!'- Lambda Calculus

Reading: Scott, Ch. 11 on CD



Lecture Outline

= Lambda calculus, continued
= Substitution, review
= Rules of the lambda calculus
= Normal forms

= Reduction strategies

Programming Languages CSCI 4430, A. Milanova



Syntax of Pure Lambda Calculus

Convention:

m E:;= X I (}\,X E1 ) | ( E1 E2) notation f, x, y, z for variables;

i : E,M,N,P,Qf '
= A h-expression is one of Of Xpressions

« Variable: x
= Abstraction (i.e., function definition): Ax. E,

« Application: E; E,

= A-calculus formulae (e.g., ( Ax. (x y) )) are called
expressions or terms

= (AX. (X y)) corresponds to (lambda (x) (x y)) in
Scheme!

Programming Languages CSCI 4430, A. Milanova 3



Syntactic Conventions

= May drop parenthesis from ( E; E;) or (Ax. E)

= E.g., (fx) may be written as f x

= Function application is left-associative
= l.e., it groups from left-to-right

= E.g., Xy zabbreviates ((xy) z)
« E.g.,E E, E; E,;abbreviates (((E{ E;) E3) E4)

= Application has higher precedence than abstraction

= Another way to say this is that the scope of the dot
extends as far to the right as possible

s Eg, A XY =AX. (XYy)=(Ax. (xy))F((Ix.x)y)




Free and Bound Variables

= Abstraction ( Ax. E ) introduces a binding

s Variable x is said to be bound in Ax. E

s [ he set of free variables of E is the set of
variables that are unbound in E

= Defined by cases on E
= Var x: free(x) = {x}
« App E, E,: free(E, Ey) = free(E4) U free(E,)
= Abs AX.E: free(AX.E) = free(E) - {x}

Programming Languages CSCI 4430, A. Milanova



o (% ) [Guv)/xT —
Substitution, formally ¢ «ravvsr  yeow) 1)

ﬁ)((}u‘v) y)
= (Ax. E) M 2> E[M/x] replaces all free occurrences
of X inE by M

= E[M/X] is defined by cases on E:
: Var:y[Mix] = Mifx=y & Cgiw))//ﬂj’; i
y[M/x] = vy otherwise
= App: (E4 E,)[M/x] = (E4[M/x] E,[M/x])
= Abs: (\y. E;)[M/x] =Ay. E;ifx =y (A:-_;@ [ Owv)/xT
= (. E)[MIx] = Az. ((E4[zly])IM/X]) Crondise.
where z NOT in free(E4) U free(M) U {x}

Programming Languages CSCI 4430, A. Milanova 6



Substitution, formally ., 2, 5. o oot e,
t M

(kx.'?»y. Az.Xz(y zf) v/ HLN!!‘/

~v/x (A‘y El)fl«/x:? =>
(hyed2 2z (y =) Cvid X AT

M- («Az. xz (y Z)ML/)'Z)["/Q)
v () /%7 ) G-y
(( )sl..((( X .’L-y(.i- 2.))[v/¥T )
(35—« ((x 2- (s- 22))f 3 /2-7)(vk3))
Moo N3, V3 (1-3-))

1 Axe AYe V¥ (X y)

Programming Languages CSCI 4430, A. Milanova




Substitution, formally
) 1
(AXAy. Az. )% z (y z‘),)’zl AUNLY
/ 2 ’
o a2, VZ (y 2)

Programming Languages CSCI 4430, A. Milanova



Rules (Axioms) of Lambda Calculus

= o rule (a-conversion): renaming of parameter
(choice of parameter name does not matter)

=« AX.E 2 Az.(E[z/X]) provided that z is not free in E
= €g.,AX.XxXisthesameasiAz.zz

= 3 rule (B-reduction): function application
(substitutes argument for parameter)

= (Ax. E) M 24 E[M/X]
Note: E[M/x] as defined on previous slide!
= e.9., (AX.Xx)z 252

Programming Languages CSCI 4430, A. Milanova 9



Rules of Lambda Calculus: Exercises

= Ufe-,a-conversion and/or 3-reduction:
(AX. x)'?%mB ?7y

J 1
(Ax. x) (Ay. y)' > 7 MY

(AX.Ay.Az. X Z (y Z)) (AU. U) (AV. V) 24

Notation: - ,5 denotes that expression on the left reduces
to the expression on the right, through a sequence a-conversions
and B-reductions.

