Announcements

- Quiz 5
- HW4 due today
- HW5 is out
- More advanced Scheme programming
- Team assignment
- Maximal team size is 2

Lambda Calculus

Reading: Scott, Ch. 11 on CD

Lecture Outline

- Lambda calculus
- Introduction
- Syntax and semantics
- Free and bound variables
- Substitution, formally

Lambda Calculus

- A theory of functions
- Theory behind functional programming
- Turing complete: any computable function can be expressed and evaluated using the calculus
- "Lingua franca" of PL research
- Lambda (λ) calculus expresses function definition and function application
- $f(x)=x^{*} \mathbf{x}$ becomes $\lambda x . \mathbf{x}^{*} \mathbf{x}$
- $g(x)=x+1$ becomes $\lambda x . x+1$
- f(5) becomes ($\left.\lambda \mathbf{x} . \mathbf{x}^{*} \mathbf{x}\right) 5 \rightarrow 5^{*} 5 \rightarrow \mathbf{2 5}$

Syntax of Pure Lambda Calculus

- $E::=x\left|\left(\lambda x . E_{1}\right)\right|\left(E_{1} E_{2}\right)$
- A λ-expression is one of

Convention:

notation f, $\mathrm{x}, \mathrm{y}, \mathrm{z}$ for variables; E, M, N, P, Q for expressions

- Variable: \mathbf{x}
- Abstraction (i.e., function definition): λx. E_{1}
- Application: $\mathrm{E}_{1} \mathrm{E}_{2}$
- λ-calculus formulae (e.g., ($\lambda \mathbf{x .}$ ($\mathbf{x} \mathbf{y})$)) are called expressions or terms
- ($\lambda \mathbf{x} .(\mathbf{x} \mathbf{y})$) corresponds to (lambda (x) (xy)) in Scheme!

Syntactic Conventions

- Parentheses may be dropped from ($\mathrm{E}_{1} \mathbf{E}_{2}$) or ($\lambda \mathbf{x} . E$)
- E.g., ($\mathrm{f} x$) may be written as $\mathrm{f} x$
- Function application groups from left-to-right (i.e., it is left-associative)
- E.g., $\mathbf{x} \mathbf{y} \mathbf{z}$ abbreviates (($\mathbf{x} \mathbf{y}) \mathbf{z}$)
- E.g., $E_{1} E_{2} E_{3} E_{4}$ abbreviates ($\left.\left.\left(E_{1} E_{2}\right) E_{3}\right) E_{4}\right)$
- Parentheses in $\mathbf{x}(\mathbf{y} \mathbf{z})$ are necessary! Why? $x y z$ abbresiates $(x y) z \neq x(y z)$

Syntactic Conventions xx.' Ap

- Application has higher precedencé than abstraction
- Another way to say this is that the scope of the dot extends as far to the right as possible
- E.g., $\lambda x . x z=\lambda x .(x z)=(\lambda x .(x z))=$ $\neq((\lambda x . x) z)$
- WARNING: This is the most common syntactic convention (e.g., Pierce 2002). Some books give abstraction higher precedence.

Terminology

- Parameter (also, formal parameter)
- E.g., \mathbf{x} is the parameter in $\lambda \mathbf{x} . \mathbf{x} \mathbf{z}$
- Argument (also, actual argument)
- E.g., expression $\lambda z . z$ is the argument in
($\lambda \mathrm{x} . \mathrm{x}$) ($\lambda \mathrm{z} . \mathrm{z}$)
Can you guess what this evaluates to?

Currying

 Haswell Curry- In lambda calculus, all functions have one parameter
- How do we express n-ary functions?
- Currying expresses an n -ary function in terms of n unary functions
$\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{x + y}$, becomes $(\lambda \mathbf{x} . \lambda \mathbf{y} . \mathbf{x + y})$
$(\lambda x . \lambda y . x+y) 23 \rightarrow(\lambda y .2+y) 3 \rightarrow 2+3=5$

Currying in Scheme (define (curried-plus a) (lambda (b) $(+a b))$) (lambda (b)

(define curried-plus

(lambda (a) (lambda (b) (+ ab))))

(curried-plus 32) ERROR.

- (curried-plus 3) returns what?
- Returns the plus-3 function (or more precisely, it returns a closure)
- ((curried-plus 3) 2) returns what?
- 5

Currying

plus :i: Int \rightarrow Int \rightarrow Int $=$ pleas $x y=x+y$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)= g x_{1} x_{2} \ldots x_{n} \\
& g_{1} x_{2} \\
& g_{2} x_{3}
\end{aligned}
$$

Function \mathbf{g} is said to be the curried form of \mathbf{f}.

Semantics of Pure Lambda Calculus

- An expression has as its meaning the value that results after evaluation is carried out
- Somewhat informally, evaluation is the process of reducing expressions

$$
\text { E.g., (} \lambda x . \lambda y . x+y) 32 \rightarrow(\lambda y .3+y) 2 \rightarrow 3+2=5
$$

(Note: this example is just an informal illustration.
There is no + in the pure lambda calculus!)

- $\lambda \mathbf{x} . \lambda \mathbf{y} . \mathrm{x}$ is assigned the meaning of TRUE
- $\lambda x . \lambda y . y$ is assigned the meaning of FALSE

Lecture Outline

- Lambda calculus
- Introduction
- Syntax and semantics
- Free and bound variables
- Substitution, formally

Free and Bound Variables

- Reducing expressions

- Consider expression ($\lambda \mathbf{x} . \lambda \mathbf{y} . \mathbf{x} \mathbf{y})(\mathbf{y} \mathbf{w})$
- Try 1:
- Reducing this expression results in the following ($\lambda \mathbf{y} . \mathrm{x} y)[(\mathrm{y} w) / \mathrm{x}]=(\lambda y .(y w) y)$

The above notation means: we substitute argument (\mathbf{y} w) for every occurrence of parameter \mathbf{x} in body ($\lambda \mathbf{y} . \mathbf{x y}$). But what is wrong here?

