Announcements

= Updated Rainbow grades
= Quiz 1-4
= HW 1-2

= \We will be couple of weeks late grading HW3

x HW4 out

Programming Languages CSCI 4430, A. Milanova 1

Functional Programming with
Scheme

Read: Scott, Chapter 11.1-11.3

Lecture Outline

= Functional programming languages

s Scheme

= S-expressions and lists
= CONS, car, cdr

= Defining functions

= Examples of recursive functions
= Shallow vs. deep recursion

= Equality testing

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

Racket/PLT Scheme/DrScheme

= Download Racket
(was PLT Scheme (was DrScheme))
= http://racket-lang.org/
= Run DrRacket
=« Languages => Choose Language => Other
Languages => Legacy Languages: R5RS
= One additional textbook/tutorial:

= Teach Yourself Scheme in Fixnum Days by Dorai
Sitaram:

https://ds26gte.github.io/tyscheme/index.html

Programming Languages CSCI 4430, A. Milanova 4

http://racket-lang.org/

First, Imperative Languages

= The concept of assignment is central
s X:=5; Y:=10; Z:=X+Y; W:=£(2) ;
« Side effects on memory

= Program semantics (i.e., how the program
works): state-transition semantics

= A program is a sequence of assignment
statements with effect on memory (i.e., state)

Al ——PC := 0;
JT&ATINe—>for I := 1 step 1 until N do
t := a[I]*b[I];

C :=C + t;
Programming Languages CSCI 4430, A. Milanova

Imperative Languages

= Functions (also called procedures,
subroutines, or routines) have side effects:
Roughly:
= A function call affects visible state; i.e., a function

call may change state in a way that affects
executlon of otherf nptl ns
I

U 0l is wmewsry,
<O' e]“”(S) > 7-"“‘ a Lut?;/aih_\? /f‘aw vancﬂcr b
lu.euwry velues .

= Also, result of a function call depends on visible
state l.e., function call is not independent of the

ntext oft ecaII
1 %X:= A)) —D .- K¢Y(J(wayée ([:j/efcu-/

<(D" Or 2 Y =f(s)> — - Houw %) 6

Imperative Languages

= Functions are, traditionally, not first-class
values

= A first-class value is one that can be passed as
argument to functions, and returned as result
from functions
« In a language with assignments, it can be assigned
Into a variable or structure
= Are functions in C first-class values?

= As languages become more multi-paradigm,
Imperative languages increasingly support
functions as first-class values (JS, R, Python,
Java 8, C++11)

Functional Languages L owdds Calexles

= Program semantics: reduction semantics

= A program is a set of function definitions and their
application to arguments
= Variables appear as parameters
« Bound to values at calls

Def IP = (Insert +) ° (ApplyToAll *) © Transpose
IP <<1,2,3>,<6,5,4>> is

(Insert +) ((ApplyToAll *)
(Transpose <<1,2,3>,<6,5,4>>)) =>

(Insert +) ((ApplyToAll *) <<1 ’6>’<2k5>’<3#4>>) —>
™

(Insert +) <6,10,12> =

(28) .

Function composition

Functional Languages

= In pure functional languages, there is no
notion of assignment, no notion of state
= Variables are bound to values only through

parameter associations l,
= No side effects! o '(qp g)iw <)
" e e,
= Referential transparency 55 (hs) el 6
N Roughly: A eud (f5) et lebel 3

eld the Seume value,
= Result of function application is independent of

context where the function application occurs;
function application (on same argument of course)
can be replaced by result
Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 9

Functional Languages

s Functions are first-class values

= Can be returned as value of a function
application

= Can be passed as an argument

= In a language with assignment, can be assigned
into variables and structures

= Unnamed functions exist as values

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

10

Lecture Outline

= Functional programming languages

m Scheme

= S-expressions and lists
= CONS, car, cdr

= Defining functions

= Examples of recursive functions
= Shallow vs. deep recursion

= Equality testing

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

11

Lisp and Scheme

= Lisp is the second oldest high-level programming
language!
= Simple syntax
= Program code and data have same syntactic form
= The S-expression

= Function application written in prefix form
(e1 e2 e3d ... ek) means
= Evaluate e1 to a function value
=« Evaluate each of e2,...,ek to values
= Apply the function to these values
(+ 1 3) evaluates to 4

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

12

History

/\

Lisp » Scheme » Common Lisp
1950’s 1975

John McCarthy Guy Steele
Gerald Sussman

dynamic scoping | |lexical scoping
functions as first-class values

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

13

Why Scheme?

