
1

Lambda Calculus

Reading: Scott, Ch. 11 on CD

Programming Languages CSCI 4430, A. Milanova 2

Lecture Outline

n Lambda calculus, continued
n Substitution, review
n Rules of the lambda calculus
n Normal forms

n Reduction strategies

Programming Languages CSCI 4430, A. Milanova 3

Syntax of Pure Lambda Calculus

n E ::= x | (lx. E1) | (E1 E2)
n A l-expression is one of

n Variable: x
n Abstraction (i.e., function definition): lx. E1
n Application: E1 E2

n l-calculus formulae (e.g., (lx. (x y))) are called
expressions or terms

n (lx. (x y)) corresponds to (lambda (x) (x y)) in
Scheme!

Convention:
notation f, x, y, z for variables;
E, M, N, P, Q for expressions

4

Syntactic Conventions
n May drop parenthesis from (E1 E2) or (lx. E)

n E.g., (f x) may be written as f x

n Function application is left-associative
n I.e., it groups from left-to-right
n E.g., x y z abbreviates ((x y) z)
n E.g., E1 E2 E3 E4 abbreviates (((E1 E2) E3) E4)

n Application has higher precedence than abstraction
n Another way to say this is that the scope of the dot

extends as far to the right as possible
n E.g., lx. x y = lx. (x y) = (lx. (x y)) ≠ ((lx. x) y)

Programming Languages CSCI 4430, A. Milanova 5

Free and Bound Variables

n Abstraction (lx. E) introduces a binding

n Variable x is said to be bound in lx. E
n The set of free variables of E is the set of

variables that are unbound in E
n Defined by cases on E

n Var x:
n App E1 E2:
n Abs lx.E:

free(x) = {x}
free(E1 E2) = free(E1) U free(E2)

free(lx.E) = free(E) - {x}

6

Substitution, formally

n (lx. E) M à E[M/x] replaces all free occurrences
of x in E by M

n E[M/x] is defined by cases on E:
n Var: y[M/x] =

y[M/x] =
n App: (E1 E2)[M/x] =
n Abs: (ly. E1)[M/x] =

(ly. E1)[M/x] =

Programming Languages CSCI 4430, A. Milanova

M if x = y
y otherwise

(E1[M/x] E2[M/x])
ly. E1 if x = y
lz. ((E1[z/y])[M/x]) otherwise,

where z NOT in free(E1) U free(M) U {x}

Substitution, formally

(lx.ly. lz. x z (y z)) v

Programming Languages CSCI 4430, A. Milanova 7

Substitution, formally

(lx.ly. lz. x z (y z)) v

Programming Languages CSCI 4430, A. Milanova 8

9

Rules (Axioms) of Lambda Calculus

n a rule (a-conversion): renaming of parameter
(choice of parameter name does not matter)
n lx.E àa lz.(E[z/x]) provided that z is not free in E
n e.g., lx. x x is the same as lz. z z

n b rule (b-reduction): function application
(substitutes argument for parameter)
n (lx. E) M àb E[M/x]
Note: E[M/x] as defined on previous slide!
n e.g., (lx. x) z àb z

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 10

Rules of Lambda Calculus: Exercises

n Use a-conversion and/or β-reduction:
(lx. x) y àab ?

(lx. x) (ly. y) àab ?

(lx.ly.lz. x z (y z)) (lu. u) (lv. v) àab

Notation: àab denotes that expression on the left reduces
to the expression on the right, through a sequence a-conversions
and β-reductions.

Programming Languages CSCI 4430, A. Milanova 11

Rules of Lambda Calculus: Exercises

n Use a-conversion or β-reduction:
(lx.ly.lz. x z (y z)) (lu. u) (lv. v) àab

Programming Languages CSCI 4430, A. Milanova 12

Reductions

n An expression (lx.E) M is called a redex
(for reducible expression)

n An expression is in normal form if it cannot
be β-reduced

n The normal form is the meaning of the term,
the “answer”

Questions

n Is lz. z z in normal form?
n Answer: yes, it cannot be beta-reduced

n Is (lz. z z) (lx. x) in normal form?
n Answer: no, it can be beta-reduced

Programming Languages CSCI 4430, A. Milanova 13

Programming Languages CSCI 4430, A. Milanova 14

Lecture Outline

n Lambda calculus, continued
n Substitution, review
n Rules of the lambda calculus
n Normal forms

n Reduction strategies

Definitions of Normal Form

n Normal form (NF): a term without redexes
n Head normal form (HNF)

n x is in HNF
n (lx. E) is in HNF if E is in HNF
n (x E1 E2 … En) is in HNF

n Weak head normal form (WHNF)
n x is in WHNF
n (lx. E) is in WHNF
n (x E1 E2 … En) is in WHNF

Programming Languages CSCI 4430, A Milanova (from MIT’s 2015 Program Analysis OCW) 15

Questions

n lz. z z is in NF, HNF, or WHNF?

n (lz. z z) (lx. x) is in?

n lx.ly.lz. x z (y (lu. u)) is in?

n (We will be reducing to NF, mostly)

16Programming Languages CSCI 4430, A Milanova

Questions

n (lx.ly. x) z ((lx. z x) (lx. z x)) is in?

