
Programming Languages CSCI 4430, A. Milanova 1

Announcements

n Updated Rainbow grades
n Quiz 1-4
n HW 1-2

n We will be couple of weeks late grading HW3

n HW4 out

2

Functional Programming with
Scheme

Read: Scott, Chapter 11.1-11.3

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 3

Lecture Outline

n Functional programming languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing

Programming Languages CSCI 4430, A. Milanova 4

Racket/PLT Scheme/DrScheme

n Download Racket
(was PLT Scheme (was DrScheme))
n http://racket-lang.org/
n Run DrRacket
n Languages => Choose Language => Other

Languages => Legacy Languages: R5RS
n One additional textbook/tutorial:

n Teach Yourself Scheme in Fixnum Days by Dorai
Sitaram:

https://ds26gte.github.io/tyscheme/index.html

http://racket-lang.org/

Programming Languages CSCI 4430, A. Milanova 5

First, Imperative Languages

n The concept of assignment is central
n X:=5; Y:=10; Z:=X+Y; W:=f(Z);

n Side effects on memory
n Program semantics (i.e., how the program

works): state-transition semantics
n A program is a sequence of assignment

statements with effect on memory (i.e., state)
C := 0;
for I := 1 step 1 until N do
t := a[I]*b[I];
C := C + t;

6

Imperative Languages

n Functions (also called procedures,
subroutines, or routines) have side effects:
Roughly:
n A function call affects visible state; i.e., a function

call may change state in a way that affects
execution of other functions

n Also, result of a function call depends on visible
state; i.e., function call is not independent of the
context of the call

7

Imperative Languages

n Functions are, traditionally, not first-class
values
n A first-class value is one that can be passed as

argument to functions, and returned as result
from functions

n In a language with assignments, it can be assigned
into a variable or structure

n Are functions in C first-class values?
n As languages become more multi-paradigm,

imperative languages increasingly support
functions as first-class values (JS, R, Python,
Java 8, C++11)

8

Functional Languages
n Program semantics: reduction semantics

n A program is a set of function definitions and their
application to arguments

n Variables appear as parameters
n Bound to values at calls

Def IP = (Insert +) º (ApplyToAll *) º Transpose
IP <<1,2,3>,<6,5,4>> is
(Insert +) ((ApplyToAll *)

(Transpose <<1,2,3>,<6,5,4>>))
(Insert +) ((ApplyToAll *) <<1,6>,<2,5>,<3,4>>)
(Insert +) <6,10,12>
28

Function composition

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 9

Functional Languages
n In pure functional languages, there is no

notion of assignment, no notion of state
n Variables are bound to values only through

parameter associations
n No side effects!

n Referential transparency
n Roughly:

n Result of function application is independent of
context where the function application occurs;
function application (on same argument of course)
can be replaced by result

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 10

Functional Languages
n Functions are first-class values

n Can be returned as value of a function
application

n Can be passed as an argument
n In a language with assignment, can be assigned

into variables and structures

n Unnamed functions exist as values

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 11

Lecture Outline

n Functional programming languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 12

Lisp and Scheme
n Lisp is the second oldest high-level programming

language!
n Simple syntax
n Program code and data have same syntactic form

n The S-expression
n Function application written in prefix form

(e1 e2 e3 … ek) means
n Evaluate e1 to a function value
n Evaluate each of e2,…,ek to values
n Apply the function to these values
(+ 1 3) evaluates to 4

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 13

History

Lisp
1950’s
John McCarthy

Scheme
1975
Guy Steele
Gerald Sussman

Common Lisp

dynamic scoping lexical scoping
functions as first-class values

Why Scheme?

n Simple syntax! Great to introduce core functional
programming concepts
n Reduction semantics
n Lists and recursion
n Higher order functions
n Evaluation order
n Parametric polymorphism

n Later we’ll see Haskell and new concepts
n Algebraic data types and pattern matching
n Lazy evaluation
n Type inference 14

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 15

S-expressions

S-expr ::= Name | Number | ({ S-expr })

n Name is a symbolic constant (a string of chars which
starts off with anything that can’t start a Number)

n Number is an integer or real number
n List of zero or more S-expr’s
n E.g., (a (b c) (d)) is a list S-expr

a

b
c ()

d ()
()

