Functional Programming with Scheme

Read: Scott, Chapter 11.1-11.3
Lecture Outline

- Functional programming languages
- Scheme
 - S-expressions and lists
 - cons, car, cdr
 - Defining functions
 - Examples of recursive functions
 - Shallow vs. deep recursion
 - Equality testing
Download Racket
(was PLT Scheme (was DrScheme))

- Run DrRacket
- Languages => Choose Language => Other Languages => Legacy Languages: R5RS

One additional textbook/tutorial:
- Teach Yourself Scheme in Fixnum Days by Dorai Sitaram:

 https://ds26gte.github.io/tyscheme/index.html
First, Imperative Languages

- The concept of **assignment** is central
 - \(X := 5; \ Y := 10; \ Z := X + Y; \ W := f(Z); \)

- Side effects on memory

- Program semantics (i.e., how the program works): **state-transition semantics**
 - A program is a sequence of assignment statements with effect on memory (i.e., state)
 - \(C := 0; \)
 - \(\text{for } I := 1 \text{ step } 1 \text{ until } N \text{ do} \)
 - \(t := a[I] \times b[I]; \)
 - \(C := C + t; \)
Functions (also called “procedures”, “subroutines”, or routines) have side effects:

Roughly:

- A function call affects visible state; i.e., a function call may change state in a way that affects execution of other functions; in general, function call cannot be replaced by result.
- Also, result of a function call depends on visible state; i.e., function call is not independent of the context of the call.
Functions are, traditionally, not first-class values

- A first-class value is one that can be passed as argument to functions, and returned as result from functions
 - In a language with assignments, it can be assigned into a variable or structure
- Are functions in C first-class values?
- As languages become more multi-paradigm, imperative languages increasingly support functions as first-class values (JS, R, Python, Java 8, C++11)
Functional Languages

- Program semantics: reduction semantics
 - A program is a set of function definitions and their application to arguments

\[
\text{Def } \text{IP} = (\text{Insert }+) \circ (\text{ApplyToAll }\ast) \circ \text{Transpose}
\]

\[
\text{IP }<<(1,2,3),<6,5,4>> \text{ is }
(\text{Insert }+) ((\text{ApplyToAll }\ast) (\text{Transpose}
\quad <<1,2,3>,<6,5,4>>>))
\]

\[
(\text{Insert }+) ((\text{ApplyToAll }\ast) <<1,6>,<2,5>,<3,4>>>)
\]

\[
(\text{Insert }+) <6,10,12>
\]

28
Functional Languages

- In pure functional languages, there is no notion of assignment, no notion of state
 - Variables are bound to values **only** through parameter associations
 - **No side effects!**

- Referential transparency
 - Roughly:
 - Result of function application is independent of context where the function application occurs; function application can be replaced by result
Functional Languages

- Functions are **first-class values**
 - Can be returned as value of a function application
 - Can be passed as an argument
 - In a language with assignment, can be assigned into variables and structures

- Unnamed functions exist as values
Lecture Outline

- Functional programming languages
- Scheme
 - S-expressions and lists
 - cons, car, cdr
 - Defining functions
 - Examples of recursive functions
 - Shallow vs. deep recursion
 - Equality testing
Lisp and Scheme

- **Lisp** is the second oldest high-level programming language!
 - Simple syntax
 - Program code and data have same syntactic form
 - The S-expression
 - Function application written in prefix form
 - \((e_1 \ e_2 \ e_3 \ldots \ e_k)\) means
 - Evaluate \(e_1\) to a function value
 - Evaluate each of \(e_2, \ldots, e_k\) to values
 - Apply the function to these values
 - \((+ \ 1 \ 3)\) evaluates to 4
History

Lisp
1950’s
John McCarthy

Scheme
1975
Guy Steele
Gerald Sussman

Common Lisp

dynamic scoping

lexical scoping
functions as first-class values
Why Scheme?

