

Reading: Scott, Ch. 11 on CD

Lecture Outline

- Lambda calculus, continued
 - Substitution, review
 - Rules of the lambda calculus
 - Normal forms
 - Reduction strategies

Syntax of Pure Lambda Calculus

- $= E ::= x | (\lambda x. E_1) | (E_1 E_2)$
 - A λ -expression is one of
 - Variable: x
 - Abstraction (i.e., function definition): λx. E₁
 - Application: E₁ E₂
- λ-calculus formulae (e.g., (λx. (x y))) are called expressions or terms
- (λx. (x y)) corresponds to (lambda (x) (x y)) in Scheme!

Programming Languages CSCI 4430, A. Milanova

Convention: notation f, x, y, z for variables; E, M, N, P, Q for expressions

Syntactic Conventions

- May drop parenthesis from (E₁ E₂) or (λx. E)
 E.g., (f x) may be written as f x
- Function application is <u>left-associative</u>
 - I.e., it groups from left-to-right
 - E.g., x y z abbreviates ((x y) z)
 - E.g., $E_1 E_2 E_3 E_4$ abbreviates ((($E_1 E_2 E_3 E_4$))
- Application <u>has higher precedence</u> than abstraction
 - Another way to say this is that the scope of the dot extends as far to the right as possible
 - E.g., $\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} = \lambda \mathbf{x} \cdot (\mathbf{x} \cdot \mathbf{y}) = (\lambda \mathbf{x} \cdot (\mathbf{x} \cdot \mathbf{y})) \neq ((\lambda \mathbf{x} \cdot \mathbf{x}) \cdot \mathbf{y})$

Free and Bound Variables

• Abstraction (λx . E) introduces a binding

- Variable x is said to be bound in λx . E
- The set of free variables of E is the set of variables that are unbound in E
- Defined by cases on E
 - Var x: free(x) = {x}
 - App $E_1 E_2$: free $(E_1 E_2)$ = free $(E_1) U$ free (E_2)
 - Abs λx.E: free(λx.E) = free(E) {x}

$(x y)[(\lambda v.v)/x] \rightarrow$ Substitution, formally $(x[(\lambda v.v)/x] y[(\lambda v.v)/x])$ ->((h.v) y)

- $(\lambda x. E) M \rightarrow E[M/x]$ replaces all free occurrences of x in E by M
- E[M/x] is defined by cases on E:
 - Var: y[M/x] = M if x = y E.g. $x((\lambda v.v)/x] \rightarrow \lambda v.v$ $v((\lambda v.v)/x] \rightarrow V$ **y[M/x]** = **y** otherwise
 - App: $(E_1 E_2)[M/x] = (E_1[M/x] E_2[M/x])$
 - Abs: $(\lambda y. E_1)[M/x] = \lambda y. E_1 \text{ if } x = y \quad (\lambda x. x x)[(\lambda v. v)/x] \\ (\lambda y. E_1)[M/x] = \lambda z. ((E_1[z/y])[M/x]) \text{ otherwise,}$

where **z** NOT in free(E_1) U free(**M**) U {**x**}

Substitution, formally 1-, 2-, 3- are fresh varj PUNI $(\lambda \mathbf{x} \cdot \lambda \mathbf{y} \cdot \lambda \mathbf{z} \cdot \mathbf{x} \mathbf{z} (\mathbf{y} \mathbf{z}))' \mathbf{v}'$ (Ay. E1) [m/x7 => (xy. xz. xz (yz))[v/x] $\lambda_{2,\bullet}((E_1[z/y])[M/x])$ λ1-. ((λz. × ~ (y ~))[1-/y] [v/x]) $(\lambda_{2-.}((x \times (y \times)) (2-/2)) (1-/y))$ ($\lambda_{2-.} \times 2- (1-2-)) (v/x)$ $(\lambda_{3-},(((\times_{2-}(1-2-))))))$ $\lambda 1.(\lambda 3... \vee 5.(1.3.))$ λχ. λγ. ν Υ (× Υ)

Substitution, formally

$$(\lambda \mathbf{x}, \lambda \mathbf{y}, \lambda \mathbf{z}, \mathbf{x}, \mathbf{z}, (\mathbf{y}, \mathbf{z}))'\mathbf{v}'$$

 E

 $\lambda \mathbf{y}, \lambda \mathbf{z}, \mathbf{v}, \mathbf{z}, (\mathbf{y}, \mathbf{z})$

 \mathcal{H}

Rules (Axioms) of Lambda Calculus

- α rule (α-conversion): renaming of parameter (choice of parameter name does not matter)
 - $\lambda x.E \rightarrow_{\alpha} \lambda z.(E[z/x])$ provided that z is not free in E
 - e.g., λx. x x is the same as λz. z z
- β rule (β-reduction): function application (substitutes argument for parameter)
 - (λx. E) M →_β E[M/x]
 Note: E[M/x] as defined on previous slide!
 e.g., (λx. x) z →_β z

Rules of Lambda Calculus: Exercises

• Use α -conversion and/or β -reduction: $(\lambda \mathbf{x}, \mathbf{x})'\mathbf{y} \rightarrow_{\alpha\beta} ? \mathbf{y}$ $(\lambda \mathbf{x}, \mathbf{x})'(\lambda \mathbf{y}, \mathbf{y})' \rightarrow_{\alpha\beta} ? \lambda \mathbf{y} \cdot \mathbf{y}$

(λ x. λ y. λ z. x z (y z)) (λ u. u) (λ v. v) $\rightarrow_{\alpha\beta}$

Notation: $\rightarrow_{\alpha\beta}$ denotes that expression on the left reduces to the expression on the right, through a sequence α -conversions and β -reductions.