16

List Functions
n car and cdr

n Given a list, they decompose it into first element,
rest-of-list portions

n E.g., car of (a (b c) (d)) is a
n E.g., cdr of (a (b c) (d)) is ((b c)(d))

n cons
n Given an element and a list, cons builds a new list

with the element as its car and the list as its cdr
n cons of a and (b) is (a b)

n () is the empty list
Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

17

Quoting
n ‘ or quote prevents the Scheme
interpreter from evaluating the argument

(quote (+ 3 4)) yields (+ 3 4)

‘(+ 3 4) yields (+ 3 4)

Whereas (+ 3 4) yields 7

n Why do we need quote?
Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

Questions
(car ‘(a b c)) yields ?
(car ‘((a) b (c d))) yields ?
(cdr ‘(a b c)) yields ?
(cdr ‘((a) b (c d))) yields ?

Can compose these operators in a short-hand manner. Can
reach arbitrary list element by composition of car’s and cdr’s.
(car (cdr (cdr ‘((a) b (c d)))))

can also be written
(caddr ‘((a) b (c d)))
(car (cdr (cdr ‘((a) b (c d))))) =
(car (cdr ‘(b (c d))) = (car ‘((c d))) = (c d)

a ()

b

c
d () ()

((a) b (c d))

19

Questions

n Recall cons
n E.g., (cons ‘a ‘(b c)) yields (a b c)

(cons ‘d ‘(e)) yields ?
(cons ‘(a b) ‘(c d)) yields ?
(cons ‘(a b c) ‘((a) b (c d))) yields ?

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

20

Type Predicates
n Note the quote: it prevents evaluation of the

argument
(symbol? ‘sam) yields #t (symbol? 1) yields #f
(number? ‘sam) yields #f (number? 1) yields #t
(list? ‘(a b)) yields #t (list? ‘a) yields #f
(null? ‘()) yields #t (null? ‘(a b)) yields #f
(zero? 0) yields #t (zero? 1) yields #f

Can compose these.
(zero? (- 3 3)) yields #t Note that since this
language is fully parenthesized, there are no precedence
problems in expressions!

Question

n What is the typing discipline in Scheme?
n Static or dynamic?

n Answer: Dynamic typing. Variables are bound to
values of different types at runtime. All type
checking done at runtime.

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 21

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 22

Lecture Outline

n Functional Programming Languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 23

Scheme: Defining Funcitons

Fcn-def ::= (define (Fcn-name {Param}) S-expr)
Fcn-name should be a new name for a function.
Param should be variable(s) that appear in the
S-expr which is the function body.

Fcn-def ::= (define Fcn-name Fcn-value)
Fcn-value ::= (lambda ({Param}) S-expr)
where Param variables are expected to appear in the

S-expr; called a lambda expression.

24

Examples

(define (zerocheck? x)
(if (= x 0) #t #f))

If-expr ::= (if S-expr0 S-expr1 S-expr2)
where S-expr0 must evaluate to a boolean value; if that
value is #t, then the If-expr yields the result of S-expr1,
otherwise it yields the result of S-expr2.

(zerocheck? 1) yields #f,
(zerocheck? (* 1 0)) yields #t

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 25

Examples

(define (atom? object)
(not (pair? object)))

Here pair? is a built-in type predicate. It yields #t
if the argument is a non-trivial S-expr (i.e., something
one can take the cdr of). It yields #f otherwise.

not is the built-in logical operator.

What does atom? do?

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 26

Examples

(define square (lambda (n) (* n n)))

n Associates the Fcn-name square with the function
value (lambda (n) (* n n))

n Lambda calculus is a formal theory of functions
n Set of functions definable using lambda calculus (Church

1941) is same as set of functions computable as Turing
Machines (Turing 1930’s)

27

Trace of Evaluation
(define (atom? object)
(not (pair? object)))

(atom? `(a))
-obtain function value corresponding to atom?
-evaluate `(a) obtaining (a)
-evaluate (not (pair? ‘(a)))

-obtain function value corresponding to not
-evaluate (pair? ‘(a))

