
1

Functional Programming with
Scheme

Keep reading: Scott, Chapter 11.1-
11.3, 11.5-11.6, Scott, 3.6

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 2

Lecture Outline

n Scheme
n Exercises with map, foldl and foldr

n Binding with let, let*, and letrec
n Scoping in Scheme
n Closures

n Scoping, revisited

(foldr op lis id)

(e1 … en-1 en) id
(e1 … en-1) res1

…
(e1) resn-1

resn
3

Exercises

Write rev2, which reverses a list,
using a single call to foldr
(define (rev2 lis) (foldr …))

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

(foldl op lis id)

id (e1 e2 e3 … en)
id1 (e2 e3 … en)

id2 (e3 … en)
…

idn-1 (en)
idn

4

Exercises

Write len3, which computes
length of list, using a single
call to foldl
(define (len3 lis) (foldl …))

Exercises

5

(define (foldl op lis id)
(if (null? lis) id

(foldl op (cdr lis) (op id (car lis)))))

n Write flatten3 using map and foldl/foldr
(define (flatten3

n Write flatten4 this time using foldl but not map.

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 6

7

Exercises

n Write a function that counts the appearances
of symbols a, b and c in a list of flat lists
n (count-sym ‘((a b) (c a) (a b d)) yields

((a 3) (b 2) (c 1))
n Natural idea: use map and fold

n map and fold (or map and reduce), are the
foundation of Google’s MapReduce model
n Canonical MapReduce example [Dean and

Ghemawat OSDI’04] is WordCount

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

Tail Recursion, A Bit More

n A tail expression is an expression that occurs
in tail context. Defined inductively as follows:
n The body of function is a tail expression
n If (if e1 e2 e3) is a tail expression, then e2 and

e3 are tail expressions
n Examples
(define (foldl op lis id)

(if (null? lis) id
(foldl op (cdr lis) (op id (car lis)))))

Programming Languages CSCI 4430, A Milanova/B. G. Ryder 8

Tail Recursion, A Bit More

n A tail call is a tail expression that is a
function call. E.g.,
(define (foldl op lis id)

(if (null? lis) id
(foldl op (cdr lis) (op id (car lis)))))

n A tail recursive function is a function whose “leaf”
tail expressions are either returns or tail calls to
itself (still informal)

n Tail calls give rise to efficient implementation of
Continuation Passing Style (CPS)

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 9

Tail Recursion, A Bit More

10Programming Languages CSCI 4430, A Milanova/B. G. Ryder

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 11

Lecture Outline

n Scheme
n Exercises with map, foldl and foldr

n Binding with let, let*, and letrec
n Scoping in Scheme
n Closures

n Scoping, revisited

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 12

Let Expressions
Let-expr ::= (let (Binding-list) S-expr1)
Let*-expr ::= (let* (Binding-list) S-expr1)
Binding-list ::= (Var S-expr) { (Var S-expr) }

n let and let* expressions define a binding between each Var
and the S-expr value, which holds during execution of
S-expr1

n let evaluates the S-exprs in Binding-list in current
environment “in parallel”

n let* evaluates the S-exprs from left to right

n Associate values with variables for the local computation

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 13

Questions
(let ((x 2)) (* x x)) yields 4

(let ((x 2)) (let ((y 1)) (+ x y))) yields what?

(let ((x 10) (y (* 2 x))) (* x y)) yields what?

(let* ((x 10) (y (* 2 x))) (* x y)) yields what?

14

Let Expressions
Letrec-expr ::= (letrec (Binding-list) S-expr1)
Binding-list ::= (Var S-expr) { (Var S-expr) }

n letrec Vars are bound to fresh locations holding undefined
values; S-exprs are evaluated “in parallel” in augmented
environment

n letrec allows for definition of mutually recursive functions

(letrec ((even? (lambda (n) (if (zero? n) #t (odd? (- n 1)))))
(odd? (lambda (n) (if (zero? n) #f (even? (- n 1)))))
)

(even? 88)
)

Regions (Scopes) in Scheme

n let, let* and letrec give rise to block structure
n They have the same syntax but define

different regions (scopes)
n let

n Region where binding is active: body of let

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 15

Regions (Scopes) in Scheme

n let, let* and letrec give rise to block structure
n They have the same syntax but define

different regions (scopes)
n let*

n Region: all bindings to the right plus body of let*

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 16

Regions (Scopes) in Scheme

n let, let* and letrec give rise to block structure
n They have the same syntax but define

different regions (scopes)
n letrec

n Region: entire letrec expression

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 17

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 18

Let Introduces Nested Scopes

(let ((x 10)) ;causes x to be bound to 10
(let ((f (lambda (a) (+ a x))) ;causes f to be bound to

a lambda expression
(let ((x 2)) (f 5))))

Assuming that Scheme uses static scoping, what would
this expression yield?

Question

(define (f z)
(let* ((x 5) (f (lambda (z) (* x z))))

(map f z)))

What does this function do?

Answer: takes a list of numbers, z, and maps it to
the times-5 list. E.g., (f ‘(1 2 3)) yields (5 10 15).

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 19

20

With static scoping it evaluates to
(* x ((lambda (a)(+ a x)) 3)) -->

(* 2 ((lambda (a)(+ a 10)) 3)) --> ???
With dynamic scoping it evaluates to

(* x ((lambda (a)(+ a x)) 3)) -->
(* 2 ((lambda (a)(+ a 2)) 3)) --> ???

