Announcements

Quiz 5

- HW4 due today
- HW5 is out
 - More advanced Scheme programming
 - Team assignment
 - Maximal team size is 2

Reading: Scott, Ch. 11 on CD

Lecture Outline

- Lambda calculus
 - Introduction
 - Syntax and semantics
 - Free and bound variables
 - Substitution, formally

Lambda Calculus

- A theory of functions
 - Theory behind functional programming
 - Turing complete: any computable function can be expressed and evaluated using the calculus
 - "Lingua franca" of PL research
- Lambda (λ) calculus expresses function definition and function application
 - f(x)=x*x becomes λx. x*x
 - g(x)=x+1 becomes λx. x+1
- f(5) becomes $(\lambda x. x^*x) 5 \rightarrow 5^*5 \rightarrow 25$ Programming Languages CSCI 4430, A. Milanova

Syntax of Pure Lambda Calculus

- $= E ::= x | (\lambda x. E_1) | (E_1 E_2)$
 - A λ -expression is one of
 - Variable: x
 - Abstraction (i.e., function definition): λx. E₁
 - Application: E₁ E₂
- λ-calculus formulae (e.g., (λx. (x y))) are called expressions or terms
- (λx. (x y)) corresponds to (lambda (x) (x y)) in Scheme!

Convention: notation f, x, y, z for variables; E, M, N, P, Q for expressions

Syntactic Conventions

Parentheses may be dropped from (E₁ E₂) or (λx.E)
 E.g., (f x) may be written as f x

- Function application groups from left-to-right (i.e., <u>it is left-associative</u>)
 - E.g., x y z abbreviates ((x y) z)
 - E.g., $E_1 E_2 E_3 E_4$ abbreviates ((($E_1 E_2 E_3 E_4$))

Parentheses in x (y z) are necessary! Why?
X y z abbreviates (x y) z + x (y z)

Syntactic Conventions Jx

- Application <u>has higher precedence</u> than abstraction
 - Another way to say this is that the scope of the dot extends as far to the right as possible
 - $= E.g., \lambda x. x z = \lambda x. (x z) = (\lambda x. (x z)) =$ $\neq ((\lambda x. x) z)$
- WARNING: This is the most common syntactic convention (e.g., Pierce 2002).
 Some books give abstraction higher precedence.

Terminology

- Parameter (also, formal parameter)
 - E.g., **x** is the parameter in λx . **x** z
- Argument (also, actual argument)
 E.g., expression λz. z is the argument in (λx. x) (λz. z)

Can you guess what this evaluates to?

Currying

Hasnell Curry

- In lambda calculus, all functions have one parameter
 - How do we express n-ary functions?
 - Currying expresses an n-ary function in terms of n unary functions
 - f(x,y) = x+y, becomes $(\lambda x \cdot \lambda y \cdot x + y)$

$$(\lambda x.\lambda y. x + y) 2 3 \rightarrow (\lambda y. 2 + y) 3 \rightarrow 2 + 3 = 5$$

Currying in Scheme (define (curried plus a) (lambda (b) (+ab))

(define curried-plus

(lambda (a) (lambda (b) (+ a b))))

- 19 (ourried-plus 32) ERROR.
- (curried-plus 3) returns what?
 - Returns the plus-3 function (or more precisely, it returns a closure)

((curried-plus 3) 2) returns what? 5

$f(x_1, x_2, ..., x_n) = g x_1 x_2 ... x_n$ $g_1 x_2$ $g_2 x_3$

Function **g** is said to be the curried form of **f**.

Semantics of Pure Lambda Calculus

- An expression has as its meaning <u>the value</u> that results after evaluation is carried out
 - Somewhat informally, evaluation is the process of reducing expressions

E.g.,
$$(\lambda x.\lambda y.x + y) 3 2 \rightarrow (\lambda y. 3 + y) 2 \rightarrow 3 + 2 = 5$$

(Note: this example is just an informal illustration. There is no + in the pure lambda calculus!)

