
1

Semantic Analysis

Read: Scott, Chapter 4.1-4.3

Announcements

n HW 1 grades are up
n Quiz 1,2,3 grades up

n We will release answers in review lecture
n Rainbow grades

n Please check if your grade shows up correctly
n Exam 1 a week from today --- Oct 11th

n Links to practice problems on Submitty forum
n HW3 is posted

n Due in 10 days
Programming Languages CSCI 4430, A. Milanova 2

Programming Languages CSCI 4430, A. Milanova 3

Lecture Outline

n Quiz 4
n Attribute grammars

n Attributes and rules
n Synthesized and inherited attributes
n S-attributed grammars
n L-attributed grammars

n Attribute evaluation

Programming Languages CSCI 4430, A. Milanova 4

Attribute Grammars:
Foundation for Static Semantic Analysis

n Attribute Grammars: generalization of
Context-Free Grammars
n Associate meaning with parse trees
n Attributes

n Each grammar symbol has one or more values called
attributes associated with it. Each parse tree node has
its own instances of those attributes; attribute value
carries the “meaning” of the parse tree rooted at node

n Semantic rules
n Each grammar production has associated rule, which

may refer to and compute the values of attributes

Programming Languages CSCI 4430, A. Milanova 5

Example: Attribute Grammar to Compute Value
of Expression (denote grammar by AG1)

Production Semantic Rule
S ® E print(E.val)
E ® E1+T E.val := E1.val + T.val
E ® T E.val := T.val
T ® T1*F T.val := T1.val * F.val
T ® F T.val := F.val
F ® num F.val := num.val

S ® E E ® E + T | T T ® T * F | F F ® num

val: Attributes

Programming Languages CSCI 4430, A. Milanova 6

Another Grammar

n Now, the right-recursive LL(1) grammar:

n Goal: construct an attribute grammar that
computes the value of an expression
n Values must be computed “normally”, i.e.,
5-3-2 must be evaluated as (5-3)-2, not as
5-(3-2)

E ® T TT
TT ® - T TT
TT ® ε
T ® num

E stands for expr
T stands for term
TT stands for term_tail

Question

n What happens if we wrote a “bottom-up
attribute flow” grammar?

Programming Languages CSCI 4430, A. Milanova 7

E ® T TT E.val = T.val – TT.val
TT ® - T TT1 TT.val = T.val – TT1.val
TT ® ε TT.val = 0
T ® num T.val = num.val

A hack:
E ® T TT E.val = T.val – TT.val
TT ® - T TT1 TT.val = T.val + TT1.val
TT ® ε TT.val = 0
T ® num T.val = num.val
Unfortunately, this won’t work if we add TT ® + T TT1

Programming Languages CSCI 4430, A. Milanova 8

Attribute Grammar to Compute Value of
Expressions (denote by AG3)

Production Semantic Rules

E ® T TT (1) TT.sub := T.val (2) E.val := TT.val
TT ® - T TT1 (1) TT1.sub:= TT.sub - T.val (2) TT.val := TT1.val
TT ® + T TT1 (1) TT1.sub:= TT.sub + T.val (2) TT.val := TT1.val
TT ® ε (1) TT.val := TT.sub

T ® num (1) T.val := num.val (provided by scanner)

Attributes flow from parent to node, and from “siblings” to node!

E ® T TT TT ® -T TT | +T TT | ε T ® num

9

Attribute Flow

TT

TT1T
-

E.g., 25 – 1 - 3 - 6
TT holds subtotal 24 (for 25 – 1, computed so far)
T holds value 3 (i.e., the value of next term)
TT1 gets subtotal 21 (for 25 – 1 – 3)

Passed down the tree of TT1 to next TT on chain
Eventually, we hit TT ® ε and value gets subtotal 15

Value 15 is passed back up

…

… …

3

24

21

Attribute TT1.sub: computed based on parent
TT and sibling T: TT.sub - T.val

15

15

TT

Example

Programming Languages CSCI 4430, A. Milanova 10

11

Attribute Flow

n Attribute .val carries the total value
n Attribute .sub is the subtotal carried from left

n Rules for nonterminals E, T do not perform
computation
n No need for .sub attribute

n T.val attribute flows to the right
n In E ® T TT : val of T is passed to sibling TT
n In TT ® -T TT1 : val of T is passed to sibling TT1

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 12

Attribute Flow

n Rules for nonterminal TT do perform
computation
n TT needs to carry subtotal in .sub

n E.g., in TT ® - T TT1 the subtotal of TT1 is computed
by subtracting the value of T from the subtotal of TT

n TT.val attribute flows up
n In E ® T TT : val of TT is passed to parent E
n In TT ® -T TT1 : val of TT1 is passed to parent

TT

Programming Languages CSCI 4430, A. Milanova 13

Lecture Outline

n Quiz 4
n Attribute grammars

n Attributes and rules
n Synthesized and inherited attributes
n S-attributed grammars
n L-attributed grammars

n Attribute evaluation

14

Synthesized and Inherited Attributes
n Synthesized attributes

n Attribute value computed from attributes of
descendants in parse tree or attributes of self

n E.g., attributes val in AG1, val in AG3
n E.g., attributes nptr in AG2

n Inherited attributes
n Attribute value computed from attributes of parent

in tree, or attributes of siblings in tree
n E.g., attributes sub in AG3

n In order to compute value “normally” we needed to
pass sub down the tree (sub is inherited attribute).