Programming Languages CSCI 4430, A. Milanova 10



Rules of Lambda Calculus: Exercises

= Usea-C 3-reduction:

(Ax.Ay.Az. X z (y 2)) I(M;E u) (Av. v) >
L E:

(/\y.xz.&(}u.u) 2 (ﬁ” ((\5 v) —
I —
€., (uwu)z () 2) —s

— 11
M, % (Q.\,V'\’ )Q-B —
M, % &

Programming Languages CSCI 4430, A. Milanova 11



Reductions

= An expression ( AX.E ) M is called a redex
(for reducible expression)

= An expression is in normal form if it cannot
be (B-reduced

= The normal form is the meaning of the term,
the "answer”

Programming Languages CSCI 4430, A. Milanova

12



Questions

= ISAz.z z in normal form? \/
= Answer: yes, it cannot be beta-reduced

= Is (Az. z z) (AX. X) in normal form?
e —————
= Answer: no, it can be beta-reduced

T

(’2.>2) f( M. x)i

(Mx.x) £>n<.o<)
dhiae /
MLX

Programming Languages CSCI 4430, A. Milanova

13



Lecture Outline

= Lambda calculus, continued
= Substitution, review
= Rules of the lambda calculus
= Normal forms

= Reduction strategies

Programming Languages CSCI 4430, A. Milanova

14



Definitions of Normal Form

= Normal form (NF): a term without redexes
=

= Head normal form (HNF) (427
= .« xisin HNF

= (AX. E) is in HNF if E is in HNF
—~>s (XE, E, ... E,) is in HNF
= Weak head normal form (WHNF)
. xis in WHNF

= (AX. E) is in WHNF

« (XE, E, ... E,)is in WHNF

Programming Languages CSCI 4430, A Milanova (from MIT’s 2015 Program Analysis OCW)

15



Questions

Vimmnva 4
m Az.zzis Iin NF, HNF, or WHNF?
El EL

« '(Az. z 2) (AX. X) is in? Deiber

= AX.AY.AZ. X Z (y (Au. u)) is in? VF

= (We will be reducing to NF, mostly)

Emm—

Programming Languages CSCI 4430, A Milanova

16



Questions
£ EC £y

. (7»X AY. X)rZ7 (AX. Z X) (AX. Z X)) is in? Neither

Programming Languages CSCI 4430, A Milanova



Questions
E; Er

-'z’((?»x. z X) (AX. z xﬁ IS In"?

Programming Languages CSCI 4430, A Milanova

i« HNE  WHNF

18



uestions kot 1 NIF
Q 2. sl HAE

o kz.!?»x.?»y. X) Z ((AX. z x) (AX. Z X)) is In*?

>\'Zo <A)&X)% s Uof T WUF  becauce
| (% )2 b wt & HF

it s o WHNE

Programming Languages CSCI 4430, A Milanova

19



More Reduction Exercises

s C=AXAyAf. fXy
= H=J\f f (AX.Ay. X) T =AM f (AX.Ay. y)
= Whatis H (C a b)?
(),’.ft()sx.ky.x)) L(C'a. 62
(Cab) (/\x.)\y.x>
Sedy A Lxy) o b (Aedy.x) —
M- fay )b (d<hy.x)—
‘(,\’f,qa o b) (Ax.xy-X)«-? ,\x.Ay-x a b —

Oy a b — o vV
i es CSCI 4430, A Milanova (from MIT 2015 Program Analysis OCW) 20




An expression with no free
variables is called combinator.
S, I, C, H, T are combinators.

