Lambda Calculus

Reading: Scott, Ch. 11 on CD

Lecture Outline

- Lambda calculus, continued
- Substitution, review
- Rules of the lambda calculus
- Normal forms
- Reduction strategies

Syntax of Pure Lambda Calculus

- $E::=x\left|\left(\lambda x . E_{1}\right)\right|\left(E_{1} E_{2}\right)$ - A λ-expression is one of

Convention:

- Variable: x
- Abstraction (i.e., function definition): $\boldsymbol{\lambda} \mathbf{x} . \mathbf{E}_{1}$
- Application: $\mathrm{E}_{1} \mathrm{E}_{2}$
- λ-calculus formulae (e.g., (λx. ($\mathbf{x} \mathbf{y})$)) are called expressions or terms
- ($\lambda \mathbf{x} .(\mathbf{x} \mathbf{y}))$ corresponds to (lambda (x) (xy)) in Scheme!

Syntactic Conventions

- May drop parenthesis from ($E_{1} E_{2}$) or ($\lambda \mathbf{x}$. E)
- E.g., (fx) may be written as $\mathrm{f} \mathbf{x}$
- Function application is left-associative
- I.e., it groups from left-to-right
- E.g., xyzabbreviates (($\mathbf{x} \mathbf{y}$) z)
- E.g., $E_{1} E_{2} E_{3} E_{4}$ abbreviates ((($\left.\left.\left.E_{1} E_{2}\right) E_{3}\right) E_{4}\right)$
- Application has higher precedence than abstraction
- Another way to say this is that the scope of the dot extends as far to the right as possible
- E.g., $\lambda x . x y=\lambda x .(x y)=(\lambda x .(x y)) \neq((\lambda x . x) y)$

Free and Bound Variables

- Abstraction ($\lambda \mathbf{x} . \mathrm{E}$) introduces a binding
- Variable \mathbf{x} is said to be bound in $\lambda \mathbf{x}$. \mathbf{E}
- The set of free variables of E is the set of variables that are unbound in \mathbf{E}
- Defined by cases on E
- $\operatorname{Var} \mathbf{x}$: free $(\mathbf{x})=\{\mathbf{x}\}$
- $\operatorname{App} E_{1} E_{2}$: free $\left(E_{1} E_{2}\right)=$ free $\left(E_{1}\right) U$ free $\left(E_{2}\right)$
- Abs $\lambda \mathbf{x}$.E: free $(\lambda x . E)=$ free $(E)-\{\mathbf{x}\}$

$$
(x y)[(A u \cdot v) / x] \rightarrow
$$

Substitution, formally ($x[(A v, v) / x]$ yc(Av,v)/x]) $\rightarrow((\lambda, v) y)$

- (λx. E) $\mathbf{M} \rightarrow \mathrm{E}[\mathbf{M} / \mathbf{x}]$ replaces all free occurrences of \mathbf{x} in \mathbf{E} by \mathbf{M}
- $E[M / x]$ is defined by cases on E :
- Var: $\mathbf{y}[\mathbf{M} / \mathbf{x}]=\mathbf{M}$ if $\mathbf{x}=\mathbf{y} \quad$ Egg. $\times[(\mathrm{duv}, \mathrm{v}) / \mathrm{x}] \rightarrow \lambda_{\mathrm{k}} \mathrm{v}$
$v[(\lambda v: v) / x] \rightarrow V$ $y[M / x]=y$ otherwise
- App: $\left(E_{1} E_{2}\right)[M / x]=\left(E_{1}[M / x] E_{2}[M / x]\right)$
- Abs: $\left(\lambda y . E_{1}\right)[M / x]=\lambda y . E_{1}$ if $x=y$ ($\left.\lambda x, \times x\right)[(\lambda v, v) / x]$
$\left(\lambda y . E_{1}\right)[M / x]=\lambda z$. $\left(\left(E_{1}[z / y]\right)[M / x]\right)$ otherwise, where $\mathbf{z} \operatorname{NOT}$ in free $\left(\mathbf{E}_{1}\right) \cup$ free $(\mathbf{M}) \cup\{\mathbf{x}\}$

