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Functional Programming with 
Scheme

Keep reading: Scott, Chapter 11.1-
11.3, 11.5-11.6, Scott, 3.6
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Lecture Outline

n Scheme
n Exercises with map, foldl and foldr

n Binding with let, let*, and letrec
n Scoping in Scheme
n Closures 

n Scoping, revisited



(foldr op lis id)

(    e1 …           en-1 en )     id
(    e1 …           en-1 )  res1

…
(    e1 )   resn-1

resn
3

Exercises

Write rev2, which reverses a list, 
using a single call to foldr
(define (rev2 lis) (foldr …) )
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(foldl op lis id)

id    (    e1 e2 e3 …     en )
id1 (  e2 e3 …     en )

id2 ( e3 …     en )
…

idn-1 ( en )
idn

4

Exercises

Write len3, which computes 
length of list, using a single 
call to foldl
(define (len3 lis) (foldl …) )



Exercises

5

(define (foldl op lis id) 
(if (null? lis) id 

(foldl op (cdr lis) (op id (car lis)))) )

n Write flatten3 using map and foldl/foldr
(define (flatten3

n Write flatten4 this time using foldl but not map.
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Exercises

n Write a function that counts the appearances 
of symbols a, b and c in a list of flat lists
n (count-sym ‘((a b) (c a) (a b d)) yields

((a 3) (b 2) (c 1))
n Natural idea: use map and fold

n map and fold (or map and reduce), are the 
foundation of Google’s MapReduce model
n Canonical MapReduce example [Dean and 

Ghemawat OSDI’04] is WordCount
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Tail Recursion, A Bit More

n A tail expression is an expression that occurs 
in tail context. Defined inductively as follows:
n The body of function is a tail expression
n If (if e1 e2 e3) is a tail expression, then e2 and 

e3 are tail expressions
n Examples
(define (foldl op lis id) 

(if (null? lis) id 
(foldl op (cdr lis) (op id (car lis)))) )
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Tail Recursion, A Bit More

n A tail call is a tail expression that is a  
function call. E.g.,
(define (foldl op lis id) 

(if (null? lis) id 
(foldl op (cdr lis) (op id (car lis)))) )

n A tail recursive function is a function whose “leaf” 
tail expressions are either returns or tail calls to 
itself (still informal)

n Tail calls give rise to efficient implementation of 
Continuation Passing Style (CPS)
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Tail Recursion, A Bit More
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Lecture Outline

n Scheme
n Exercises with map, foldl and foldr

n Binding with let, let*, and letrec
n Scoping in Scheme
n Closures 

n Scoping, revisited
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Let Expressions
Let-expr ::= ( let ( Binding-list ) S-expr1 )
Let*-expr ::= ( let* ( Binding-list ) S-expr1 )
Binding-list ::= ( Var  S-expr ) { ( Var  S-expr ) }

n let and let* expressions define a binding between each Var 
and the S-expr value, which holds during execution of 
S-expr1

n let evaluates the S-exprs in Binding-list in current 
environment “in parallel”

n let* evaluates the S-exprs from left to right

n Associate values with variables for the local computation



Programming Languages CSCI 4430, A. Milanova/B. G. Ryder 13

Questions
(let ((x 2)) (* x x)) yields 4

(let ((x 2)) (let ((y 1)) (+ x y)) ) yields what?

(let ((x 10) (y (* 2 x))) (* x y)) yields what?

(let* ((x 10) (y (* 2 x))) (* x y)) yields what?
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Let Expressions
Letrec-expr ::= ( letrec ( Binding-list ) S-expr1 )
Binding-list ::= ( Var  S-expr ) { ( Var S-expr ) }

n letrec Vars are bound to fresh locations holding undefined 
values; S-exprs are evaluated “in parallel” in augmented 
environment

n letrec allows for definition of mutually recursive functions

(letrec (( even? (lambda (n) (if (zero? n) #t (odd? (- n 1)))) )
( odd? (lambda (n) (if (zero? n) #f (even? (- n 1)))) )
)

(even? 88)
)



Regions (Scopes) in Scheme

n let, let* and letrec give rise to block structure
n They have the same syntax but define 

different regions (scopes)
n let

n Region where binding is active: body of let
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Regions (Scopes) in Scheme

n let, let* and letrec give rise to block structure
n They have the same syntax but define 

different regions (scopes)
n let*

n Region: all bindings to the right plus body of let*
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Regions (Scopes) in Scheme

n let, let* and letrec give rise to block structure
n They have the same syntax but define 

different regions (scopes)
n letrec

n Region: entire letrec expression
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Let Introduces Nested Scopes

(let ((x 10)) ;causes x to be bound to 10
(let ((f (lambda (a) (+ a x)))  ;causes f to be bound to   

a lambda expression
(let ((x 2)) (f 5) ) ))

Assuming that Scheme uses static scoping, what would 
this expression yield?



Question

(define (f  z) 
(let* ( (x 5) (f (lambda (z) (* x  z))) )

(map f z) ) )

What does this function do?

Answer: takes a list of numbers, z, and maps it to 
the times-5 list. E.g., (f ‘(1 2 3)) yields (5 10 15).
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With static scoping it evaluates to
(*  x ((lambda (a)(+ a x)) 3))  -->

(*  2 ((lambda (a)(+ a 10)) 3)  ) --> ???
With dynamic scoping it evaluates to

(*  x ((lambda (a)(+ a x)) 3))  -->
(*  2 ((lambda (a)(+ a 2))   3)  ) --> ???