- Simple syntax! Great to introduce core functional programming concepts
 - Reduction semantics
 - Lists and recursion
 - Higher order functions
 - Evaluation order
 - Parametric polymorphism
- Later we’ll see Haskell and new concepts
 - Algebraic data types and pattern matching
 - Lazy evaluation
 - Type inference
S-expressions

S-expr ::= Name | Number | ({ S-expr })

- Name is a symbolic constant (a string of chars which starts off with anything that can’t start a Number)
- Number is an integer or real number
- List of zero or more S-expr’s
- E.g., (a (b c) (d)) is a list S-expr
List Functions

- **car** and **cdr**
 - Given a list, they decompose it into first element, rest-of-list portions
 - E.g., **car** of `(a (b c) (d))` is `a`
 - E.g., **cdr** of `(a (b c) (d))` is `((b c) (d))`

- **cons**
 - Given an element and a list, **cons** builds a new list with the element as its **car** and the list as its **cdr**
 - **cons** of `a` and `(b)` is `(a b)`

- `()` is the empty list
Quoting

- `quote` prevents the Scheme interpreter from evaluating the argument

(quote (+ 3 4)) yields (+ 3 4)

`(+ 3 4)` yields (+ 3 4)

Whereas (+ 3 4) yields 7

- Why do we need quote?
Questions

(car '(a b c)) yields ?
(car '((a) b (c d))) yields ?
(cdr '(a b c)) yields ?
(cdr '((a) b (c d))) yields ?

Can compose these operators in a short-hand manner. Can reach arbitrary list element by composition of car’s and cdr’s.

(car (cdr (cdr '((a) b (c d)))))

can also be written

(caddr '((a) b (c d)))

(car (cdr (cdr '((a) b (c d))))) =
(car (cdr '((b (c d))))) = (car '((c d))) = (c d)
Questions

- Recall cons
 - E.g., \((\text{cons } 'a ' (b c))\) yields \((a b c)\)

\((\text{cons } 'd ' (e))\) yields ?
\((\text{cons } '(a b) ' (c d))\) yields ?
\((\text{cons } '(a b c) ' ((a) b (c d)))\) yields ?
Type Predicates

- Note the **quote**: it prevents evaluation of the argument

\[
\begin{align*}
(symbol? 'sam) &\quad \text{yields } #t \\
(symbol? 1) &\quad \text{yields } #f \\
(number? 'sam) &\quad \text{yields } #f \\
(number? 1) &\quad \text{yields } #t \\
(list? '(a b)) &\quad \text{yields } #t \\
(list? 'a) &\quad \text{yields } #f \\
(null? '()) &\quad \text{yields } #t \\
(null? '(a b)) &\quad \text{yields } #f \\
(zero? 0) &\quad \text{yields } #t \\
(zero? 1) &\quad \text{yields } #f
\end{align*}
\]

Can compose these.

\[
(zero? (- 3 3)) \quad \text{yields } #t
\]

Note that since this language is fully parenthesized, there are no precedence problems in expressions!
Question

What is the typing discipline in Scheme?

- Static or dynamic?

Answer: Dynamic typing. Variables are bound to values of different types at runtime. All type checking done at runtime.
Lecture Outline

- Functional Programming Languages
- Scheme
 - S-expressions and lists
 - `cons`, `car`, `cdr`
 - Defining functions
 - Examples of recursive functions
 - Shallow vs. deep recursion
 - Equality testing
Scheme: Defining Functions

Fcn-def ::= (define (Fcn-name {Param}) S-expr)
Fcn-name should be a new name for a function.
Param should be variable(s) that appear in the S-expr which is the function body.

Fcn-def ::= (define Fcn-name Fcn-value)
Fcn-value ::= (lambda (_{Param}) S-expr)
where Param variables are expected to appear in the S-expr; called a lambda expression.
Examples

\[(\text{define} \ (\text{zerocheck?} \ x) \)\]
\[\quad (\text{if} \ (= \ x \ 0) \ \#t \ \#f) \)\]

If-expr ::= (if S-expr0 S-expr1 S-expr2)
where S-expr0 must evaluate to a boolean value; if that value is \#t, then the If-expr yields the result of S-expr1, otherwise it yields the result of S-expr2.