$$
\begin{aligned}
& \text { Substitution, formally } 1,2,2,3 \text { a arefruch vars } \\
& \left.\frac{t}{(\lambda x . \lambda y . \lambda z . x z(y z)}\right)^{\mu} \quad \text { PuNod! } \\
& (\lambda y \cdot \lambda z, x z(y z))[v / x] \quad\left(\lambda y, t_{2}\right)[(\mu / x] \Rightarrow \\
& \left.\lambda_{2} .\left(E_{2}[z / y]\right)(\mu / x]\right) \\
& \lambda_{1-}\left(\left(\left(\lambda z_{0} x z(y z)\right)[1-/ y]\right)[v / x]\right) \\
& \left(\lambda 2_{-2}(((x x y(y))[2-12])[1 / y])\right) \\
& \text { (} 22-\times 2-(1-2-))[v / x] \\
& \left(x 3_{-}\left(\left((x \times 2-(1-2-))\left[3_{-} / 2-\right]\right)(v / x]\right)\right) \\
& \lambda 1_{0}\left(\lambda 3_{-} \vee 3_{-}\left(1-3_{-}\right)\right) \\
& \lambda x_{0} \lambda y, v y(x y)
\end{aligned}
$$

Substitution, formally

Rules (Axioms) of Lambda Calculus

- α rule (α-conversion): renaming of parameter (choice of parameter name does not matter) - $\lambda \mathbf{x}$. $\rightarrow_{\alpha} \lambda \mathbf{z}$. $(E[z / x])$ provided that \mathbf{z} is not free in \mathbf{E} - e.g., $\lambda \mathbf{x} . \mathbf{x} \mathbf{x}$ is the same as $\lambda \mathbf{z} . \mathbf{z z}$
- β rule (β-reduction): function application (substitutes argument for parameter) - (λx. E) $M \rightarrow_{\beta} \mathrm{E}[\mathrm{M} / \mathrm{x}]$

Note: $\mathrm{E}[\mathrm{M} / \mathrm{x}]$ as defined on previous slide!

- e.g., ($\lambda \mathbf{x} . \mathbf{x}$) $\mathbf{z} \boldsymbol{\rightarrow}_{\beta} \mathbf{z}$

Rules of Lambda Calculus: Exercises

- Use- α-conversion and/or β-reduction:
$(\lambda x . x) \cdot y \rightarrow_{\alpha \beta} ? y$
$\left(\lambda x . \frac{\sqrt{x})}{(\lambda y \cdot y)} \rightarrow_{\alpha \beta} ? \quad \lambda y \cdot y\right.$

$$
(\lambda x . \lambda y . \lambda z . x z(y z))(\lambda u . u)(\lambda v . v) \rightarrow_{\alpha \beta}
$$

Notation: $\rightarrow_{\alpha \beta}$ denotes that expression on the left reduces to the expression on the right, through a sequence α-conversions and β-reductions.

Rules of Lambda Calculus: Exercises

- Use α-conversion or β-reduction: $(\lambda x . \lambda y . \lambda z . \dot{x} z(y z)) \sqrt{(\lambda u . u)}(\lambda v . v) \rightarrow_{\alpha \beta}$

$$
\begin{aligned}
& \left(\lambda y \cdot \lambda z_{0} \cdot(\lambda u \cdot u) z\left(y_{1} z\right)\right)(\lambda v \cdot v) \rightarrow \\
& \lambda z \cdot(\lambda u \cdot u) z((\lambda v . v) z) \rightarrow \\
& \left.\lambda z_{0} z\left(\lambda u \cdot{ }^{E_{3}}\right)^{E_{z}}\right) \rightarrow \\
& \lambda z_{0} z z
\end{aligned}
$$

Reductions

- An expression ($\lambda \mathbf{x} . \mathbf{E}$) \mathbf{M} is called a redex (for reducible expression)
- An expression is in normal form if it cannot be β-reduced
- The normal form is the meaning of the term, the "answer"

Questions

- Is $\lambda \mathbf{z} . \mathbf{z z}$ in normal form?
- Answer: yes, it cannot be beta-reduced
- Is ($\lambda \mathbf{z} . \mathbf{z z}$) ($\lambda \mathbf{x} . \mathbf{x}$) in normal form?
- Answer: no, it can be beta-reduced