17Programming Languages CSCI 4430, A Milanova

Questions

n z ((lx. z x) (lx. z x)) is in?

18Programming Languages CSCI 4430, A Milanova

Questions

n lz.(lx.ly. x) z ((lx. z x) (lx. z x)) is in?

19Programming Languages CSCI 4430, A Milanova

More Reduction Exercises

n C = lx.ly.lf. f x y
n H = lf. f (lx.ly. x) T = lf. f (lx.ly. y)
n What is H (C a b)?

Programming Languages CSCI 4430, A Milanova (from MIT 2015 Program Analysis OCW) 20

Programming Languages CSCI 4430, A. Milanova 21

Exercise

n S = lx.ly.lz. x z (y z)
n I = lx. x
n What is S I I I?

An expression with no free
variables is called combinator.
S, I, C, H, T are combinators.

Reducible expression is underlined
at each step.

Programming Languages CSCI 4430, A. Milanova 22

Lecture Outline

n Lambda calculus, continued
n Substitution, review
n Rules of the lambda calculus
n Normal forms

n Reduction strategies

23

Reduction Strategy

n Look again at (lx.ly.lz. x z (y z)) (lu. u) (lv. v)

n Actually, there are (at least) two “reduction paths”:
Path 1: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ

(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(lz. (lu. u) z ((lv. v) z)) àβ (lz. z ((lv. v) z)) àβ
lz. z z

Path 2: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ
(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(ly.lz. z (y z)) (lv. v) àβ (lz. z ((lv. v) z)) àβ
lz. z z

Programming Languages CSCI 4430, A. Milanova 24

Reduction Strategy

n A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
n How do we arrive at a normal form (answer)?

n Applicative order reduction chooses the
leftmost-innermost redex in an expression
n Also referred to as call-by-value reduction

Programming Languages CSCI 4430, A. Milanova 25

Reduction Strategy

n A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
n How do we arrive at a normal form (answer)?

n Normal order reduction chooses the leftmost-
outermost redex in an expression
n Also referred to as call-by-name reduction

26

Reduction Strategy: Examples

n Evaluate (lx. x x) ((ly. y) (lz. z))
n Using applicative order reduction:

n Using normal order reduction

Programming Languages CSCI 4430, A. Milanova 27

Reduction Strategy

n In our examples, both strategies produced
the same result. This is not always the case
n First, look at expression (lx. x x) (lx. x x). What

happens when we apply β-reduction to this
expression?

n Then look at (lz. y) ((lx. x x) (lx. x x))
n Applicative order reduction – what happens?
n Normal order reduction – what happens?

28

Church-Rosser Theorem

n Normal form implies that there are no more
reductions possible

n Church-Rosser Theorem, informally
n If normal form exists, then it is unique (i.e., result of

computation does not depend on the order that
reductions are applied; i.e., no expression can have
two distinct normal forms)

n If normal form exists, then normal order will find it
n Church-Rosser Theorem, more formally:

n For all pure l-expressions M, P and Q, if
M à* P and M à* Q, then there must exist an
expression R such that P à* R and Q à* R

29

Reduction Strategy

n Intuitively:

n Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

n Normal order (call-by-name) is a lazy
evaluation strategy

n What order of evaluation do most
programming languages use?

Programming Languages CSCI 4430, A. Milanova

Exercises

n Evaluate (lx.ly. x y) ((lz. z) w)
n Using applicative order reduction

n Using normal order reduction

30Programming Languages CSCI 4430, A. Milanova

Exercise

n Let S = lxyz. x z (y z) and let I = lx. x
n Evaluate S I I I using applicative order

31Programming Languages CSCI 4430, A. Milanova

Exercise

n Let S = lxyz. x z (y z) and let I = lx. x
n Evaluate S I I I using normal order

32Programming Languages CSCI 4430, A. Milanova

The End

Programming Languages CSCI 4430, A. Milanova 33