Rules of Lambda Calculus: Exercises

• Use
$$\alpha$$
-conversion of β -reduction:
 $(\lambda x.\lambda y.\lambda z. x z (y z)) (\lambda u. u) (\lambda v. v) \rightarrow_{\alpha\beta}$
 $(\lambda y.\lambda z. (\lambda u.u) \not z (y \not z)) (\lambda v. v) \rightarrow_{\alpha\beta}$
 $\lambda z. (\lambda u.u) \not z (y \not z)) (\lambda v. v) \rightarrow_{\alpha\beta}$
 $\lambda z. (\lambda u.u) \not z (y \not z)) (\lambda v. v) \rightarrow_{\alpha\beta}$
 $\lambda z. z \not z$

Reductions

 An expression (λx.E) M is called a redex (for reducible expression)

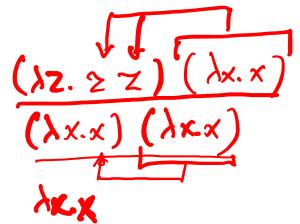
 An expression is in normal form if it cannot be β-reduced

The normal form is the meaning of the term, the "answer"

Questions

- Is λz . z z in normal form? \checkmark
 - Answer: yes, it cannot be beta-reduced

Is (λz. z z) (λx. x) in normal form?
 Answer: no, it can be beta-reduced

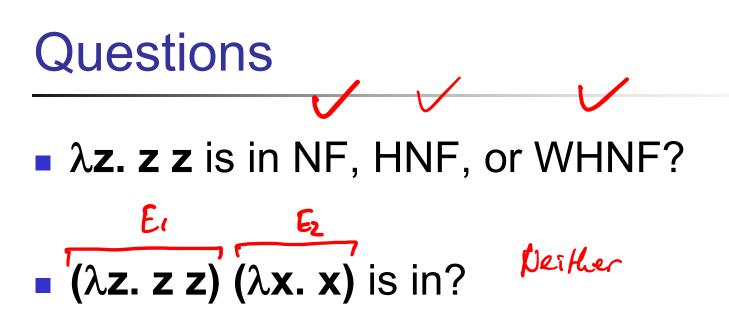


Lecture Outline

- Lambda calculus, continued
 - Substitution, review
 - Rules of the lambda calculus
 - Normal forms
 - Reduction strategies

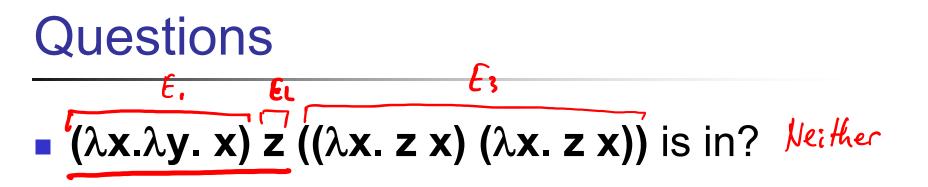
Definitions of Normal Form

- Normal form (NF): a term without redexes
 Head normal form (HNF)
 - **x** is in HNF
 - (λx. E) is in HNF if E is in HNF
- → (x E₁ E₂ ... E_n) is in HNF
- Weak head normal form (WHNF)
 - **x** is in WHNF
 - (λx. E) is in WHNF
 - (x E₁ E₂ ... E_n) is in WHNF



λx.λy.λz. x z (y (λu. u)) is in?

(We will be reducing to NF, mostly)



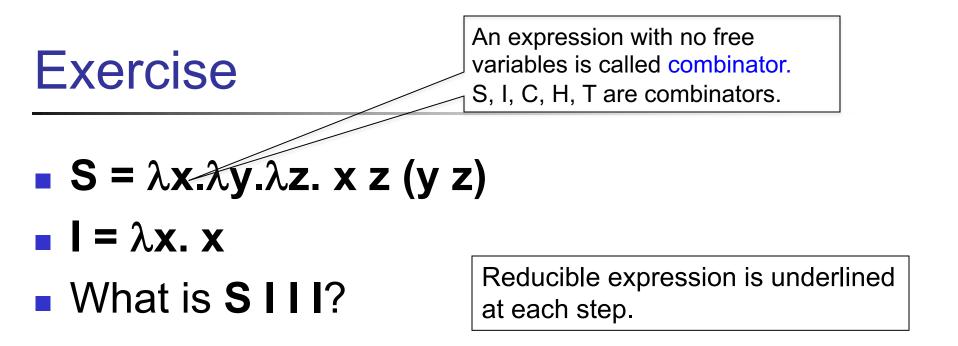
Ez E, ia HNF, WHNF **z** ((λ**x**. **z x**) (λ**x**. **z x**)) is in?