Lecture Outline

- Lambda calculus, continued
- Substitution, review
- Rules of the lambda calculus
- Normal forms
- Reduction strategies

Definitions of Normal Form

- Normal form (NF): a term without redexes - Head normal form (HNF) LaZ2Y
- \mathbf{x} is in HNF
- ($\lambda \mathbf{x} . E$) is in HNF if E is in HNF
$\rightarrow{ }^{-}\left(x E_{1} E_{2} \ldots E_{n}\right)$ is in HNF
- Weak head normal form (WHNF)
. \mathbf{x} is in WHNF
- ($(x$ x. E) is in WHNF
- $\left(x E_{1} E_{2} \ldots E_{n}\right)$ is in WHNF

Questions

- $\lambda \mathbf{z} . \mathbf{z} \mathbf{z}$ is in NF, HNF, or WHNF?
$-(\lambda z . \mathbf{z z})(\lambda \mathbf{x} . \mathbf{x})$ is in? Neither
$-\lambda x . \lambda y . \lambda z . x z(y(\lambda u . u))$ is in? Nf
- (We will be reducing to NF, mostly)

Questions

Questions

Questions
not $几$ NF
not in HNF
$\lambda z .(\lambda x . \lambda y . x) z((\lambda x . z x)(\lambda x . z x))$ is in?
$\lambda z_{0} .\left(\lambda x_{0} x\right)$ tr is not in HNF because ($\lambda x . x) 2$ is not a FNF it is in Whars

More Reduction Exercises

- $C=\lambda x . \lambda y . \lambda f . f x y$
$■ H=\lambda f . f(\lambda x . \lambda y . x) \quad T=\lambda f . f(\lambda x . \lambda y . y)$ - What is $\mathbf{H}(\mathbf{C} \mathbf{a b})$?

$$
\left(\lambda f \cdot f^{\prime}(\lambda x \cdot \lambda y \cdot x)\right) \underbrace{(c a b)}
$$

$(c a b)(\lambda x \cdot \lambda y \cdot x)$
$(\lambda x \cdot \lambda y \cdot \lambda f \cdot f x y)$ a $b \quad(\lambda x \cdot \lambda y \cdot x) \rightarrow$
$(\lambda y \cdot \lambda f \cdot f a y) b(\lambda x \cdot \lambda y \cdot x) \rightarrow$
$\frac{(\lambda f \cdot f a b)(\lambda x \cdot \lambda y \cdot x)}{(\lambda y \cdot a) b \rightarrow a} \rightarrow(\lambda x \cdot \lambda y \cdot x) a b \rightarrow$

Exercise

An expression with no free

 variables is called combinator. S, I, C, H, T are combinators.
- $S=\lambda x \cdot \lambda y . \lambda z . x z(y z)$

- I = $\lambda \mathbf{x}$. \mathbf{x} - What is S II I?

Lecture Outline

- Lambda calculus, continued
- Substitution, review
- Rules of the lambda calculus
- Normal forms
- Reduction strategies

Reduction Strategy

- Look again at ($\lambda x . \lambda y . \lambda z . x z(y z))(\lambda u . u)(\lambda v . v)$
- Actually, there are (at least) two "reduction paths": Path 1: $(\lambda \mathbf{x} . \lambda \mathbf{y} . \lambda \mathbf{z} . \mathbf{x ~ z}(\mathbf{y} \mathbf{z}))(\lambda \mathbf{u} . \mathbf{u})(\lambda \mathbf{v} . \mathbf{v}) \rightarrow_{\beta}$ $(\lambda y . \lambda z .(\lambda u . u) z(y z))(\lambda v . v) \rightarrow_{\beta}$ $(\lambda z .(\lambda u . u) z((\lambda v . v) z)) \rightarrow_{\beta}(\lambda z . z((\lambda v . v) z)) \rightarrow_{\beta}$ $\lambda z . \mathrm{zz}$
Path 2: $(\lambda x . \lambda y . \lambda z . x z(y z))(\lambda u . u)(\lambda v . v) \rightarrow_{\beta}$ ($\lambda \mathrm{y} . \lambda z \mathrm{z}(\lambda \mathrm{u} . \mathrm{u}) \mathrm{z}(\mathrm{yz}))(\lambda \mathrm{v} . \mathrm{v}) \rightarrow_{\beta}$
$(\lambda y . \lambda z . z(y z))(\lambda v . v) \rightarrow_{\beta}(\lambda z . z((\lambda v . v) z)) \rightarrow_{\beta}$ $\lambda z . z z$