(let ((x 10))
(let ((f (lambda (a) (+ a x))))

(let ((x 2))
(* x (f 3))))

Scoping in Scheme:
Two Choices a is a “bound” variable

x is a “free” variable;
must be found in
“outer” scope

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

21

Scheme Chose Static Scoping

Scheme chose static scoping:
(* x (lambda (a)(+ a x) 3)) -->

(* 2 ((lambda (a)(+ a 10) 3)) -->
26

(let ((x 10))
(let ((f (lambda (a) (+ a x))))

(let ((x 2))
(* x (f 3))))

f is a closure:
The function value: (lambda (a) (+ a x))
The environment: { x ® 10 }

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

22

Closures

n A closure is a function value plus the
environment in which it is to be evaluated
n Function value: e.g., (lambda (x) (+ x y))
n Environment consists of bindings for variables

not local to the function so the closure can
eventually be evaluated: e.g., { y ® 2 }

n A closure can be used as a function
n Applied to arguments
n Passed as an argument
n Returned as a value

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

23

Closures

n Normally, when let expression exits, its
bindings disappear

n Closure bindings (i.e., bindings part of a
closure) are special
n When let exits, bindings become inactive, but

they do not disappear
n When closure is called, bindings become active
n Closure bindings are “immortal”

(let ((x 5))
(let ((f (let ((x 10)) (lambda () x))))

(list x (f) x (f))))

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 24

Lecture Outline

n Scheme
n Exercises with map, foldl and foldr

n Binding with let, let*, and letrec
n Scoping in Scheme
n Closures

n Scoping, revisited

Scoping, revisited (Scott, Ch. 3.6)

n We discussed the two choices for mapping
non-local variables to locations
n Static scoping (early binding)
and
n Dynamic scoping (late binding)

n Most languages choose static scoping

25Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

Scoping, revisited

n When we discussed scoping earlier, we
assumed that functions were third-class
values (i.e., functions cannot be passed as
arguments or returned from other functions)

n Functions as third-class values…
n When functions are third-class values, the

function’s static reference environment (i.e.,
closure bindings) is available on the stack.
Function cannot outlive its referencing
environment! 26

27

program
a, b, c: integer;
procedure P

c: integer;
procedure S

c, d: integer;
procedure R
…
end R;
R();

end S;
R();
S();

end P;
procedure R

a: integer;
= a, b, c;

end R;
…; P(); …

end program

Functions as Third-Class Values and Static
Scoping

main

a
b
c
main.P

c
main.R

a

Static Scoping:
a bound to R.a,
b to main.b,
c to main.c

Scoping, revisited

n Functions as first-class values
n Static scoping is more involved. Function

value may outlive static referencing
environment!

n Therefore, need “immortal” closure
bindings

n In languages that choose static scoping,
local variables must have “unlimited
extent” (i.e., when stack frame is popped,
local variables do not disappear!) 28

Scoping, revisited

n In functional languages local variables
typically have unlimited extent

n In imperative languages local variables
typically have limited extent (i.e., when stack
frame is popped, local variables disappear)
n Imperative languages (Fortran, Pascal, C)

disallow truly first-class function values
n More and more languages do allow first-class

functions, e.g., Java 8, C++11

Programming Languages CSCI 4430, A. Milanova 29

More on Dynamic Scoping

n Shallow binding vs. deep binding

n Dynamic scoping with shallow binding
n Reference environment for function/routine is not

created until the function is called
n I.e., all non-local references are resolved using the

most-recent-frame-on-stack rule
n Shallow binding is usually the default in

languages with dynamic scoping
n All examples of dynamic scoping we saw so far

used shallow binding 30

More on Dynamic Scoping

n Dynamic scoping with deep binding
n When a function/routine is passed as an

argument, the code that passes the
function/routine has a particular reference
environment (the current one!) in mind. It passes
this reference environment along with the
function value (it passes a closure).

Programming Languages CSCI 4430, A. Milanova 31

Example
v : integer := 10
people : database

print_routine (p : person)
if p.age > v

write_person(p)

other_routine (db : database, P : procedure)
v : integer := 5
foreach record r in db

P(r)

other_routine(people, print_routine) /* call in main */
32

Exercise

(define A
(lambda ()

(let* ((x 2)
(C (lambda (P) (let ((x 4)) (P))))
(D (lambda () x))
(B (lambda () (let ((x 3)) (C D)))))

(B))))
When we call > (A) in the interpreter, what gets printed? What
would get printed if Scheme used dynamic scoping with
shallow binding? Dynamic scoping and deep binding? 33

Evaluation Order

(define (square x) (* x x))

n Applicative-order (also referred to as eager)
evaluation
n Evaluates arguments before function value

(square (+ 3 4)) =>
(square 7) =>
(* 7 7) =>
49

Programming Languages CSCI 4430, A. Milanova 34

Evaluation Order

(define (square x) (* x x))
n Normal-order (also referred to as lazy)

evaluation
n Evaluates function value before arguments

(square (+ 3 4)) =>
(* (+ 3 4) (+ 3 4)) =>
(* 7 (+ 3 4)) =>
(* 7 7)
49

n Scheme uses applicative-order evaluation 35

So Far

n Essential functional programming concepts
n Reduction semantics
n Lists and recursion
n Higher-order functions

n Map and fold (also known as reduce)
n Scoping
n Evaluation order

n Scheme

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 36

Coming Up

n Lambda calculus: theoretical foundation of
functional programming

n Haskell
n Algebraic data types and pattern matching
n Lazy evaluation
n Type inference
n Monads

37Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

The End

38Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

