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Announcements 

n Updated Rainbow grades
n Quiz 1-4
n HW 1-2

n We will be couple of weeks late grading HW3

n HW4 out
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Functional Programming with 
Scheme

Read: Scott, Chapter 11.1-11.3



Programming Languages CSCI 4430, A. Milanova/B.G. Ryder 3

Lecture Outline

n Functional programming languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing
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Racket/PLT Scheme/DrScheme

n Download Racket
(was PLT Scheme (was DrScheme))
n http://racket-lang.org/
n Run DrRacket
n Languages => Choose Language => Other 

Languages => Legacy Languages: R5RS
n One additional textbook/tutorial: 

n Teach Yourself Scheme in Fixnum Days by Dorai
Sitaram:

https://ds26gte.github.io/tyscheme/index.html

http://racket-lang.org/
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First, Imperative Languages

n The concept of assignment is central
n X:=5; Y:=10; Z:=X+Y; W:=f(Z);

n Side effects on memory
n Program semantics (i.e., how the program 

works): state-transition semantics
n A program is a sequence of assignment 

statements with effect on memory (i.e., state)
C := 0;
for I := 1 step 1 until N do
t := a[I]*b[I];
C := C + t;
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Imperative Languages

n Functions (also called procedures,  
subroutines, or routines) have side effects:
Roughly: 
n A function call affects visible state; i.e., a function 

call may change state in a way that affects 
execution of other functions

n Also, result of a function call depends on visible 
state; i.e., function call is not independent of the 
context of the call
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Imperative Languages

n Functions are, traditionally, not first-class 
values
n A first-class value is one that can be passed as 

argument to functions, and returned as result 
from functions

n In a language with assignments, it can be assigned 
into a variable or structure

n Are functions in C first-class values?
n As languages become more multi-paradigm, 

imperative languages increasingly support 
functions as first-class values (JS, R, Python, 
Java 8, C++11)
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Functional Languages
n Program semantics: reduction semantics

n A program is a set of function definitions and their 
application to arguments

n Variables appear as parameters
n Bound to values at calls

Def IP = (Insert +) º (ApplyToAll *) º Transpose
IP <<1,2,3>,<6,5,4>>     is
(Insert +) ((ApplyToAll *)    

(Transpose <<1,2,3>,<6,5,4>>))
(Insert +) ((ApplyToAll *) <<1,6>,<2,5>,<3,4>>)
(Insert +) <6,10,12>
28

Function composition
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Functional Languages
n In pure functional languages, there is no 

notion of assignment, no notion of state
n Variables are bound to values only through 

parameter associations
n No side effects!

n Referential transparency
n Roughly: 

n Result of function application is independent of 
context where the function application occurs; 
function application (on same argument of course) 
can be replaced by result 
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Functional Languages
n Functions are first-class values

n Can be returned as value of a function 
application

n Can be passed as an argument
n In a language with assignment, can be assigned 

into variables and structures

n Unnamed functions exist as values
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Lecture Outline

n Functional programming languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing
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Lisp and Scheme
n Lisp is the second oldest high-level programming 

language!
n Simple syntax
n Program code and data have same syntactic form

n The S-expression
n Function application written in prefix form

(e1 e2  e3 … ek) means
n Evaluate e1 to a function value
n Evaluate each of e2,…,ek to values
n Apply the function to these values
(+ 1 3) evaluates to 4
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History

Lisp
1950’s
John McCarthy

Scheme
1975
Guy Steele
Gerald Sussman

Common Lisp

dynamic scoping lexical scoping
functions as first-class values



Why Scheme?

n Simple syntax! Great to introduce core functional 
programming concepts
n Reduction semantics
n Lists and recursion
n Higher order functions
n Evaluation order
n Parametric polymorphism 

n Later we’ll see Haskell and new concepts
n Algebraic data types and pattern matching
n Lazy evaluation
n Type inference 14
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S-expressions

