!'_ Semantic Analysis

Read: Scott, Chapter 4.1-4.3



Announcements

= HW 1 grades are up
= Quiz 1,2,3 grades up

= We will release answers in review lecture
= Rainbow grades

= Please check if your grade shows up correctly
= Exam 1 a week from today --- Oct 11t

= Links to practice problems on Submitty forum
= HW3 is posted

= Due in 10 days
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Lecture Outline

s Quiz 4

= Attribute grammars
= Attributes and rules

= Synthesized and inherited attributes
= S-attributed grammars
« L-attributed grammars

s Attribute evaluation
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Attribute Grammars:
Foundation for Static Semantic Analysis

= Attribute Grammars: generalization of
Context-Free Grammars

= Associate meaning with parse trees
= Aftributes

« Each grammar symbol has one or more values called
attributes associated with it. Each parse tree node has
its own instances of those attributes; attribute value
carries the “meaning” of the parse tree rooted at node

= Semantic rules

« Each grammar production has associated rule, which
may refer to and compute the values of attributes
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Example: Attribute Grammar to Compute Value
of Expression (denote grammar by AG1)

SoE ESE+T|T T >T*F |F F — num
Production Semantic Rule
S >E print(E.val)

E >E+T <~ Eval:=E,val+ Tval

E—>T Twal E.val := T.val
eT>T*F ' Tval:=T,val* Fval

T L F ‘f el Tval == F.val

e F 5>num wuw. ° F.val = num.val
val T val- Attributes
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E stands for expr

AnOther Grammar T stands for term

T'T stands for term_tail

= Now, the right-recursive LL(1) grammar:

E>TTT
TT—»-TTT

IT —>¢
T — num

= Goal: construct an attribute grammar that
computes the value of an expression

= Values must be computed “normally”, i.e.,
5-3-2 must be evaluated as (5-3) -2, not as

0
>~ %o
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Question

= \WWhat happens if we wrote a “bottom-up

. . *5’@2
attribute flow”™ grammar? 5'@% )

ESTTT E.val = T.val — TT.val

TT >-TTT, TT.val = T.val - TT,.val /( 'g

TT >¢ TT.val =0 _ 71 o~

T > num T.val = num.val S :7;/:?/7\( @

A hack: ty-bo by te b (Bt *”%L 7 /T:.S

E>TTT E.val = T.val — TT.val 2’
—> TT - TTT, TT.val = T.val + TT,.val |

TT —>¢ TT.val = 0 S

T > num T.val = num.val

Unfortunately, this won't work ifweadd TT —+ T TT,

Programming Languages CSCI 4430, A. Milanova 7



Attribute Grammar to Compute Value of
Expressions (denote by AG3)

E-TTT  TT»-TTT|+TTT|e _ T —>num
| | 3Ll wb=>
Production Semantic Rules [ N7, b= 3,
- (5°3)
E—->TTT (1) TT.sub:= T.val (2) E.val := TT.val

TT —» - TTT, (1) TT,.sub:= TT.sub - T.val (2) TT.val ;= TT,.val
TT >+ TTT, (1) TT,.sub:= TT.sub + T.val (2) TT.val := TT,.val
TT > ¢ (1) TT.val := TT.sub

I — num (1) T.val := num.val (provided by scanner)

Attributes flow from parent to node, and from “siblings” to node!
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;i Attribute TT;.sub: computed based on parent
AttrIbUte FIOW TT and sibling T: TT.sub - T.val

T holds value 3 (i.e., the value of next term)
T'T, gets subtotal 21 (for25 - 1 - 3)

Passed down the tree of TT,to next TT on chain
Eventually, we hit TT — € and value gets subtotal 15

Value 15 is passed back up 9



PARSING AUD EVALUAT NG /| N>
5-3~2 - T Tr< ""E]
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Attribute Flow

s Attribute .val carries the total value
a Attribute .sub is the subtotal carried from left

Cb>L .. ]

= Rules for nonterminals E, T do not perform
computation

= No need for .sub attribute
s [.val attrlbute flows to the right

s INE > T TT: val of T is passed to sibling TT
«INTT »-TTT I'T,: valof Tis passed to sibling 7T,
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Attribute Flow

= Rules for nonterminal 7T do perform
computation

= [T needs to carry subtotal in .sub

« E.g., in TT = - T TT, the subtotal of TT,is computed
by subtracting the value of T from the subtotal of 7T

= [T.val attribute flows up

s INE —>TTT:valof TT is passed to parent E

«INTT - =T TT,:valof TT,is passed to parent
TIT
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Lecture Outline

» Quiz4

= Attribute grammars
= Attributes and rules

= Synthesized and inherited attributes
= S-attributed grammars
= L-attributed grammars

s Attribute evaluation
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Synthesized and Inherited Attributes
TN AN

s Synthesized attributes £ 1T EEaT

= Attribute value computed from attributes of
descendants in parse tree or attributes of self

« E.qg., attributes val in AG1, val in AG3
val Vo9
= E.g., attributes nptrin AG2 ( Couihuck fte A<r)

s Inherited attributes

= Attribute value computed from attributes of parent
in tree, or attributes of siblings in tree /77
= E.g., attributes sub in AG3 ~ b

‘“ ”” ¢ co "01.
= In order to compute value "normally” we needed to

pass sub down the tree (sub is inherited attribute).
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S-attributed Grammars

= An attribute grammar for which all attributes

are synthesized is said to be S-attributed
= "Arguments” of rules are attributes of WB\
from the production right-hand-side " b
| o E-~C, +7
= |.e., attributes of children in parse tree =

= 'Result” is placed in attribute of the symbol on
the left-hand-side of the production

= |.e., computes attribute of parent in parse tree
= |.e., attribute values depend only on descendants

In tree. They do not depend on parents or
siblings in tree!
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Questions

= Can you give examples of
S-attributed grammars?
= Answer: AG1 and AG2

o

= How can we evaluate
S-attributed grammars?