\((\text{zerocheck?} \ 1) \ \text{yields} \ \#f,\)
\((\text{zerocheck?} \ (* \ 1 \ 0)) \ \text{yields} \ \#t\)
Examples

(define (atom? object)
 (not (pair? object)))

Here \texttt{pair?} is a built-in type predicate. It yields \texttt{#t} if the argument is a non-trivial S-expr (i.e., something one can take the \texttt{cdr} of). It yields \texttt{#f} otherwise.

\texttt{not} is the built-in logical operator.

What does \texttt{atom?} do?
Examples

\[
\text{(define square (lambda (n) (* n n)))}
\]

- Associates the Fcn-name square with the function value \((\text{lambda } (n) (\times \ n \ n))\)

- \text{Lambda calculus} is a formal theory of functions
 - Set of functions definable using lambda calculus (Church 1941) is same as set of functions computable as Turing Machines (Turing 1930’s)
(define (atom? object)
 (not (pair? object)))

(atom? `(a))
- obtain function value corresponding to atom?
- evaluate `(a) obtaining (a)
- evaluate (not (pair? `(a)))
 - obtain function value corresponding to not
 - evaluate (pair? `(a))
 - obtain function value corresponding to pair?
 - evaluate `(a) obtaining (a)
 - return value #t
 - return #f
- return #f
Read-Eval-Print Loop (REPL)

- Scheme interpreter runs read-eval-print loop
 - **Read** input from user
 - A function application
 - **Evaluate** input
 - \((e_1 \ e_2 \ e_3 \ldots \ e_k)\)
 - Evaluate \(e_1\) to obtain a function
 - Evaluate \(e_2, \ldots, e_k\) to values
 - Execute function body using values from previous step as parameter values
 - Return value
 - **Print** return value
(define (searchcheck? m)
 (if (= m 0)
 #f
 #t))
(define (len l)
 (if (eq? l '())
 0
 (+ (len (cdr l)) 1)))
Conditional Execution

(if e1 e2 e3)
(cond (e1 h1) (e2 h2) ... (en-1 hn-1)
 (else hn))

- Cond is like if – then – else if construct

(define (zerocheck? x)
 (cond ((= x 0) #t) (else #f)))

OR

(define (zchk? x)
 (cond ((number? x) (zero? x))
 (else #f)))
Recursive Functions

\[(\text{define } (\text{len} \ x))\]
\[= (\text{cond } ((\text{null?} \ x) \ 0) \ (\text{else } (+ \ 1 \ (\text{len} \ \text{cdr} \ x)))))]

\[(\text{len} \ '(1 \ 2)) \text{ should yield } 2.\]

Trace: \[(\text{len} \ '(1 \ 2)) \text{ -- top level call}\]
\[x = (1 \ 2)\]
\[(\text{len} \ '(2)) \text{ -- recursive call 1}\]
\[x = (2)\]
\[(\text{len} \ '()) \text{ -- recursive call 2}\]
\[x = ()\]
returns 0 -- return for call 2
returns \((+ \ 1 \ 0) = 1\) -- return for call 1
returns \((+ \ 1 \ 1) = 2\) -- return for top level call

\[(\text{len} \ '((a) \ b \ (c \ d))) \text{ yields what?}\]
Recursive Functions

```
(define (app x y)
 (cond ((null? x) y)
       ((null? y) x)
       (else
        (cons (car x)
              (app (cdr x) y))))))
```

- What does \texttt{app} do?

\begin{itemize}
 \item \texttt{(app `(()) `()) yields ?}
 \item \texttt{(app `(()) `(1 4 5)) yields ?}
 \item \texttt{(app `(5 9) `(a (4) 6)) yields ?}
\end{itemize}

\texttt{app} is a shallow recursive function
Exercise

(define (len x)
 (cond ((null? x) 0) (else (+ 1 (len (cdr x))))))

