Announcements

m Quiz 5

= HW4 due today
= HWS is out

= More advanced Scheme programming

= [eam assignment
= Maximal team size is 2

Programming Languages CSCI 4430, A. Milanova

!'- Lambda Calculus

Reading: Scott, Ch. 11 on CD

Lecture Outline

= Lambda calculus
= Introduction
= Syntax and semantics
= Free and bound variables
= Substitution, formally

Programming Languages CSCI 4430, A. Milanova

Lambda Calculus

= A theory of functions
= Theory behind functional programming

= Turing complete: any computable function can be
expressed and evaluated using the calculus

= ‘Lingua franca” of PL research

= Lambda (1) calculus expresses function
definition and function application
» f(X)=x*x becomes AX.X*X

« g(x)=x+1 becomes Ax. x+1
= f(5) becomes (AX.x*x) 52> 5*5-> 25

Programming Languages CSCI 4430, A. Milanova 4

Syntax of Pure Lambda Calculus

Convention:

O E = X I (}\,X E1) | (E1 E2) notation f, x, y, z for variables;

_ _ E, M, N, P, Q for expressions
= A A-expression is one of

« Variable: x
= Abstraction (i.e., function definition): Ax. E4
« Application: E; E,

= A-calculus formulae (e.g., (Ax. (x y))) are called
expressions or terms

= (AX. (X y)) corresponds to (lambda (x) (x y)) in
Scheme!

Programming Languages CSCI 4430, A. Milanova 5

Syntactic Conventions

= Parentheses may be dropped from (E; E,)
or (Ax.E)

« E.g., (fXx) may be written as f x

= Function application groups from left-to-right
(i.e., it is left-associative)
= E.g., Xy zabbreviates ((xy) z)
« E.9.,,E{ E; E5; E;, abbreviates (((E; E;) E3) Ey)

= Parentheses in x (y z) are necessary! Why?
X Y & abbetates”(x y) &2 4 x (%)

Programming Languages CSCI 4430, A. Milanova

Abs Ar
Syntactic Conventions &~ /}7(A <z

I
= Application has higher prececTenc% than

abstraction

= Another way to say this is that the scope of the
dot extends as far to the right as possible

s Eg,AX. Xz =AX.(xz2)=(AX.(x2)) =
F((Mx.x)2z)
= WWARNING: This is the most common
syntactic convention (e.g., Pierce 2002).
Some books give abstraction higher
precedence.

Programming Languages CSCI 4430, A. Milanova

Terminology

= Parameter (also, formal parameter)
=« E.9., X is the parameter in Ax. X z

= Argument (also, actual argument)

= E.g., expression Az. z is the argument in
(Ax. x) (Az. 2)

Can you guess what this evaluates to?

Programming Languages CSCI 4430, A. Milanova

Currying Haocuell &cwy

= |[n lambda calculus, all functions have one
parameter
= How do we express n-ary functions?

= Currying expresses an n-ary function in terms of
n unary functions

f(x,y) = x+y, becomes (AX.Ay.X +Yy)

(AXAY. X+Yy)23> (\y.2+y)3>2+3=5

Programming Languages CSCI 4430, A. Milanova

Currying in Scheme (defue (ewred-
(67;4%442& (b) ?ﬁ?));

(define curried-plus

(lambda (a) (lambda (b) (+ a b))))
= (wrriec(—-/a(,us 22) CERPDR . -

= (curried-plus 3) returns what?

= Returns the plus-3 function (or more precisely, it
returns a closure)

= ((curried-plus 3) 2) returns what?
)

Programming Languages CSCI 4430, A. Milanova 10

#"s e j"—“““?]h#'—?TQ,L -

Currying flus x y = Kty Tot> 0k 0

f(X4, X5,..0,X,,) =9 X4 X5 ... X,

dq1 Xy
g2 X3

Function g is said to be the curried form of f.

Programming Languages CSCI 4430, A. Milanova 11

Semantics of Pure Lambda Calculus

= An expression has as its meaning the value
that results after evaluation is carried out

= Somewhat informally, evaluation is the process
of reducing expressions

E.g., (AXAy.x+y)32> (Ay.3+y)2>3+2=5

(Note: this example is just an informal illustration.
There is no + in the pure lambda calculus!)