S-expr ::= Name | Number | ( { S-expr }  )

n Name is a symbolic constant (a string of chars which 
starts off with anything that can’t start a Number)

n Number is an integer or real number
n List of zero or more S-expr’s
n E.g., (a (b c) (d)) is a list S-expr

a

b
c ( )

d ( )
( )
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List Functions
n car and cdr

n Given a list, they decompose it into first element, 
rest-of-list portions

n E.g., car of (a (b c) (d)) is a
n E.g., cdr of (a (b c) (d)) is ((b c)(d))

n cons
n Given an element and a list, cons builds a new list 

with the element as its car and the list as its cdr
n cons of a and (b) is (a b)

n () is the empty list
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Quoting
n ‘ or quote prevents the Scheme 
interpreter from evaluating the argument

(quote (+ 3 4)) yields (+ 3 4)

‘(+ 3 4) yields (+ 3 4)

Whereas (+ 3 4) yields 7

n Why do we need quote?
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Questions
(car  ‘(a b c)) yields ?
(car  ‘((a) b (c d))) yields ? 
(cdr ‘(a b c)) yields ?
(cdr ‘((a) b (c d))) yields ?

Can compose these operators in a short-hand manner. Can
reach arbitrary list element by composition of car’s and cdr’s.
(car (cdr (cdr ‘((a) b (c d)) )))

can also be written 
(caddr ‘((a) b (c d)) )
(car (cdr (cdr ‘((a) b (c d)) ))) = 
(car (cdr ‘( b (c d))) = (car ‘((c d))) = (c d)

a   ()

b

c 
d  () ()

((a) b (c d))
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Questions 

n Recall cons
n E.g., (cons ‘a ‘(b c)) yields (a b c)

(cons ‘d ‘(e)) yields ?
(cons ‘(a b) ‘(c d)) yields ?
(cons ‘(a b c)  ‘((a) b (c d))) yields ?
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Type Predicates
n Note the quote: it prevents evaluation of the 

argument 
(symbol? ‘sam) yields #t (symbol? 1) yields #f
(number? ‘sam) yields #f (number? 1) yields #t
(list? ‘(a b)) yields #t (list? ‘a) yields #f
(null? ‘()) yields #t (null? ‘(a b)) yields #f
(zero? 0) yields #t (zero? 1) yields #f

Can compose these.
(zero? (- 3  3)) yields #t Note that since this
language is fully parenthesized, there are no precedence
problems in expressions!



Question

n What is the typing discipline in Scheme?
n Static or dynamic?

n Answer: Dynamic typing. Variables are bound to 
values of different types at runtime. All type 
checking done at runtime. 
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Lecture Outline

n Functional Programming Languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing
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Scheme: Defining Funcitons

Fcn-def ::= (define (Fcn-name {Param}) S-expr)
Fcn-name should be a new name for a function.
Param should be variable(s) that appear in the 
S-expr which is the function body.

Fcn-def ::= (define Fcn-name Fcn-value)
Fcn-value ::= (lambda ( {Param} ) S-expr)
where Param variables are expected to appear in the 

S-expr; called a lambda expression.
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Examples

(define (zerocheck? x) 
(if (= x 0) #t #f) )

If-expr ::= ( if S-expr0 S-expr1 S-expr2 )
where S-expr0 must evaluate to a boolean value; if that 
value is #t, then the If-expr yields the result of S-expr1, 
otherwise it yields the result of S-expr2.

(zerocheck? 1) yields #f, 
(zerocheck? (* 1 0)) yields #t
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Examples

(define (atom? object) 
(not  (pair? object)) )

Here pair? is a built-in type predicate. It yields #t
if the argument is a non-trivial S-expr (i.e., something 
one can take the cdr of). It yields #f otherwise.

not is the built-in logical operator.

What does atom? do?
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Examples

(define square (lambda (n) (*  n  n)))

n Associates the Fcn-name square with the function 
value (lambda (n)  (*  n  n))

n Lambda calculus is a formal theory of functions 
n Set of functions definable using lambda calculus (Church 

1941) is same as set of functions computable as Turing 
Machines (Turing 1930’s)
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Trace of Evaluation
(define (atom? object) 
(not  (pair? object)) )

(atom? `(a))
-obtain function value corresponding to atom?
-evaluate `(a) obtaining (a)
-evaluate (not (pair? ‘(a)))

-obtain function value corresponding to not
-evaluate (pair? ‘(a))

-obtain function value corresponding to pair?
-evaluate ‘(a) obtaining (a)
-return value #t