λx.λy. x is assigned the meaning of TRUE
 λx.λy. y is assigned the meaning of FALSE

Lecture Outline

- Lambda calculus
 - Introduction
 - Syntax and semantics
 - Free and bound variables
 - Substitution, formally

- Reducing expressions
- Consider expression (λx.λy. x y) (y w)
- Try 1:
 - Reducing this expression results in the following
 - $(\lambda y. x y) [(y w)/x] = (\lambda y. (y w) y)$

The above notation means: we substitute argument (y w) for every occurrence of parameter x in body (λ y. x y). But what is wrong here?

(λx.λy. x y) (y w): different y's! If we substitute (y w) for x, the "free" y will become "bound"!

Try 2:

- Rename "bound" y in λy . x y to z: λz . x z
- $(\lambda \mathbf{x}.\lambda \mathbf{y}.\mathbf{x}\mathbf{y}) (\mathbf{y}\mathbf{w}) \Rightarrow (\lambda \mathbf{x}.\lambda \mathbf{z}.\mathbf{x}\mathbf{z}) (\mathbf{y}\mathbf{w})$
- E.g., in C, int id(int p) { return p; } is exactly the same as int id(int q) { return q; }

Applying the reduction rule results in
 (λz. x z) [(y w)/x] => (λz. (y w) z)

• Abstraction (λx . E) is also referred as binding

- Variable x is said to be bound in λx . E
- The set of free variables of E is the set of variables that are unbound in E
- Defined by cases on E
 - Var x: free(x) = {x}
 - App $E_1 E_2$: free $(E_1 E_2)$ = free $(E_1) U$ free (E_2)
 - Abs $\lambda \mathbf{x}.\mathbf{E}$: free($\lambda \mathbf{x}.\mathbf{E}$) = free(\mathbf{E}) { \mathbf{x} }

- A variable x is bound if it is in the scope of a lambda abstraction: as in λx. E
- Variable is free otherwise

1. (λx. x) y ²ζζ³

2. $(\lambda z. z z) (\lambda x. x)$

3. λ**x**.λ**y**.λ**z**. **x z** (**y** (λ**u**. **u**)) *ζ§*

- We must take free and bound variables into account when reducing expressions
 - E.g., **(λx.λy. x y) (y w)**
 - Reduction rule defined in terms of substitution:
 - (λ y. x y) [(y w)/x]
 - First, rename bound y in λy. x y to z: λz. x z
 (more precisely, we have to rename to a variable that is NOT free in either (y w) or (x y))
 - Second, replace x with argument (y w) safely:
 (λz. (y w) z) = λz. y w z

Lecture Outline

- Lambda calculus
 - Introduction
 - Syntax and semantics
 - Free and bound variables
 - Substitution, formally

 $W \left[(\lambda x. x) / x \right] = W$ $y [(\lambda x.x)/y] = \lambda x.x$

- $(\lambda x.E) M \rightarrow E[M/x]$ replaces all free occurrences of x in E by M
- E[M/x] is defined by cases on E:
 - Var: y[M/x] = M if x = y $y[M/x] = y \text{ otherwise} \qquad (x \times)(\lambda u u)/x \rightarrow (x \times u)/x = y \text{ otherwise} \qquad (x \times u)/x \rightarrow (x \times u)/x = (E_1[M/x] = (E_1[M/x] = E_2[M/x])$ • Abs: $(\lambda y.E_1)[M/x] = \lambda y.E_1$ if x = y $(\lambda x x)[y/x]$ $(\lambda y.E_1)[M/x] = \lambda z.((E_1[z/y])[M/x])$ otherwise,

where **z** NOT in free(E_1) U free(**M**) U {**x**}

Substitution, formally

You will have to implement this substitution algorithm in Haskell Programming Languages CSCI 4430, A. Milanova

Substitution, formally

$$(\lambda x.\lambda y. \lambda z. x z (y z)) (\lambda x.x)$$
 PuN

The End