λz.(λx.λy. x) z ((λx. z x) (λx. z x)) is in?

is lest in HNF because (JX.K) Z is not a HNF $\lambda z. (\lambda x.x)$ it is in WHNF

More Reduction Exercises

• $\mathbf{C} = \lambda \mathbf{x} \cdot \lambda \mathbf{y} \cdot \lambda \mathbf{f} \cdot \mathbf{f} \mathbf{x} \mathbf{y}$ • $H = \lambda f. f (\lambda x.\lambda y. x)$ $T = \lambda f. f (\lambda x.\lambda y. y)$ What is **H** (**C** a b)? (xf. f. (xx. xy.x)) (Cab) (Cab) (Xx. Xy. x) a b (λκ.λy.x) -> YJ b (Ax. Ly. X) -> **a**) $(\lambda \mathbf{x} \cdot \boldsymbol{\lambda} \mathbf{y} \cdot \mathbf{x}) \longrightarrow (\lambda \mathbf{x} \cdot \boldsymbol{\lambda} \mathbf{y} \cdot \mathbf{x})$ ->) a b g Languages CSCI 4430, A Milanova (from MIT 2015 Program Analysis OCW)



Lecture Outline

- Lambda calculus, continued
 - Substitution, review
 - Rules of the lambda calculus
 - Normal forms
 - Reduction strategies

Look again at (λx.λy.λz. x z (y z)) (λu. u) (λv. v)

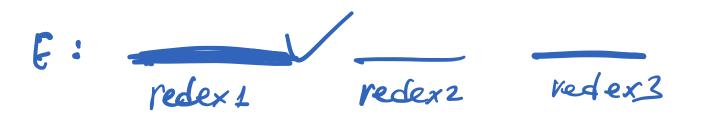
Actually, there are (at least) two "reduction paths":
Path 1: (λx.λy.λz. x z (y z)) (λu. u) (λv. v) →_β (λy.λz. (λu. u) z (y z)) (λv. v) →_β (λz. (λu. u) z ((λv. v) z)) →_β (λz. z ((λv. v) z)) →_β λz. z z
Path 2: (λx.λy.λz. x z (y z)) (λu. u) (λv. v) →_β (λy.λz. (λu. u) z (y z)) (λv. v) →_β

 $(\lambda y.\lambda z. z (y z)) (\lambda v. v) \rightarrow_{\beta} (\lambda z. z ((\lambda v. v) z)) \rightarrow_{\beta}$

λ**Ζ. Ζ Ζ**

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes
 - How do we arrive at a normal form (answer)?
- Applicative order reduction chooses the leftmost-innermost redex in an expression
 - Also referred to as call-by-value reduction

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes
 - How do we arrive at a normal form (answer)?
- Normal order reduction chooses the leftmostoutermost redex in an expression
 - Also referred to as call-by-name reduction



Reduction Strategy: Examples

Evaluate (λx. x x) ((λy. y) (λz. z))
 Using applicative order reduction:
 (λx. x x) (λz. z) →

$$(\lambda 2.2)(\lambda 2.2) \rightarrow \lambda 2.2$$

• Using normal order reduction $\begin{array}{c}
(\lambda_{x, \times} \times) & (\lambda_{y, y})(\lambda_{2, z}) \\
(\lambda_{y, y})(\lambda_{2, z}) & (\lambda_{y, y})(\lambda_{2, z}) \\
(\lambda_{z, z}) & (\lambda_{y, y})(\lambda_{z, z}) \\
(\lambda_{z, z}) & (\lambda_{y, y})(\lambda_{z, z}) \\
\end{array}$

- In our examples, both strategies produced the same result. This is not always the case
 - First, look at expression (λx. x x) (λx. x x). What happens when we apply β-reduction to this expression?
 - Then look at (λz. y) ((λx. x x) (λx. x x))
 - Applicative order reduction what happens?
 - Normal order reduction what happens?

Church-Rosser Theorem

- Normal form implies that there are no more reductions possible
- Church-Rosser Theorem, informally
 - If normal form exists, then it is unique (i.e., result of computation does not depend on the order that reductions are applied; i.e., no expression can have two distinct normal forms)
 - If normal form exists, then normal order will find it
- Church-Rosser Theorem, more formally:

For all pure λ-expressions M, P and Q, if
 M →* P and M →* Q, then there must exist an expression R such that P →* R and Q →* R

Reduction Strategy

Intuitively:

- Applicative order (call-by-value) is an eager evaluation strategy. Also known as strict
- Normal order (call-by-name) is a lazy evaluation strategy
- What order of evaluation do most programming languages use?

- Evaluate (λx.λy. x y) ((λz. z) w)
- Using applicative order reduction

Using normal order reduction

• Let **S** = λxyz . **x** z (y z) and let **I** = λx . x

Evaluate S I I using applicative order

• Let $S = \lambda x y z$. x z (y z) and let $I = \lambda x$. x

Evaluate S I I using normal order

The End