- ($\lambda \mathbf{x} . \lambda y . x$ y) (y w): different y's! If we substitute (y w) for x, the "free" y will become "bound"!

Free and Bound Variables

- Try 2:
- Rename "bound" y in $\lambda \mathbf{y} . \mathrm{x} y$ to $z: ~ \lambda z . \mathrm{x} z$
($\lambda x . \lambda y . \times y)(y w)=>(\lambda x . \lambda z . x z)(y w)$
- E.g., in C, int id(int p) \{ return p; \} is exactly the same as int id(int q) \{ return q; \}
- Applying the reduction rule results in
$(\lambda z . x z)[(y w) / x]=>(\lambda z .(y w) z)$

Free and Bound Variables

- Abstraction ($\lambda \mathbf{x}$. E) is also referred as binding
- Variable \mathbf{x} is said to be bound in $\lambda \mathbf{x}$. \mathbf{E}
- The set of free variables of E is the set of variables that are unbound in \mathbf{E}
- Defined by cases on E
- Var \mathbf{x} : free $(\mathbf{x})=\{\mathbf{x}\}$
- $\operatorname{App} \mathbf{E}_{1} \mathbf{E}_{2}$: free $\left(\mathbf{E}_{1} \mathbf{E}_{2}\right)=$ free $\left(\mathbf{E}_{1}\right) \mathrm{U}$ free $\left(\mathbf{E}_{2}\right)$
- Abs $\lambda \mathbf{x}$. E : free $(\lambda \mathbf{x} . \mathrm{E})=$ free $(E)-\{\mathbf{x}\}$

Free and Bound Variables

- A variable \mathbf{x} is bound if it is in the scope of a lambda abstraction: as in $\lambda \mathbf{x}$. \mathbf{E}
- Variable is free otherwise

1. $(\lambda x . x) y \quad\{y\}$
2. $(\lambda z . z z)(\lambda x . x)\}$
3. $\lambda x . \lambda y . \lambda z . x z(y(\lambda u . u))\{ \}$

Free and Bound Variables

Free and Bound Variables

- We must take free and bound variables into account when reducing expressions
E.g., ($\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{x} \mathbf{y}$) (y w)
- Reduction rule defined in terms of substitution: ($\lambda \mathrm{y} . \mathrm{x}$ y) [(y w)/x]
- First, rename bound \mathbf{y} in $\lambda \mathbf{y} . \mathbf{x}$ y to $\mathbf{z}: ~ \lambda z . ~ x z$ (more precisely, we have to rename to a variable that is NOT free in either ($\mathbf{y} \mathbf{w}$) or ($\mathbf{x} \mathbf{y}$))
- Second, replace \mathbf{x} with argument (y w) safely: (λz. $(\mathrm{y} w) \mathrm{z})=\lambda z$. y w z

Lecture Outline

- Lambda calculus
- Introduction
- Syntax and semantics
- Free and bound variables
- Substitution, formally

Substitution, formally

$$
\begin{aligned}
& W[(\lambda x, x) / x]=W \\
& y[(\lambda x \cdot x) / y]=\lambda x \cdot x
\end{aligned}
$$

- (λ x.E) $\mathbf{M} \rightarrow \mathrm{E}[\mathrm{M} / \mathrm{x}]$ replaces all free occurrences of \mathbf{x} in \mathbf{E} by \mathbf{M}
- $E[M / x]$ is defined by cases on E :
- Var: $\mathbf{y}[\mathbf{M} / \mathbf{x}]=\mathbf{M}$ if $\mathbf{x}=\mathbf{y}$ $y[M / x]=y$ otherwise
- $\operatorname{App}:\left(E_{1} E_{2}\right)[M / x]=\left(E_{1}[M / x] E_{2}[M / x]\right)$
- Abs: $\left(\lambda y \cdot E_{1}\right)[M / x]=\lambda y \cdot E_{1}$ if $x=y$
$(\lambda x, x)[y[x]$
$\left(\lambda y . E_{1}\right)[M / x]=\lambda z .\left(\left(E_{1}[z / y]\right)[M / x]\right)$ otherwise, where \mathbf{z} NOT in free $\left(\mathbf{E}_{1}\right) \cup$ free($\left.\mathbf{M}\right) \cup\{\mathbf{x}\}$

Substitution, formally

$$
\begin{aligned}
& \text { (} \lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{x} \text { y) (} \mathrm{y} \text { w) } \\
& \rightarrow(\lambda y . x y)[(y \text { w) } / x] \\
& \left(\lambda y, E_{1}\right)[m / x] \Rightarrow \\
& \lambda_{2} .\left(\left(E_{2}[z / y]\right)[m \mid x]\right) \\
& \rightarrow \lambda 1 \text {. }\left(\left((x y)\left[1 _/ y\right]\right)[(y w) / x]\right) \\
& \rightarrow \lambda 1 \text {. }\left(\left(\begin{array}{l}
\text { x } \left.\left.1 _\right)[(y ~ w) / x]\right)
\end{array}\right)\right. \\
& \rightarrow \lambda 1 \text {. ((} \mathrm{y} \text { w) 1_) } \\
& \rightarrow \lambda 1_{-} \cdot y w 1_{-}=\lambda z . y w z_{1}
\end{aligned}
$$

You will have to implement this substitution algorithm in Haskell

Substitution, formally

($\lambda x . \lambda y . \lambda z . x z(y z))(\lambda x . x)$

The End