Write a version of \texttt{len} that uses \texttt{if} instead of \texttt{cond}

Write a function \texttt{countlists} that counts the number of list elements in a list. E.g.,

\begin{verbatim}
(countlists '(a)) yields 0
(countlists '(a (b c (d)) (e))) yields 2
\end{verbatim}

Recall \texttt{(list? 1)} returns true if 1 is a list, false otherwise
Recursive Functions

(define (fun x)
 (cond ((null? x) 0)
 ((atom? x) 1)
 (else (+ (fun (car x))
 (fun (cdr x))))))

fun is a deep recursive function

What does fun do?
fun counts atoms in a list

(define (atomcount x)
 (cond ((null? x) 0)
 ((atom? x) 1)
 (else (+ (atomcount (car x)) (atomcount (cdr x)))))))

(atomcount '(a)) yields 1
(atomcount '(1 (2 (3)) (5))) yields 4

Trace: (atomcount '(1 (2 (3)))
 1> (+ (atomcount 1) (atomcount '((2 (3)))))
 2> (+ (atomcount ‘(2 (3))) (atomcount ‘()))
 3> (+ (atomcount 2) (atomcount ‘((3)))
 4> (+ (atomcount ‘(3)) (atomcount ‘()))
 5> (+ (atomcount 3) (atomcount ‘()))

atomcount is a deep recursive function
Exercise

- Write a function `flatten` that flattens a list

```
(flatten '(1 (2 (3)))) yields (1 2 3)
```
Lecture Outline

- Functional Programming Languages
- Scheme
 - S-expressions and lists
 - cons, car, cdr
 - Defining functions
 - Examples of recursive functions
 - Shallow vs. deep recursion
 - Equality testing
Equality Testing

eq?

- Built-in predicate that can check atoms for equal values
- Does not work on lists in the way you might expect!

eql?

- Our predicate that works on lists

 (define (eql? x y)
 (or (and (atom? x) (atom? y) (eq? x y))
 (and (not (atom? x)) (not (atom? y))
 (eql? (car x) (car y))
 (eql? (cdr x) (cdr y)))))

equal?

- Built-in predicate that works on lists
Examples

(eql? ‘(a) ‘(a)) yields what?
(eql? ‘a ‘b) yields what?
(eql? ‘b ‘b) yields what?
(eql? ‘((a)) ‘(a)) yields what?

(eq? ‘a ‘a) yields what?
(eq? ‘(a) ‘(a)) yields what?
Models for Variables

- **Value model** for variables
 - A variable is a *location* that holds a *value*
 - I.e., a named container for a value
 - \(a := b \)

 ![l-value (the location) \rightarrow r-value (the value held in that location)]

- **Reference model** for variables
 - A variable is a *reference* to a *value*
 - Every variable is an l-value
 - Requires dereference when r-value needed (usually, but not always implicit)
Models for Variables: Example

Value model for variables

- $b := 2$
 - $b: 2$
- $c := b$
 - $c: 2$
- $a := b+c$
 - $a: 4$

Reference model for variables

- $b := 2$
 - $b \rightarrow 2$
- $c := b$
 - $c \rightarrow 2$
- $a := b+c$
 - $a \rightarrow 4$
Equality Testing: How does `eq?` work?

- Scheme uses the reference model for variables!

```
(define (f x y) (list x y))
```

Call `(f 'a 'a)` yields `(a a)`

- `x` refers to atom `a` and `y` refers to atom `a`.
- `eq?` checks that `x` and `y` both point to the same place.

Call `(f '(a) '(a))` yields `('(a) '(a))`

- `x` and `y` do not refer to the same list.
Models for Variables

- C/C++, Pascal, Fortran
 - Value model

- Java
 - Mixed model: value model for simple types, reference model for class types

- JS, Python, R, etc.
 - Reference model

- Scheme
 - Reference model! `eq?` is “reference equality” (akin of Java’s `==`), `equal?` is value equality
The End