= Simple syntax! Great to introduce core functional
programming concepts

= Reduction semantics

= Lists and recursion

= Higher order functions

= Evaluation order

» Parametric polymorphism

= Later we’'ll see Haskell and new concepts
= Algebraic data types and pattern matching
= Lazy evaluation
= Type inference

14

S-expressions

LENF
S-expr ::= Name | Number | ({ S-expr})

= Name is a symbolic constant (a string of chars which

starts off with anything that can’t start a Number)

= Number is an integer or real number
= List of zero or more S-expr's
= Eg, (a (b c¢) (d)) isalist S-expr

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

List Functions

H T
s car and cdr

« Given a list, they decompose it into first element,
rest-of-list portions
s« Eg., car of (a (b c) (d)) is a

s Eg., cdr of (a (b c) (d)) is ((b c) (d))

mE COons Lm

~»

= Given an element and a list, cons builds a new list
with the element as its car and the list as its edr

= cons of a and (deziS 'a(?bﬁ) (cous ;&/2 —
() is the empty ist S (a.b)

Programming Languages (g& 30, A%ﬁanova/B.G. Ryder 16

Quoting

= ' Or quote prevents the Scheme
interpreter from evaluating the argument

(quote (+ 3 4)) vields (+ 3 4)

ju Fle lu,ore'/er-‘

‘(+ 3 4) yields (+ 3 4) S(eas e r(é))
Whereas (+ 3 4) yields 7

= Why do we need quote?

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 17

((a) b (c d))

Questions

(car ‘(a b c)) yields ?
(car ‘((a) b (c d))) yields ? b

(cdr ‘(a b c)) yields ?
(cdr ‘((a) b (c d))) yields ? /
a 0

Can compose these operators in a short-hand manner. Can
reach arbitrary list element by composition of car’s and edr’s.
(car (cdr (cdr ‘((a) b (¢ d)))))

can also be written

(caddr ‘((a) b (c 4d)))

(car (cdr (cdr ‘((a) b (¢ 4d))))) =

(car (cdr ‘(b (¢ d))) = (car ‘((c d))) = (c d)

Questions

s Recall cons
= E.9., (cons ‘a ‘(b c)) vyields (a b c¢)

(cons ‘d ‘(e)) yields? (de)
(cons ‘(a b) ‘(c d)) yields ? ((ab)cd)
(cons ‘(abc) '‘((a) b (c d))) yields?

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

19

Type Predicates

= Note the quote: it prevents evaluation of the

argument
(symbol? ‘sam) yields #t (symbol? 1) yields #£
(number? ‘sam) yields #£f (number? 1) yields #t
(list? ‘(a b)) yields #t (list? ‘a) yields #£f
(null? ‘()) yields #t (null? ‘(a b)) yields #£
(zero? 0) yields #t (zero? 1) yields #£

Can compose these.
(zero? (- 3 3)) yields #t Note that since this

language is fully parenthesized, there are no precedence
problems in expressions!

Question

= What is the typing discipline in Scheme?
» Static or dynamic?

= Answer: Dynamic typing. Variables are bound to
values of different types at runtime. All type
checking done at runtime.

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

21

Lecture Outline

= Functional Programming Languages

s Scheme

= S-expressions and lists
= CONS, car, cdr

» Defining functions

= Examples of recursive functions
= Shallow vs. deep recursion

= Equality testing

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

22

Scheme: Defining Funcitons

Fcn-def ;= (define (Fcn-name {Param}) S-expr)
Fcn-name should be a new name for a function.
Param should be variable(s) that appear in the
S-expr which is the function body.

Fcn-def ;= (define Fcn-name Fcn-value)
Fcn-value ::= (lambda ({Param}) S-expr)

where Param variables are expected to appear in the
S-expr; called a lambda expression.

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 23

Examples

(define (zerocheck? x)
(if (= x 0) #t #£))

If-expr ::= (if S-expr0 S-expr1 S-expr2)
where S-exprO must evaluate to a boolean value; if that
value is #t, then the If-expr yields the result of S-expr1,

otherwise it yields the result of S-expr2.

(zerocheck? 1) yields #£,
(zerocheck? (* 1 0)) yields #t

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

24

Examples

(define (atom? object)
(not (pair? object)))

Here pair? is a built-in type predicate. It yields #t
iIf the argument is a non-trivial S-expr (i.e., something
one can take the cdr of). It yields #£ otherwise.

not Is the built-in logical operator.

What does atom? do?

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

25

Examples

(define square (lambda (n) (* n n)))

= Associates the Fcn-name square with the function
value (lambda (n) (* n n))

= Lambda calculus is a formal theory of functions

= Set of functions definable using lambda calculus (Church
1941) is same as set of functions computable as Turing
Machines (Turing 1930’s)

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 26

Trace of Evaluation

(define (atom? object)

(not (pair? object)))

(atom? " (a))
-obtain function value corresponding to atom?
-evaluate * (a) obtaining (a)
-evaluate (not (pair? ‘(a)))
-obtain function value corresponding to not
-evaluate (pair? ‘(a))
-obtain function value corresponding to pair?
-evaluate ' (a) obtaining (a)
-return value #t
-return #£
-return #£

27

Read-Eval-Print Loop (REPL)

= Scheme interpreter runs read-eval-print loop

= Read input from user
= A function application

= Evaluate input
=« (e1e2e3d ... ek)

Evaluate e1 to obtain a function
Evaluate e2, ... , ek to values

Execute function body using values from previous step as
parameter values

Return value

= Print return value

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

28

® DrScheme File Edit View Language Racket Insert Windows Help

(define (zerocheck? x)
(if (= x 0)
#t
#5))
(define (len 1)
(if (egq? 1 '())
0 icintosh HD
(+ (len (cdr 1)) 1)

” DECIITION WINDOW

(WE WerTe FuNCTONS HERE.)