Reduction Strategy

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes
- How do we arrive at a normal form (answer)?
- Applicative order reduction chooses the leftmost-innermost redex in an expression
- Also referred to as call-by-value reduction
$E:$

Redex 1

Reduction Strategy

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes
- How do we arrive at a normal form (answer)?
- Normal order reduction chooses the leftmostoutermost redex in an expression
- Also referred to as call-by-name reduction

Reduction Strategy: Examples

- Evaluate ($\lambda \mathbf{x} . \mathbf{x} \mathbf{x})((\lambda \mathbf{y} . \mathbf{y})(\lambda z . z)$)
- Using applicative order reduction:

$$
\begin{aligned}
& \frac{\left(\lambda x_{0} x x\right)(\lambda z . z)}{(\lambda 2.2)(\lambda 2.2)} \rightarrow \lambda 2.2
\end{aligned}
$$

- Using normal order reduction

$$
\begin{gathered}
\begin{array}{c}
\left(\lambda x_{0} x x\right)((\lambda y . y)(\lambda z . z))
\end{array} \\
((\lambda y . y)(\lambda z . z))(\lambda y . y)(\lambda z . z)) \rightarrow \\
(\lambda z . z)((\lambda y . y)(\lambda z . z)) \rightarrow\left(\lambda y_{0} y\right)(\lambda z . z) \\
\end{gathered}
$$

Reduction Strategy

- In our examples, both strategies produced the same result. This is not always the case
- First, look at expression ($\lambda \mathbf{x} . \mathbf{x} \mathbf{x}$) ($\lambda \mathbf{x} . \mathbf{x ~ x}$). What happens when we apply β-reduction to this expression?
- Then look at ($\lambda \mathbf{z} . \mathbf{y})((\lambda \mathbf{x} . \mathbf{x} \mathbf{x})(\lambda \mathbf{x} . \mathbf{x} \mathbf{x}))$
- Applicative order reduction - what happens?
- Normal order reduction - what happens?

Church-Rosser Theorem

- Normal form implies that there are no more reductions possible
- Church-Rosser Theorem, informally
- If normal form exists, then it is unique (i.e., result of computation does not depend on the order that reductions are applied; i.e., no expression can have two distinct normal forms)
- If normal form exists, then normal order will find it
- Church-Rosser Theorem, more formally:
- For all pure λ-expressions \mathbf{M}, \mathbf{P} and \mathbf{Q}, if $\mathbf{M} \rightarrow{ }^{*} \mathbf{P}$ and $\mathbf{M} \rightarrow^{*} \mathbf{Q}$, then there must exist an expression \mathbf{R} such that $\mathbf{P} \rightarrow{ }^{*} \mathbf{R}$ and $\mathbf{Q} \rightarrow * \mathbf{R}$

Reduction Strategy

- Intuitively:
- Applicative order (call-by-value) is an eager evaluation strategy. Also known as strict
- Normal order (call-by-name) is a lazy evaluation strategy
- What order of evaluation do most programming languages use?

Exercises

- Evaluate ($\lambda \mathbf{x} . \lambda \mathbf{y} . \mathbf{x} \mathbf{y}$) (($\lambda \mathbf{z} . \mathbf{z}) \mathbf{w})$
 - Using applicative order reduction

- Using normal order reduction

Exercise

- Let S = $\lambda x y z$. x z ($\mathbf{y} \mathbf{z}$) and let $\mathrm{I}=\lambda \mathbf{x}$. \mathbf{x} - Evaluate S I I I using applicative order

Exercise

- Let S = $\lambda x y z$. $\mathbf{x ~ z ~ (~} \mathbf{y} \mathbf{z}$) and let $\mathrm{I}=\lambda \mathbf{x}$. \mathbf{x} - Evaluate S I I I using normal order

The End

