Functional Programming with
Scheme

Keep reading: Scott, Chapter 11.1-
11.3, 11.5-11.6, Scott, 3.6

Lecture Outline

= Scheme
= Exercises with map, foldl and foldr

= Binding with let, let*, and letrec
= Scoping in Scheme

= Closures

= Scoping, revisited

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

(eas x'())
- (defiue (revz Cbis) J
EXGFCISGS (‘%)U{ (Muéc/a/(XJ) [o”gaJ\)r(lcx/x)) {ZS ’[))

(foldr op lis id)) CLusrent efes

Far te] resl t
op

e, e .1 (yen) id
(e, €,1) res;

o
(“€) res,,

Write rev2, which reverses a list,
using a single call to foldr

res, (define (rev2 lis) (foldr ...))

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 3

i (derue (lew 2 Lﬂ)
Exercises (U ((awéc/«/(xy) (#23)) Lo o)

) ar&i:lru-[u
(fold! op lis id) f o
x¢ elewe
—P
To (-e1_ % 62 e3 en
id, (e.2 We3 .. €
id, (e; e,)
p
Write len3, which computes id,., (e,)
length of list, using a single id
call to foldl —
(define (len3 lis) (foldl ...))

Exercises (1 (» (3)))—> (1 2 3)

(define (foldl op lis id) [
(if (null? lis) id =
(foldl op (cdr lis) (op id (car lis)))))

= Write flatten3 using map and foldl|/foldr

(define (fIa(ttenB &Uszﬂ)
d u? ts) 4
(e ('((Z?ou.? Ca)) (bi+ 1))

) (el (fo(a{(, aﬁmcl (m/o ﬂal/e«? n) 'U))

= Write flatten4 this time using foldl but not map.
i

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

024 W(ewcu/‘ab‘au.'
(defrue (rF[c«W&A &5)
(wc(((uatl? @r.\) ’C))
(Ceh? &) (ems €0 '()))
Cdxe (&ﬁiw (,ﬁ/alf&. e fn))
(Flote. (adr 3))))))

L i 7x
(CLEO? foucf(g((?-uuet{u;(en))‘(1)
((afou? n) (oF G1))
(the (fld] (lowbda (<y)

(epped x (Pabed y))]
Ory

$

Prog?mmirfg Languaggs CSCI 44302, A. Milanova/B. G. Ryder

Exercises

= Write a function that counts the appearances
of symbols a, b and c in a list of flat lists

= (count-sym ‘((a b) (c a) (a b d)) yields
((@3)(b2)(c1))

= Natural idea: use map and fold

= map and fold (or map and reduce), are the
foundation of Google’s MapReduce model

= Canonical MapReduce example [Dean and
Ghemawat OSDI’'04] is WordCount

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

Tail Recursion, A Bit More

= A tail expression is an expression that occurs
in tail context. Defined inductively as follows:
= The body of function is a tail expression
« If (if e1 e2 e3) is a tail expression, then e2 and
eJd are tail expressions
= Examples
(define (foldl op lis id)
Gt (null? lis) i
(foldl op (cdr lis) (op id (car lis)))))

Programming Languages CSCI 4430, A Milanova/B. G. Ryder 8

Tail Recursion, A Bit More

= A tail call is a tail expression that is a
function call. E.g.,
(define (foldl op lis id)
(if (null? lis) id
(foldl op (cdr lis) (op id (car lis)))))

= A tail recursive function is a function whose “leaf”
tail expressions are either returns or tail calls to
itself (still informal)

= Tail calls give rise to efficient implementation of
Continuation Passing Style (CPS)

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

Tail Recursion, A Bit More
74/4{ ﬁf?élulz-éc/

Aoy h)f@ B

/WDf&r fail recursin.

Programming Languages CSCI 4430, A Milanova/B. G. Ryder 10

Lecture Outline

= Scheme
= Exercises with map, foldl and foldr

= Binding with let, let*, and letrec
= Scoping in Scheme

= Closures

= Scoping, revisited

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

11

Let Expressions o, ot Latrec

Let-expr ::=_(let (Binding-list) S-expr1)
Let*-expr ;= (let* (Binding-list) S-expr1)
Binding-list ::= (Var S-expr) { (Var S-expr) }

= let and let® expressions define a binding between each Var
and the S-expr value, which holds during execution of
S-expr1

= |et evaluates the S-exprs in Binding-list in current
environment “in parallel”

= |et* evaluates the S-exprs from left to right

= Associate values with variables for the local computation

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 12

Questions
(Iet (x 2)) (* x X)) yields 4

/émiw oy §-exped Lot ((“) (y 1)) (+xy))¢
(let ((x 2)) (let((y 1)) (+ xvy))) yields what? 3

. —

~9 ,S?for (ié- Z)C) -eual,ua}el N e«.‘/,é] a«v:‘rol.a.euﬁ

gy (O, O
(let ((x 10) (y (* 2 x))) (* x y)) yields what?
- > Segpr (v 2x) tveluated ([g@
(% ib) e YO b ket
(let™ ((x 10) (y] (2 X b)) yields what?

