
Programming Languages CSCI 4430, A. Milanova 1

Announcements

n Quiz 5

n HW4 due today
n HW5 is out

n More advanced Scheme programming
n Team assignment 

n Maximal team size is 2



2

Lambda Calculus

Reading: Scott, Ch. 11 on CD 



Programming Languages CSCI 4430, A. Milanova 3

Lecture Outline 

n Lambda calculus 
n Introduction
n Syntax and semantics
n Free and bound variables
n Substitution, formally



Lambda Calculus

n A theory of functions 
n Theory behind functional programming
n Turing complete: any computable function can be 

expressed and evaluated using the calculus
n “Lingua franca” of PL research

n Lambda (l) calculus expresses function 
definition and function application
n f(x)=x*x becomes   lx. x*x
n g(x)=x+1 becomes   lx. x+1
n f(5) becomes   (lx. x*x) 5 à 5*5à 25

Programming Languages CSCI 4430, A. Milanova 4



Programming Languages CSCI 4430, A. Milanova 5

Syntax of Pure Lambda Calculus

n E ::= x | ( lx. E1 ) | ( E1 E2 )
n A l-expression is one of 

n Variable: x
n Abstraction (i.e., function definition): lx. E1

n Application: E1 E2 

n l-calculus formulae (e.g., ( lx. (x y) )) are called 
expressions or terms

n ( lx. (x y) ) corresponds to (lambda (x) (x y)) in 
Scheme!

Convention: 
notation f, x, y, z for variables; 
E, M, N, P, Q for expressions 



Programming Languages CSCI 4430, A. Milanova 6

Syntactic Conventions

n Parentheses may be dropped from ( E1 E2 )
or ( lx.E )
n E.g., ( f x ) may be written as f x

n Function application groups from left-to-right 
(i.e., it is left-associative)
n E.g., x y z abbreviates ( ( x y ) z )
n E.g., E1 E2 E3 E4 abbreviates ( ( ( E1 E2 ) E3 ) E4 )
n Parentheses in x (y z) are necessary! Why?



7

Syntactic Conventions

n Application has higher precedence than 
abstraction
n Another way to say this is that the scope of the 

dot extends as far to the right as possible
n E.g., lx. x z = lx. ( x z ) = ( lx. ( x z ) ) =
≠ ( ( lx. x ) z )

n WARNING: This is the most common 
syntactic convention (e.g., Pierce 2002). 
Some books give abstraction higher 
precedence. 

Programming Languages CSCI 4430, A. Milanova



Terminology

n Parameter (also, formal parameter)
n E.g., x is the parameter in lx. x z

n Argument (also, actual argument)
n E.g., expression lz. z is the argument in 
(lx. x) (lz. z)

Can you guess what this evaluates to?

Programming Languages CSCI 4430, A. Milanova 8



Programming Languages CSCI 4430, A. Milanova 9

Currying 

n In lambda calculus, all functions have one 
parameter
n How do we express n-ary functions?

n Currying expresses an n-ary function in terms of 
n unary functions

f(x,y) = x+y, becomes (lx.ly. x + y)

(lx.ly. x + y) 2 3 à (ly. 2 + y) 3 à 2 + 3 = 5



Currying in Scheme 

(define curried-plus 
(lambda (a) (lambda (b) (+ a b))))

n (curried-plus 3) returns what?
n Returns the plus-3 function (or more precisely, it 

returns a closure)

n ((curried-plus 3) 2) returns what?
n 5

Programming Languages CSCI 4430, A. Milanova 10



Programming Languages CSCI 4430, A. Milanova 11

Currying

f(x1, x2,…,xn) = g x1 x2 … xn

Function g is said to be the curried form of f.

g1 x2
g2 x3

…



Semantics of Pure Lambda Calculus

n An expression has as its meaning the value 
that results after evaluation is carried out 
n Somewhat informally, evaluation is the process 

of reducing expressions
E.g., (lx.ly. x + y) 3 2 à (ly. 3 + y) 2 à 3 + 2 = 5
(Note: this example is just an informal illustration. 
There is no + in the pure lambda calculus!)  

