action
(5] &
expr+term *num shift *
expr+term#* num Shift num
expr+term*num reduce by term—term *num
Bl (% terual 2= tere, . val# el

eﬁﬂerm reduce by expr—expr+term
D

e ACCEPT, SUCCESS

Programming Languages CSCI 4430, A. Milanova 27

Question

= An attribute grammar is L-attributed if each
inherited attribute of X; on the right-hand-side
of A > X, X,..X_X.. X,depends only on
= (1) the attributes of symbols to the left of X;: X,
Xy, Xiq
= (2) the inherited attributes of A

.-__V.Vhy the restriction on siblings and kinds of
attributes of parent? Why not allow
dependence on siblings to the right of X,

e.g., X, etc.?

Programming Languages CSCI 4430, A. Milanova 28

(Top-down) Recursive Descent

S >ES$S
E->TTT TT>-TTT|+T TT|e T —>num

S
num S() TT %5__'5
case lookahead() of
num: val = E(); match($$); return val yd / \
otherwise PARSE_ERROR I 7\4«
num E() 7‘:(\/ (1.
case lookahead() of V9
num: sub = T(); val = TT(sub); return val
otherwise PARSE ERROR
dub ls Wly evelpafed .
num TT(num sub) /
] a[aa d.
case lookahead() of J Tw‘l ! M? g e luare

- : match(‘-"); Tval =T(); val = TT‘§ub Tval); return val
+ : match('+’); Tval =T(); val = TT(su'mcal); return val
S:val = sub; return val

otherwise: PARSE ERROR

29

The Enad

Programming Languages CSCI 4430, A. Milanova

30