Welcome to DrRacket, version 5.0.1 [3m).
Language: RSRS; memory limit: 128 MB.
> (len '())

0

> (len '"{(a b ¢))

3

> InTERPEETER (ie. EVALLATION) WINDOW
(We VAU ATE EXPRESS)IODNS

Katarina

N AN A |

e SR A

Programming Languages CSCI 4430, A. Milanova 29

Conditional Execution

(1f el e2 e3)

(cond (el hl) (e2 h2) .. (en-1
(else hn))

s Cond is like if — then — else if construct

(define (zerocheck? x)
(cond ((= x 0) #t) (else #£)))
OR
(define (zchk? x)
(cond ((number? x) (zero? x))
(else #f£)))

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

hn-1)

30

Recursive Functions

(define (len x)
(cond ((null? x) 0) (else (+ 1 (len (cdr x))))))

(len " (1 2)) should yield 2. rlei‘t‘”':ijesf*;f]'::‘:gn
Trace: (len " (1 2)) =--top level call
x = (1 2)
(len " (2)) =--recursive call1
x = (2)

(len " ()) --recursive call 2
x = ()
returns 0 -- return for call 2
returns (+ 1 0) = 1 --return for call 1
returns (+ 1 1) = 2 --return for top level call
(len ‘((a) b (¢ d))) yields what?

Recursive Functions

(define (app x Yy) app is a shallow
(cond ((null? x) Y) recursive function
((null? y) x) Remen kER PROLOG ?
(else Ca/?,ﬂ(,hd(c-],A',A)a
append ([#1R7,C, [41DT) § -
(cons (car x) appesd (B¢, D).

(app (cdr x) y)))))

= What does app do?

(app () “()) yields ?
(app ‘() ‘(1 4 5)) yields ?
(app ‘(5 9) ‘(a (4) 6)) yields?

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 32

Exercise

(define (len x)
(cond ((null? x) 0) (else (+ 1 (len (cdr x))))))

Write a version of 1en that uses if instead of cond

Write a function countlists that counts the number
of list elements in a list. E.g.,

(countlists ‘(a)) yields 0
(countlists ‘(a (b c (d)) (e))) yields 2

Recall (1ist? 1) returns trueif 1 is a list, false
otherwise 33

Recursive Functions

(define (fun x) fun is a deep
(cond ((null? x) 0) recursive function
((atom? x) 1)

(else (+ (fun (car x))
(fun (cdr x))))))

What does fun do?

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 34

fun counts atoms In a list

(define (atomcount x) atomcount is a deep
(cond ((null? x) 0) recursive function
((atom? x) 1)
(else (+ (atomcount (car x)) (atomcount (cdr x))))))

(atomcount ‘(a)) yields 1
(atomcount ‘(1 (2 (3)) (5))) yields 4

Trace: (atomcount (1 (2 (3)))
1> (+ (atomcount 1) (atomcount ‘((2 (3)))))

2> (+ tomcount ‘(2 (3)))(atomcount ()))
(+ (atomcount 2) (atomcount ((3))) \
/ 4> (+ (atomcount ‘(3)) (atomcount ‘())) 0

5> (+ (atomcount 3) (atomcount “(')))

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 35

Exercise

x Write a function £1atten that flattens a list

(fElatten ‘(1 (2 (3)))) vyields (1 2 3)

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 36

Lecture Outline

= Functional Programming Languages

s Scheme

= S-expressions and lists
= CONS, car, cdr

= Defining functions

= Examples of recursive functions
= Shallow vs. deep recursion

= Equality testing

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

37

Equality Testing

eq”?
= Built-in predicate that can check atoms for equal values
= Does not work on lists in the way you might expect!
eql?
= Our predicate that works on lists
(define (eql? x vy)
(or (and (atom? x) (atom? y) (eqg? x vVy))
(and (not (atom? x)) (not (atom? y))
(eql? (car x) (car vy))
(eql? (cdr x) (cdr y)))))
equal®?
= Built-in predicate that works on lists 38

Examples

€

(eql? ‘(a) ‘(a)) yields what?
(eql? ‘a ‘b) yields what?
(eql? ‘b ‘b) yields what?
(eql? ‘()) ‘(a)) yields what?

)
[y

(eg? ‘a ‘a) yields what?
(eg? ‘(?) ‘(a)) yields what?
ipm DA
) yields what? < egue((5

More on Equality Testing next time!

Programming Languages CSCI 4430, A. Milanova/B.G. Ryder

39

The Enad

Programming Languages CSCI 4430, A. Milanova

40