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 13

Let Expressions

Letrec-expr ::= (letrec (Binding-list) S-expr1)
Binding-list ::= (Var S-expr) { (Var S-expr) }

= letrec Vars are bound to fresh locations holding undefined
values; S-exprs are evaluated “in parallel” in augmented
environment

= letrec allows for definition of mutually recursive functions

(letrec ((even? (lambda (n) (if (zero? n) #t (odd? (- n 1)))))
(odd? (lambda (n) (if (zero? n) #f (even? (- n 1)))))
)

(even? 88)

Regions (Scopes) in Scheme

= let, let* and letrec give rise to block structure

= They have the same syntax but define
different regions (scopes)

n et
= Region where blndlng IS actlve body of let

(b(- ((\Il Silffi) (vz S’c;wz)) S}k%?)

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 15

Regions (Scopes) in Scheme

= let, let* and letrec give rise to block structure

= They have the same syntax but define
different regions (scopes)

n let”
= Region: all bindings to the right plus body of let*

——
(@e,é* (ve S ex/?rz) (v2 S»exfrz)) S)Aexﬂ)

‘Tvl v2

Vi

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 16

Regions (Scopes) in Scheme

= let, let* and letrec give rise to block structure

= They have the same syntax but define
different regions (scopes)

= letrec
= Region: entire letrec expression

hd)
((ohec ((i St) (9 i) Ser)

Pestrichine : v jvi cauwof be used a4 velues n S’-ey/,,i o {eeprs.

Vi, VL Vi .vL Vi L

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 17

Let Introduces Nested Scopes

(let ((x 10)) s 440 fuchn ;chses X to be bound to 10

(let ((f (lambda (a) (+ a x))) ;causes f to be bound to
(¢x2) (f ¢-)j|lambda expression

def(x 2)lf 5))))

—

Assuming that Scheme uses static scoping, what would
this expression yield? ,/5‘
—

[leb (cx2)) (£$)) vs
(@kre ((x2)0 (£5))

Question

\ (define (f z) D5 Mo bues-S Puch.

[jet* ((x 5) (F(lambda (z) (* x 2))))
(mapf2))) |

|~

What does this function do?

Answer: takes a list of numbers, z, and maps it to
the times-5 list. E.g., (f '(1 2 3)) yields (5 10 15).

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 19

Scoping in Scheme:
Two Choices

(let ((x 10))

(let ((f (lambda (a) (Q x is a “free” variable;
(let ((x 2)) must be found in

“outer” scope
(* x (f3))))

ais a “bound” variable

With static scoping it evaluates to

(* x ((lambda (a)(+ a x)) 3)) -->
(* 2 ((lambda (a)(+ a 10)) 3))-->2?? Z2£&
With dynamic scopinm
(* x ((lambda (a)(+ a x)) 3)) -->
(* 2 ((lambda (a)(+a2)) 3))->??? Jo

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 20

Scheme Chose Static Scoping

(let ((x 10))
(let ((f (lambda (a) (+ a x))))

(let ((x 2))

fis a closure:
The function value: (lambda (a) (+ a x))

The environment: {x > 10} Pef enviveewen) 75
Scheme chose static scoping: J«# #e sfefic bae.

(* x (lambda (a)(+ a x) 3)) -->
(* 2 ((lambda (a)(+ a 10) 3)) ->
20

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 21

Closures

= A closure is a function value plus the
environment in which it is to be evaluated
= Function value: e.g., (lambda (x) (+ X y))

= Environment consists of bindings for variables
not local to the function so the closure can
eventually be evaluated: e.g.,{y —> 2}

= A closure can be used as a function
= Applied to arguments
=« Passed as an argument
= Returned as a value

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

22

Closures

= Normally, when let expression exits, its
bindings disappear

= Closure bindings (i.e., bindings part of a
closure) are special

= When let exits, bindings become inactive, but
they do not disappear

= When closure is called, bindings become active
= Closure bindings are “irp(amgitacl)”x)