-obtain function value corresponding to pair?
-evaluate ‘(a) obtaining (a)
-return value #t

-return #f
-return #f

28

Read-Eval-Print Loop (REPL)
n Scheme interpreter runs read-eval-print loop

n Read input from user
n A function application

n Evaluate input
n (e1 e2 e3 … ek)

n Evaluate e1 to obtain a function
n Evaluate e2, … , ek to values
n Execute function body using values from previous step as

parameter values
n Return value

n Print return value

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

29Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 30

Conditional Execution

(if e1 e2 e3)
(cond (e1 h1) (e2 h2) … (en-1 hn-1)
(else hn))

n Cond is like if – then – else if construct

(define (zerocheck? x)
(cond ((= x 0) #t) (else #f)))

OR
(define (zchk? x)
(cond ((number? x) (zero? x))

(else #f)))

31

Recursive Functions
(define (len x)
(cond ((null? x) 0) (else (+ 1 (len (cdr x))))))

(len `(1 2)) should yield 2.
Trace:(len `(1 2)) -- top level call

x = (1 2)
(len `(2)) -- recursive call 1
x = (2)

(len `()) -- recursive call 2
x = ()
returns 0 -- return for call 2

returns (+ 1 0) = 1 --return for call 1
returns (+ 1 1) = 2 -- return for top level call

(len ‘((a) b (c d))) yields what?

len is a shallow
recursive function

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 32

Recursive Functions
(define (app x y)
(cond ((null? x) y)

((null? y) x)
(else
(cons (car x)

(app (cdr x) y)))))

n What does app do?

(app ‘() ‘()) yields ?
(app ‘() ‘(1 4 5)) yields ?
(app ‘(5 9) ‘(a (4) 6)) yields ?

app is a shallow
recursive function

33

Exercise
(define (len x)
(cond ((null? x) 0) (else (+ 1 (len (cdr x))))))

Write a version of len that uses if instead of cond

Write a function countlists that counts the number
of list elements in a list. E.g.,

(countlists ‘(a)) yields 0
(countlists ‘(a (b c (d)) (e))) yields 2

Recall (list? l) returns true if l is a list, false
otherwise

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 34

Recursive Functions
(define (fun x)
(cond ((null? x) 0)

((atom? x) 1)
(else (+ (fun (car x))

(fun (cdr x))))))

fun is a deep
recursive function

What does fun do?

35

fun counts atoms in a list
(define (atomcount x)

(cond ((null? x) 0)
((atom? x) 1)
(else (+ (atomcount (car x)) (atomcount (cdr x))))))

(atomcount ‘(a)) yields 1
(atomcount ‘(1 (2 (3)) (5))) yields 4

Trace: (atomcount ‘(1 (2 (3)))
1> (+ (atomcount 1) (atomcount ‘((2 (3)))))

2> (+ (atomcount ‘(2 (3))) (atomcount ‘()))
3> (+ (atomcount 2) (atomcount ‘((3)))

4> (+ (atomcount ‘(3)) (atomcount ‘()))
5> (+ (atomcount 3) (atomcount ‘()))

0
1

atomcount is a deep
recursive function

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 36

Exercise

n Write a function flatten that flattens a list

(flatten ‘(1 (2 (3)))) yields (1 2 3)

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 37

Lecture Outline

n Functional Programming Languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing

38

Equality Testing
eq?

n Built-in predicate that can check atoms for equal values
n Does not work on lists in the way you might expect!

eql?
n Our predicate that works on lists
(define (eql? x y)
(or (and (atom? x) (atom? y) (eq? x y))

(and (not (atom? x)) (not (atom? y))
(eql? (car x) (car y))
(eql? (cdr x) (cdr y)))))

equal?
n Built-in predicate that works on lists

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 39

Examples
(eql? ‘(a) ‘(a)) yields what?
(eql? ‘a ‘b) yields what?
(eql? ‘b ‘b) yields what?
(eql? ‘((a)) ‘(a)) yields what?

(eq? ‘a ‘a) yields what?
(eq? ‘(a) ‘(a)) yields what?

(equal? ‘(a) ‘(a)) yields what?

More on Equality Testing next time!

The End

Programming Languages CSCI 4430, A. Milanova 40