Exercise

S = AXAY.AZ. X Z (Y 2)

s | =AX. X
Reducible expression is underlined

] What |S S I I I? at each step.

Programming Languages CSCI 4430, A. Milanova



Lecture Outline

= Lambda calculus, continued
= Substitution, review
= Rules of the lambda calculus
= Normal forms

» Reduction strategies

Programming Languages CSCI 4430, A. Milanova

22



Reduction Strategy

= Look again at (Ax.Ay.Az. x z (y z)) (Au. u) (Av. V)

= Actually, there are (at least) two “reduction paths™:
Path 1: (Ax.Ay.Az. x z (y 2)) (Au. u) (Av. V) 24

(Ay.Az. (Au. ul Z (v z)) (Av.V) 9,3

(Az. (Au. u) z ((Av. V) 2)) 24 (AZ. Z ((Av. V) Z)) 24
AZ.ZZ

Path 2: (AX.Ay.Az. X Z (y 2)) (Au. u) (Av. V) 24
(Ay-Az. (Au. u) z (y 2)) (Av. V) >

(Ay.Az. z (y 2)) (Av. V) D (AZ. z ((Av. V) 2)) D
AZ.Z2Z

23



Reduction Strategy

= A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
= How do we arrive at a normal form (answer)?

= Applicative order reduction chooses the
leftmost-innermost redex in an expression

= Also ref?/rred to as call-by-value reduction

-
. YU <

E o T - —
Redex 1 Kedex 2 Fedex3

Programming Languages CSCI 4430, A. Milanova



Reduction Strategy

= A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
= How do we arrive at a normal form (answer)?

s Normal order reduction chooses the leftmost-
outermost redex in an expression

= Also referred to as call-by-name reduction

E-‘q—\/

redexs  redexz  bedex?

Programming Languages CSCI 4430, A. Milanova 25



Reduction Strategy: Examples

= Evaluate (Ax. x x) ( (Ay.y) (Az. Z) )

= Using applicative order reduction:

Orxx) (Mz.2) —

(02.2) (322) — d2e2

= Using normal order reduction

(Mxx) (Qy.y)(d2.2))—2
(M) ((’\)"Z)(‘\zz))—ﬁ

(>2.2) (CAy.y D A2.2)) .,->Q‘y§z)(/\2_z)
—> AZ.2

26



Reduction Strategy

= In our examples, both strategies produced
the same result. This is not always the case

= First, look at expression (Ax. x x) (AX. x x). What
happens when we apply B-reduction to this
expression?

= Then look at (Az. y) ((Ax. x x) (AX. X X))

= Applicative order reduction — what happens?
= Normal order reduction — what happens?

Programming Languages CSCI 4430, A. Milanova 27



Church-Rosser Theorem

= Normal form implies that there are no more
reductions possible

= Church-Rosser Theorem, informally

« If normal form exists, then it is unique (i.e., result of
computation does not depend on the order that
reductions are applied; i.e., no expression can have
two distinct normal forms)

= If normal form exists, then normal order will find it

= Church-Rosser Theorem, more formally:

= For all pure A-expressions M, P and Q, if
M->*P and M 2>* Q, then there must exist an
expression Rsuchthat P 2>* Rand Q 2* R 28



Reduction Strategy

= Intuitively:

= Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

= Normal order (call-by-name) is a lazy
evaluation strategy

= What order of evaluation do most
programming languages use”?

Programming Languages CSCI 4430, A. Milanova 29



Exercises

= Evaluate (AX.Ay. xy) ((Az. Z) w)
= Using applicative order reduction

= Using normal order reduction

Programming Languages CSCI 4430, A. Milanova

30



Exercise

s Let S =Axyz. xz(y z) and let | = Ax. x
= Evaluate S | | | using applicative order

Programming Languages CSCI 4430, A. Milanova

31



Exercise

s Let S =Axyz. xz(y z) and let | = Ax. x
= Evaluate S | | | using normal order

Programming Languages CSCI 4430, A. Milanova

32



The Enad

Programming Languages CSCI 4430, A. Milanova

33