(et (x5) 1 § xoslo
(let ((f (let((x 10)) (lambda () x))))
(listx((x ()) (5 (o & (2) 2

Lecture Outline

= Scheme
= Exercises with map, foldl and foldr

= Binding with let, let*, and letrec
= Scoping in Scheme

= Closures

= Scoping, revisited

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

24

Scoping, revisited (Scott, Ch. 3.6)

= \We discussed the two choices for mapping
non-local variables to locations
» Static scoping (early binding)
and
= Dynamic scoping (late binding)

= Most languages choose static scoping

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

25

¢
M

Scoping, revisited

= When we discussed scoping earlier, we m
assumed that functions were third-class —
values (i.e., functions cannot be passed as
arguments or returned from other functions)

s Functions as third-class values...

= When functions are third-class values, the
function’s static reference environment (i.e.,
closure bindings) is available on the stack.
Function cannot outlive its referencing
environment! 26

Functions as Third-Class Values and Static
Scoping

[program - | main : - | |
a}:éecdl:?;eger’ [‘ _ >, T~_ | Static Scoping:
fp - \ \ a bound to R.a,
ek — \ ' b to main.b
~procedure S 9 \\ \\ t n.n,
c, d: integer; \ | clomain.c
[procedure R b \\ :
C | I
end R main.P b
R();),
-end S; - 7 //
R(); -1 ” /
S(); -~ Y
\.end P: C _ /,'
procedure R main.R ’
a: integer; NG A
=a, b, c; 2
end R;
\ ... PO); ... a
end program .

Scoping, revisited

s Functions as first-class values

= Static scoping is more involved. Function
value may outlive static referencing
environment!

= Therefore, need “immortal” closure
bindings

= In languages that choose static scoping,
local variables must have “unlimited

extent” (i.e., when stack frame is popped,
local variables do not disappear!)

28

Scoping, revisited

= In functional languages local variables
typically have unlimited extent

= In imperative languages local variables
typically have limited extent (i.e., when stack
frame Is popped, local variables disappear)

= Imperative languages (Fortran, Pascal, C)
disallow truly first-class function values

= More and more languages do allow first-class
functions, e.g., Java 8, C++11

Programming Languages CSCI 4430, A. Milanova 29

More on Dynamic Scoping

= Shallow binding vs. deep binding

= Dynamic scoping with shallow binding

*

= Reference environment for function/routine is not
created until the function is called

= |l.e., all non-local references are resolved using the
most-recent-frame-on-stack rule

« Shallow binding is usually the default in
languages with dynamic scoping

= All examples of dynamic scoping we saw so far
used shallow binding 30

More on Dynamic Scoping

= Dynamic scoping with deep binding
= When a function/routine is passed as an

argument, the code that passes the
function/routine has a particular reference

environment (the current one!) in mind. It passes
this reference environment along with the

function value (it passes a closure).

Programming Languages CSCI 4430, A. Milanova 31

Example

v : integer := 10
people : database

print_routine (p : person)

if p;\ge ﬂ

write_person(p)

S P
Visg VvV B0
other_routine (db : database, P’procedure)

v :integer ;=5

foreach record r in db

P(r)

other_routine(people, print_routine) /* call in main */

— e ——— 32

Exercise

(define A
(lambda ()

ambda (P) (let ((x 4)) (P))))
ambda () x))
(B (lambda () (let ((x 3)) (C D)))))

(B))))

When we call > (A) in the interpreter, what gets printed? What
would get printed if Scheme used dynamic scoping with
shallow binding? Dynamic scoping and deep binding? 33

Evaluation Order

(define (square Xx) (* X X))

= Applicative-order (also referred to as eager)
evaluation
= Evaluates arguments before function value
(square (+ 34)) =>
(square 7) =>
F77)=>
49

Programming Languages CSCI 4430, A. Milanova

34

Evaluation Order

(define (square x) (* X X))
= Normal-order (also referred to as lazy)
evaluation
= Evaluates function value before arguments
(square (+ 34)) =>
(F(+34)(+34))=>
("7 (+34))=>
" 77)
49
= Scheme uses applicative-order evaluation 35

So Far

= Essential functional programming concepts
= Reduction semantics
= Lists and recursion

« Higher-order functions
= Map and fold (also known as reduce)

= Scoping
= Evaluation order

s Scheme

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

36

Coming Up

s Lambda calculus: theoretical foundation of
functional programming

= Haskell
= Algebraic data types and pattern matching
= Lazy evaluation
= Type inference
= Monads

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

37

The Enad

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

38