(let  ((x 10)) 
(let   ((f (lambda (a) (+ a x)))) 

(let ((x  2)) 
(*  x  (f  3) ) ) )

Scoping in Scheme: 
Two Choices a is a “bound” variable

x is a “free” variable;
must be found in 
“outer” scope
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Scheme Chose Static Scoping

Scheme chose static scoping: 
(*  x (lambda (a)(+ a x) 3))  -->

(*  2 ((lambda (a)(+ a 10) 3)  ) --> 
26

(let  ((x 10)) 
(let   ((f (lambda (a) (+ a x)))) 

(let ((x  2)) 
(*  x  (f  3) ) ) )

f is a closure:
The function value: (lambda (a) (+ a x))
The environment: { x ® 10 }
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Closures

n A closure is a function value plus the 
environment in which it is to be evaluated
n Function value: e.g., (lambda (x) (+ x y))
n Environment consists of bindings for variables 

not local to the function so the closure can 
eventually be evaluated: e.g., { y ® 2 }

n A closure can be used as a function
n Applied to arguments
n Passed as an argument
n Returned as a value
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Closures

n Normally, when let expression exits, its 
bindings disappear

n Closure bindings (i.e., bindings part of a 
closure) are special
n When let exits, bindings become inactive, but 

they do not disappear 
n When closure is called, bindings become active
n Closure bindings are “immortal”

(let ((x 5))
(let  (( f  (let ((x 10))  (lambda ()  x ) ) ))

(list x (f) x (f)) )  )
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Lecture Outline

n Scheme
n Exercises with map, foldl and foldr

n Binding with let, let*, and letrec
n Scoping in Scheme
n Closures 

n Scoping, revisited



Scoping, revisited (Scott, Ch. 3.6)

n We discussed the two choices for mapping 
non-local variables to locations
n Static scoping (early binding) 
and 
n Dynamic scoping (late binding)

n Most languages choose static scoping

25Programming Languages CSCI 4430, A. Milanova/B. G. Ryder



Scoping, revisited

n When we discussed scoping earlier, we 
assumed that functions were third-class 
values (i.e., functions cannot be passed as 
arguments or returned from other functions)

n Functions as third-class values…
n When functions are third-class values, the 

function’s static reference environment (i.e., 
closure bindings) is available on the stack. 
Function cannot outlive its referencing 
environment! 26
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program
a, b, c: integer;
procedure P

c: integer;
procedure S

c, d: integer;
procedure R
…
end R;
R();

end S;
R();
S();

end P;
procedure R

a: integer;
= a, b, c;

end R;
…; P(); …

end program

Functions as Third-Class Values and Static 
Scoping

main
---
---
a
b
c
main.P

c
main.R

a

Static Scoping:
a bound to R.a, 
b to main.b, 
c to main.c



Scoping, revisited

n Functions as first-class values 
n Static scoping is more involved. Function 

value may outlive static referencing 
environment! 

n Therefore, need “immortal” closure 
bindings

n In languages that choose static scoping, 
local variables must have “unlimited 
extent” (i.e., when stack frame is popped, 
local variables do not disappear!) 28



Scoping, revisited

n In functional languages local variables 
typically have unlimited extent

n In imperative languages local variables 
typically have limited extent (i.e., when stack 
frame is popped, local variables disappear)
n Imperative languages (Fortran, Pascal, C) 

disallow truly first-class function values
n More and more languages do allow first-class 

functions, e.g., Java 8, C++11
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More on Dynamic Scoping

n Shallow binding vs. deep binding

n Dynamic scoping with shallow binding 
n Reference environment for function/routine is not 

created until the function is called
n I.e., all non-local references are resolved using the 

most-recent-frame-on-stack rule
n Shallow binding is usually the default in 

languages with dynamic scoping
n All examples of dynamic scoping we saw so far 

used shallow binding 30



More on Dynamic Scoping

n Dynamic scoping with deep binding 
n When a function/routine is passed as an 

argument, the code that passes the 
function/routine has a particular reference 
environment (the current one!) in mind. It passes 
this reference environment along with the 
function value (it passes a closure). 
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Example
v : integer := 10 
people : database

print_routine (p : person)
if p.age > v

write_person(p)

other_routine (db : database, P : procedure)
v : integer := 5
foreach record r in db

P(r) 

other_routine(people, print_routine) /* call in main */
32



Exercise

(define A
(lambda ()

(let* ((x 2)
(C (lambda (P) (let ((x 4)) (P) )))
(D (lambda () x))
(B (lambda () (let ((x 3)) (C D)))))

(B))))
When we call > (A) in the interpreter, what gets printed? What 
would get printed if Scheme used dynamic scoping with 
shallow binding? Dynamic scoping and deep binding? 33



Evaluation Order

(define (square x) (* x x))

n Applicative-order (also referred to as eager) 
evaluation
n Evaluates arguments before function value

(square (+ 3 4)) => 
(square 7) =>
(* 7 7) =>
49
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Evaluation Order

(define (square x) (* x x))
n Normal-order (also referred to as lazy) 

evaluation
n Evaluates function value before arguments

(square (+ 3 4)) => 
(* (+ 3 4) (+ 3 4)) =>
(* 7 (+ 3 4)) =>
(* 7 7)
49

n Scheme uses applicative-order evaluation 35



So Far

n Essential functional programming concepts
n Reduction semantics
n Lists and recursion
n Higher-order functions

n Map and fold (also known as reduce)
n Scoping 
n Evaluation order

n Scheme 
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Coming Up

n Lambda calculus: theoretical foundation of 
functional programming

n Haskell
n Algebraic data types and pattern matching
n Lazy evaluation
n Type inference
n Monads
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The End

38Programming Languages CSCI 4430, A. Milanova/B. G. Ryder