-return #f
-return #f
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Read-Eval-Print Loop (REPL)
n Scheme interpreter runs read-eval-print loop

n Read input from user
n A function application

n Evaluate input
n (e1 e2 e3 … ek)

n Evaluate e1 to obtain a function
n Evaluate e2, … , ek to values
n Execute function body using values from previous step as 

parameter values
n Return value

n Print return value
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Conditional Execution

(if e1  e2  e3)
(cond (e1  h1) (e2  h2) … (en-1  hn-1) 
(else hn))

n Cond is like if – then – else if construct

(define (zerocheck? x) 
(cond ((=  x  0)  #t)  (else  #f)))

OR
(define (zchk?  x)
(cond ((number? x) (zero? x))

(else #f)))
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Recursive Functions
(define (len x)  
(cond ((null?  x)  0)  (else  (+ 1 (len (cdr  x))))))

(len `(1  2)) should yield 2.
Trace:(len `(1  2)) -- top level call

x = (1  2)
(len `(2)) -- recursive call 1
x = (2)

(len `()) -- recursive call 2
x = ()
returns 0 -- return for call 2

returns (+  1  0) = 1 --return for call 1
returns (+ 1  1) = 2 -- return for top level call

(len ‘((a) b (c  d))) yields what?

len is a shallow  
recursive function
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Recursive Functions
(define (app  x  y)
(cond ((null?  x)  y)

((null?  y)  x)
(else 
(cons (car x) 

(app (cdr x)  y)))))

n What does app do? 

(app ‘() ‘()) yields ?
(app ‘() ‘(1 4 5)) yields ?
(app ‘(5  9) ‘(a  (4)  6)) yields ?

app is a shallow  
recursive function
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Exercise
(define (len x)  
(cond ((null?  x)  0)  (else  (+ 1 (len (cdr  x))))))

Write a version of len that uses if instead of cond

Write a function countlists that counts the number
of list elements in a list. E.g., 

(countlists ‘(a)) yields 0
(countlists ‘(a (b c (d)) (e))) yields 2 

Recall (list? l) returns true if l is a list, false 
otherwise 
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Recursive Functions
(define  (fun  x)
(cond ((null? x)  0)

((atom? x)  1)
(else  (+ (fun  (car x))  

(fun  (cdr x)))) ))

fun is a deep  
recursive function 

What does fun do? 
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fun counts atoms in a list
(define  (atomcount x)

(cond ((null?  x)  0)
((atom? x)  1)
(else  (+ (atomcount (car x))  (atomcount (cdr x)))) ))

(atomcount ‘(a)) yields 1
(atomcount ‘(1 (2 (3)) (5)) ) yields 4

Trace: (atomcount ‘(1 (2 (3)) )
1> (+   (atomcount 1) (atomcount ‘( (2 (3)) ) ))

2> (+ (atomcount ‘(2 (3)) ) (atomcount ‘( ) ) )
3> (+  (atomcount 2) (atomcount ‘((3)) )

4> (+ (atomcount ‘(3)) (atomcount ‘( )) )
5> (+ (atomcount 3) (atomcount ‘( )))

0
1

atomcount is a deep  
recursive function 
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Exercise

n Write a function flatten that flattens a list

(flatten ‘(1 (2 (3)))) yields (1 2 3)
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Lecture Outline

n Functional Programming Languages
n Scheme

n S-expressions and lists
n cons, car, cdr

n Defining functions
n Examples of recursive functions

n Shallow vs. deep recursion
n Equality testing



38

Equality Testing
eq?

n Built-in predicate that can check atoms for equal values
n Does not work on lists in the way you might expect!

eql?
n Our predicate that works on lists
(define (eql?  x  y)
(or (and (atom?  x) (atom? y) (eq?  x  y))

(and  (not (atom? x)) (not (atom? y))
(eql?  (car x)  (car y))
(eql?  (cdr x)  (cdr y)) )))

equal?
n Built-in predicate that works on lists 
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Examples
(eql?  ‘(a)  ‘(a)) yields what?
(eql?  ‘a  ‘b) yields what?
(eql?  ‘b  ‘b) yields what?
(eql?  ‘((a)) ‘(a)) yields what?

(eq? ‘a  ‘a) yields what?
(eq? ‘(a)  ‘(a)) yields what?

(equal? ‘(a)  ‘(a)) yields what?

More on Equality Testing next time!



The End
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