= AX.AY. X is assigned the meaning of TRUE
= AX.AY. Y is assigned the meaning of FALSE

Programming Languages CSCI 4430, A. Milanova 12

Lecture Outline

= Lambda calculus
= Introduction
= Syntax and semantics
= Free and bound variables
= Substitution, formally

Programming Languages CSCI 4430, A. Milanova

13

Free and Bound Varlables nl

= Reducing expressions (WX/ M
(g <D Y-8y

= Consider expression (AX.Ay. xy) (y w)
s Try 1:

= Reducing this expression results in the following
(Ay.xy) [(yw)/x]=(ry.(yw)y)
The above notation means: we substitute argument (y w)
for every occurrence of parameter x in body (Ay. xy).

But what is wrong here?

= (AX.AY. XYy) (y w): different y’s! If we substitute (y w)
for x, the “free” y will become “bound”!

14

Free and Bound Variables

O Try 2:
= Rename “bound” y in Ay. xy to z: Az. x z

(AX.AY. xXYy) (Y w) => (Ax.Az. X Z2) (Y W)

« E.g.,In C, intid(int p) { return p; } is exactly the
same as int id(int q) { return q; }

= Applying the reduction rule results in
(Az.xz) [(yw)x]=>(Az.(yw)z)

Programming Languages CSCI 4430, A. Milanova 15

Free and Bound Variables

= Abstraction (Ax. E) is also referred as binding

s Variable x is said to be bound in Ax. E

= [he set of free variables of E is the set of
variables that are unbound in E
= Defined by cases on E
= Var x: free(x) = {x}
« App E; E,: free(E, E;) = free(E,) U free(E,)
= Abs Ax.E: free(AX.E) = free(E) - {x}

Programming Languages CSCI 4430, A. Milanova 16

Free and Bound Variables

= A variable x is bound if it is in the scope of a
lambda abstraction: as in Ax. E

= Variable is free otherwise
1. (AX. X) y §J'§
2. (Az. z z) (AX. X) 35

3. AX.Ay.Az. X Z (Y (Au. u)) oS

Programming Langauges CSCI 4430, A. Milanova 17

Free and Bound Variables

00{ ¢ V6r'e ”4/3

o xx‘?»y'kz Xz (y (Au. u))

= /Iés ?f’
. /3795 =]
y ?’(?g

Af,}p ?x ' 2§
@g?xzﬁ Am?ﬂ

X 2 b’?é Aﬁg\?f

EX{ 22} Lo ?aé

Programming Languages CSCI 4430, A. Milanova

Free and Bound Variables

= \We must take free and bound variables into
account when reducing expressions

E.g., (AX.AY. X VY) (Y W)

= Reduction rule defined in terms of substitution:

(Ay. xy) [(y w)ix]

= First, rename boundyinAy.xytoz: Az. x z
(more precisely, we have to rename to a
variable that is NOT free in either (y w) or (x y))

= Second, replace x with argument (y w) safely:

M. (VW)z)=Az.VYWZ
(Az. (yw)z) y)

Lecture Outline

= Lambda calculus
= Introduction
= Syntax and semantics
= Free and bound variables
= Substitution, formally

Programming Languages CSCI 4430, A. Milanova

20

o WE@X-&)/ =%
Substitution, formally v [Cxx) /g: Me.x

= (Ax.E) M => E[M/x] replaces all free occurrences
of Xxin Eby M
= E[M/X] is defined by cases on E:

= Var: y[M/x] = Mifx= y
] | (x x)|Quy -
y[M/x] = vy otherwise ¢ x[@}g Ay 2({%1%])

= App: (E4 E,)[M/x] = (E4[M/x] E,[M/x])
« Abs: (\y.E)[M/x] = Ay.E,ifx=y (*« X)QZQO
(\y.E)[M/X] = Az.((E4[z/y])[M/x]) othérwide,
where z NOT in free(E4) U free(M) U {x}

Programming Languages CSCI 4430, A. Milanova 21

Substitution, formally

>\>¢ [;l D«/Kj =
(Ax.Ay. X y) (y w) (»2.)(<El&/ﬂ> (k] X})
> (Ay. x y)[(y w)/x]

> AM_. ((x y)[1_{yDI(y w)ix])

> A_. (x 1)[(y w)/x])

M . ((yw)1_)

>AM _.yw1_ = M2. YW Z

CR—

You will have to implement this substitution
algorithm in Haskell

Programming Languages CSCI 4430, A. Milanova 22

Substitution, formally

(AX.AY. Az. x Z (Y Z)) (AX.X)

Programming Languages CSCI 4430, A. Milanova

ALY

23

The Enad

Programming Languages CSCI 4430, A. Milanova

24