Programming Languages CSCI 4430, A. Milanova

15

S-attributed Grammars

n An attribute grammar for which all attributes
are synthesized is said to be S-attributed
n “Arguments” of rules are attributes of symbols

from the production right-hand-side
n I.e., attributes of children in parse tree

n “Result” is placed in attribute of the symbol on
the left-hand-side of the production

n I.e., computes attribute of parent in parse tree
n I.e., attribute values depend only on descendants

in tree. They do not depend on parents or
siblings in tree!

Questions

n Can you give examples of
S-attributed grammars?
n Answer: AG1 and AG2

n How can we evaluate
S-attributed grammars?
n I.e., can we evaluate the attributes during a

bottom-up parse?
n Answer: Yes

Programming Languages CSCI 4430, A. Milanova 16

Programming Languages CSCI 4430, A. Milanova 17

L-attributed Grammar

n An attribute grammar is L-attributed if each
inherited attribute of Xj on the right-hand-side
of A ® X1 X2 …Xj-1Xj…Xn depends only on
n (1) the attributes of symbols to the left of Xj: X1,

X2 ,…, Xj-1

n (2) the inherited attributes of A

Questions

n Can you give examples of
L-attributed grammars?
n Answer: AG3

n How can we evaluate
L-attributed grammars?
n Answer: in a top-down (recursive descent) parse

Programming Languages CSCI 4430, A. Milanova 18

19

Attribute Evaluation

n S-attributed grammars
n A very special case of attribute grammars
n Most important case in practice
n Can be evaluated on-the-fly during a bottom-up

(LR) parse
n L-attributed grammars

n A proper superset of S-attributed grammars
n Each S-attributed grammar is also L-attributed

because restriction applies only to inherited attributes
n Can be evaluated on-the-fly during a top-down

(LL) parse

Programming Languages CSCI 4430, A. Milanova 20

Bottom-up Parsing

n Also called LR parsing
n LR parsers work with LR(k) grammars

n L stands for “left-to-right” scan of input
n R stands for “rightmost” derivation
n k stands for “need k tokens of lookahead”

n We are interested in LR(0) and LR(1) and variants
in between

n LR parsing is better than LL parsing!
n Accepts larger class of languages
n Just as efficient!

Programming Languages CSCI 4430, A. Milanova 21

Main Idea
n Stack ß Input
n Stack: holds the part of the input seen so far

n A string of both terminals and nonterminals

n Input: holds the remaining part of the input
n A string of terminals

n Parser performs two actions
n Reduce: parser pops a “suitable” production right-hand-

side off top of stack, and pushes production’s left-hand-
side on the stack

n Shift: parser pushes next terminal from the input on top of
the stack

Programming Languages CSCI 4430, A. Milanova 22

Example

n Recall the grammar

n This is not LL(1) because it is left recursive
n LR parsers can handle left recursion!

n Consider string
num + num * num

expr ® expr + term | term
term ® term * num | num

Programming Languages CSCI 4430, A. Milanova 23

num + num*num

Stack Input Action

num+num*num shift num
num +num*num reduce by term® num
term +num*num reduce by expr® term
expr +num*num shift +
expr+ num*num shift num
expr+num *num reduce by term ® num

expr ® expr + term | term
term ® term * num | num

Programming Languages CSCI 4430, A. Milanova 24

num + num*num

Stack Input Action

expr+term *num shift *
expr+term* num shift num
expr+term*num reduce by term®term *num

expr+term reduce by expr®expr+term
expr ACCEPT, SUCCESS

expr ® expr + term | term
term ® term * num | num

Programming Languages CSCI 4430, A. Milanova 25

num + num*num

Sequence of reductions performed by parser
num+num*num
term+num*num
expr+num*num
expr+term*num
expr+term
expr

• A rightmost derivation in
reverse
• The stack (e.g., expr)
concatenated with remaining
input (e.g., +num*num) gives
a sentential form
(expr+num*num) in the
rightmost derivation

expr ® expr + term | term
term ® term * num | num

Programming Languages CSCI 4430, A. Milanova 26

Evaluation 5 + 3*2

Stack Input Action

num+num*num shift num
num +num*num reduce by term® num

term +num*num reduce by expr® term
expr +num*num shift +
expr+ num*num shift num

expr+num *num reduce by term ® num

Programming Languages CSCI 4430, A. Milanova 27

Evaluation 5 + 3*2

Stack Input Action

expr+term *num shift *
expr+term* num shift num

expr+term*num reduce by term®term *num

expr+term reduce by expr®expr+term
expr ACCEPT, SUCCESS

Question

n An attribute grammar is L-attributed if each
inherited attribute of Xj on the right-hand-side
of A ® X1 X2 …Xj-1Xj…Xn depends only on
n (1) the attributes of symbols to the left of Xj: X1,

X2 ,…, Xj-1

n (2) the inherited attributes of A
n Why the restriction on siblings and kinds of

attributes of parent? Why not allow
dependence on siblings to the right of Xj,
e.g., Xj+1, etc.?

28Programming Languages CSCI 4430, A. Milanova

29

(Top-down) Recursive Descent

num S()
case lookahead() of

num: val = E(); match($$); return val
otherwise PARSE_ERROR

num E()
case lookahead() of

num: sub = T(); val = TT(sub); return val
otherwise PARSE_ERROR

num TT(num sub)
case lookahead() of

- : match(‘-’); Tval = T(); val = TT(sub -Tval); return val
+ : match(‘+’); Tval = T(); val = TT(sub -Tval); return val
$$:val = sub; return val
otherwise: PARSE_ERROR

S ® E $$
E ® T TT TT ® - T TT | + T TT | ε T ® num

The End

Programming Languages CSCI 4430, A. Milanova 30