= |.e., can we evaluate the attributes during a
bottom-up parse?

= Answer: Yes
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L-attributed Grammar

= An attribute mar is L-attributed if each
inher#ed attrib ;on the right-hand-side
of A > X, X,..X_X.. X,depends only on

« (1) the attributes of symbols to the left of X;: X,
Xy, .. X4

= (2) the inherited attributes of A
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Questions

RTTEIBUTG PLOW:

Vg
= Can you give examples of TT
L-attributed grammars? - >b Sub
= Answer: AG3 - 7 Tﬁl
S ]
1T, &b»
=_How can we evaluate TT. $ubo — /q#at

L-attributed grammars?
= Answer: in a top-down (recursive descent) parse

Programming Languages CSCI 4430, A. Milanova 18



Attribute Evaluation

= S-attributed grammars
= A very special case of attribute grammars
= Most important case in practice
= Can be evaluated on-the-fly during a bottom-up
(LR) parse
= L-attributed grammars

= A proper superset of S-attributed grammars

« Each S-attributed grammar is also L-attributed
because restriction applies only to inherited attributes

= Can be evaluated on-the-fly during a top-down
(LL) parse 9



Bottom-up Parsing

= Also called LR parsing

= LR parsers work with LR(k) grammars

@ = L stands for “left-to-right” scan of input
== R stands for “rightmost” derivation

o = Kk stands for “need k tokens of lookahead”

= We are interested in LR(0) and LR(1) and variants
in between LALR(L)

= LR parsing is better than LL parsing!
onum—

= Accepts larger class of languages
= Just as efficient!
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Main Idea

s Stack < Input

= Stack: holds the part of the input seen so far
= A string of both terminals and nonterminals

= Input: holds the remaining part of the in%lt

= A string of terminals Y. 0\
= Parser performs two'actions E+T 3

= Reduce: parser pops a “suitable” production right-hand-
side off top of stack, and pushes production’s left-hand-
side on the stack

= Shift: parser pushes next terminal from the input on top of

the stack OTHER Two ACTIows! ERRIR , ACcePT
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Example

= Recall the grammar

® | expr — expr + term | term
#  term — term * num | num

« Thisis not LL(1) because it is left recursive
= LR parsers can handle left recursion!

= Consider string

num + num * num
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num + num*num

Stack Input
ElPTY

STHck. num+num*num
num +num*num
— )

term +num*num
expr +num*num
expr+ num*num
expr+num *num
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Action ’L,e”“
shift num husa

reduce by ferm— num
reduce by expr— term
shift +

shift num

reduce by ferm — num

expr — expr + term | term
term — term * num | num 5




num + num*num expm—%w

Stack Input Action

expr+term *num shift *

expr+term#* num Shift num

expr+term*num reduce by term—term *num

expr+term - reduce by expr—expr+term
Wery

expr ACCEPT, SUCCESS

[NPuf

expr — expr + term | term
term — term * num | num
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num + num*num

Sequence of reductions performed by parser

- num+num*num e Arightmost derivation in

term+num*num  feverse
e The stack (e.g., expr)

* . .
exprrnum™num ., catenated with remaining
expr+term*num  input (e.g., +num*num) gives

g— .
expr+term a sentential form |
— (expr+num*num) in the
expr rightmost derivation

expr — expr + term | term
term — term * num | num
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Evaluation 5 + 3*2

Stack Input Action

num+num*num shift num

num +num*num ®reduce by ferm— num
B, wl = nui.yal

term +num*num © reduce b xgra term
@ olals g val

ex% +num*num Shlf +

expr+ num*num shift num

G/

expr+num *num reduce by term — num
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Evaluation 5 + 3*2

Stack Input Action
(5] &
expr+term *num shift *
expr+term#* num Shift num
expr+term*num reduce by term—term *num
Bl (% terual 2= tere, . val# el

eﬁﬂerm reduce by expr—expr+term
D

e ACCEPT, SUCCESS
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Question

= An attribute grammar is L-attributed if each
inherited attribute of X; on the right-hand-side
of A > X, X,..X_X.. X,depends only on
= (1) the attributes of symbols to the left of X;: X,
Xy, Xiq
= (2) the inherited attributes of A

.-__V.Vhy the restriction on siblings and kinds of
attributes of parent? Why not allow
dependence on siblings to the right of X,

e.g., X, etc.?
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(Top-down) Recursive Descent

S >ES$S
E->TTT TT>-TTT|+T TT|e T —>num

S
num S() TT %5__'5
case lookahead() of
num: val = E(); match($$); return val yd / \
otherwise PARSE_ERROR I 7\4«
num E() 7‘:(\/ ( 1.
case lookahead() of V9
num: sub = T(); val = TT(sub); return val
otherwise PARSE ERROR
dub ls Wly evelpafed .
num TT(num sub) /
] a[aa d.
case lookahead() of J Tw‘l ! M? g e luare

- : match(‘-"); Tval =T(); val = TT‘§ub Tval); return val
+ : match('+’); Tval =T(); val = TT(su'mcal); return val
$S$:val = sub; return val

otherwise: PARSE ERROR

29



The Enad
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