n lx.ly. x is assigned the meaning of TRUE
n lx.ly. y is assigned the meaning of FALSE

12Programming Languages CSCI 4430, A. Milanova



Programming Languages CSCI 4430, A. Milanova 13

Lecture Outline 

n Lambda calculus 
n Introduction
n Syntax and semantics
n Free and bound variables
n Substitution, formally



14

Free and Bound Variables

n Reducing expressions

n Consider expression ( lx.ly. x y ) (y w) 
n Try 1: 

n Reducing this expression results in the following
( ly. x y ) [(y w)/x] = ( ly. (y w) y )

The above notation means: we substitute argument (y w)
for every occurrence of parameter x in body ( ly. x y ).
But what is wrong here?

n ( lx.ly. x y ) (y w): different y’s! If we substitute (y w) 
for x, the “free” y will become “bound”!



Programming Languages CSCI 4430, A. Milanova 15

Free and Bound Variables

n Try 2: 
n Rename “bound” y in ly. x y to z: lz. x z
(lx.ly. x y) (y w) => (lx.lz. x z) (y w)
n E.g., in C, int id(int p) { return p; } is exactly the 

same as int id(int q) { return q; }

n Applying the reduction rule results in
( lz. x z ) [(y w)/x] => ( lz. (y w) z ) 



Programming Languages CSCI 4430, A. Milanova 16

Free and Bound Variables

n Abstraction ( lx. E ) is also referred as binding

n Variable x is said to be bound in lx. E
n The set of free variables of E is the set of 

variables that are unbound in E
n Defined by cases on E

n Var x:
n App E1 E2:
n Abs lx.E:

free(x) = {x}
free(E1 E2) = free(E1) U free(E2)

free(lx.E) = free(E) - {x}



17

Free and Bound Variables

n A variable x is bound if it is in the scope of a 
lambda abstraction: as in lx. E

n Variable is free otherwise

1. (lx. x) y

2. (lz. z z) (lx. x) 

3. lx.ly.lz. x z (y (lu. u))

Programming Langauges CSCI 4430, A. Milanova



Free and Bound Variables

n lx.ly.lz. x z (y (lu. u))

Programming Languages CSCI 4430, A. Milanova 18



19

Free and Bound Variables

n We must take free and bound variables into 
account when reducing expressions
E.g., (lx.ly. x y) (y w)
n Reduction rule defined in terms of substitution:
( ly. x y ) [(y w)/x]
n First, rename bound y in ly. x y to z: lz. x z

( more precisely, we have to rename to a 
variable that is NOT free in either (y w) or (x y) )

n Second, replace x with argument (y w) safely:
( lz. (y w) z ) = lz. y w z



Programming Languages CSCI 4430, A. Milanova 20

Lecture Outline 

n Lambda calculus 
n Introduction
n Syntax and semantics
n Free and bound variables
n Substitution, formally



21

Substitution, formally

n (lx.E) M à E[M/x] replaces all free occurrences 
of x in E by M

n E[M/x] is defined by cases on E:
n Var: y[M/x] =

y[M/x] =
n App: (E1 E2)[M/x] =
n Abs: (ly.E1)[M/x] =

(ly.E1)[M/x] =

Programming Languages CSCI 4430, A. Milanova

M if x = y
y otherwise

(E1[M/x] E2[M/x])
ly.E1 if x = y
lz.((E1[z/y])[M/x]) otherwise,

where z NOT in free(E1) U free(M) U {x}



Substitution, formally

(lx.ly. x y) (y w) 
à (ly. x y)[(y w)/x]
à l1_. ( ((x y)[1_/y])[(y w)/x] ) 
à l1_. ( (x 1_)[(y w)/x] )
à l1_. ( (y w) 1_ )
à l1_. y w 1_

You will have to implement this substitution 
algorithm in Haskell
Programming Languages CSCI 4430, A. Milanova 22



Substitution, formally

(lx.ly. lz. x z (y z)) (lx.x) 

Programming Languages CSCI 4430, A. Milanova 23



The End

Programming Languages CSCI 4430, A. Milanova 24


