i Announcements

m Quiz 6

= HWS due on Friday

= Exam 2 in one week

= Practice tests on Submitty

= Review and practice on Friday

Programming Languages CSCI 4430, A. Milanova

!'_ Lambda Calculus

i Lecture Outline

m Quiz 6

= Lambda calculus
= Reduction strategies (catch-up)

= Applied lambda calculus
= Introduction to types and type systems
= Simply typed lambda calculus (System F,)

= If we have time

Programming Languages CSCI 4430, A. Milanova

i Reduction Strate g T) ;

= Look again at (7»x.7»y.7»z. x z (y z)) (Au. u) (Av. v)
 ————ts

= Actually, there ar?(-a""l‘ea%):&ﬁ,“reduction paths”:
Path 1: (Ax.Ay.Az. X'z (y z)) (Au. u) (Av. V) 24
(Ay.AZ. (AU. U) Z (¥ z)) ng. V) 2g
(Az. (Au. u) z ((Av. V) 2)) 24 (AZ. Z ((Av. V) Z)) 24
AZ.Z2Z

Path 2: (AX.Ay.Az. X Z (y 2)) (Au. u) (Av. V) 24
(Ay-Az. (Au. u) z (y 2)) (Av. V) D¢

(Ay.Az. z (y 2)) (Av. V) D (AZ. z ((Av. V) 2)) D
AZ.Z2Z

i Reduction Strategy

= A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
= How do we arrive at a normal form (answer)?

= Applicative order reduction chooses the
leftmost-innermost redex in an expression

= Also referred to as call-by-value reduction

-/

[;o = —
o —— -

redex 4 redex 2 redex 2

Programming Languages CSCI 4430, A. Milanova

i Reduction Strategy

= A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
= How do we arrive at a normal form (answer)?

s Normal order reduction chooses the leftmost-
outermost redex in an expression

= Also referred to as call-by-name reduction

E.
O
[4

redex ¢

Programming Languages CSCI 4430, A. Milanova 6

Reduction Strategy: Examples

[1catie ov dee
= Evaluate (Ax. x x) ((Ay. ?»z.zr)»l”

= Using applicative order reduction: Votnal or der

= Using normal order reduction

i Reduction Strategy

= In our examples, both strategies produced
the same result. This is not always the case

= First, look at expression (Ax. x x) (AX. x x). What
happens when we apply B-reduction to this
exprggsion? |

(3 ¢ i[)mxx? —> (Mx. xx) (Ax xx) —Dg-e-
= Then look at (Ax.Ay. y) ((AX. X X) (AX. X X)) z

= Applicative order reduction — what happens?™
= Normal order reduction — what happens?

Programming Languages CSCI 4430, A. Milanova 8

i Church-Rosser Theorem

= Normal form implies that there are no more
reductions possible

= Church-Rosser Theorem, informally

« If normal form exists, then it is unique (i.e., result of
computation does not depend on the order that
reductions are applied; i.e., no expression can have
two distinct normal forms)

= If normal form exists, then normal order will find it

= Church-Rosser Theorem, more formally:

= For all pure A-expressions M, P and Q, if
M->*P and M =2>* Q, then there must exist an
expression RsuchthatP 2>* Rand Q =2*R

i Reduction Strategy

= Intuitively:

= Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

= Normal order (call-by-name) is a lazy
evaluation strategy

= What order of evaluation do most (¢ ?ie}_)
programming languages use”?

10

i Exercises

= Evaluate (AX.Ay. xy) ((Az. Z) W)
= Using applicative order reduction

= Using normal order reduction

Programming Languages CSCI 4430, A. Milanova

11

Exercise

}M. }y‘)zo T X
= Let S =Axyz. x z (y z) and let | = Ax. x

= Evaluate S | | | using applicative order

Programming Languages CSCI 4430, A. Milanova

12

i Exercise

s Let S =Axyz. xz (y z) and let | = Ax. x
= Evaluate S | | | using normal order

Programming Languages CSCI 4430, A. Milanova

13

i Lecture Outline

m Quiz 6

= Lambda calculus
= Reduction strategies (catch-up)

= Applied lambda calculus
= Introduction to types and type systems
= Simply typed lambda calculus (System F,)

= If we have time

Programming Languages CSCI 4430, A. Milanova

14

Applied Lambda Calculus (from
Sethi)

s E:i=c|x|(AX.E;)]| (E{E5)
An applied lambda calculus augments the pure

lambda calculus with constants. It defines its set of
constants and reduction rules. For example:

Constants: Reduction rules:
if, true, false Ttrue MN 25 M

if false MN 25 N
(all these are A terms, .
iIszero 0 -5 true

e.g., true=Ax.Ay. x) iszero (succk 0) >5 false, k>0
0, iszero, pred, succ iszero (predk 0) >4 false, k>0
succ (pred M) 25 M
Programming Languages CSCI 4430, A. Milanova pred (SUCC M) 95 M 15

From an Applied Lambda Calculus to

i a Functional Language

Construct

Variable
Constant
Application
Abstraction
Integer

Conditional

Let
o=

Programming Languages CSCI 4430, A. Milanova

Applied A-Calculus A Language (ML)

X X

C C

M N M N

AX.M funx=>M

succk0, k>0 k ((Gubde (x))

predk 0, k>0 -k \X—3 %o

fPMN If P then M else N
M—Po[?worfhisu

(Ax.M) N —s [etvalx=Nin M end

— (et ((xN)) M)

16

i The Fixed-Point Operator

= One more constant and one more rule:
fix fix M 25 M (fix M)

M(M(M...))

s Needed to define recursive functions:

y ifx=0
Bmsxy=
plus (pred x) (succ y) otherwise

X-1 y+1
= [herefore, we need:

plus = AX.Ay. if (iszero x) y (plus (pred x) (succ y))

Programming Languages CSCI 4430, A. Milanova 17

i The Fixed-Point Operator

= But how do we define plus?

Define plus = fix M, where

)

M = Af. AX.Ay. if (iszero x) y (f (pred x) (succ y))
‘ ? Yy if xisO
@M M) X J = E((X k) (P/Cc(x) (Abccy) o/lawae

We must show that
fix M =6B
AX.Ay. if (iszero x) y ((fix M) (pred x) (succ y))

Programming Languages CSCI 4430, A. Milanova 18

plus = fix M

ay fie e f/‘/t (fox k)

() J= M- My g{ﬂ[(rzerz)Y (F et @)

(7&’(M) 0.6 {: (%?X ﬁ-t) [)Wéc(a) (Sacc é) otherwise

[,f(xh)ab——?h(f‘*“ & b = s

Q.f)x XJ 4 (Kzzfo X \yg(pre_c(x) (&‘*&7))2 (/rx/x &6

Ne.)\\ [(iszero x) J ((fth) (}md x) (&mcg)) a k—-;}
-?(bﬁ; (rgzo.ro a) b ((,fx ,h) (ff"da) (Jucc)
e ———————————— e ——

19

i The Fixed-Point Operator

We have to show

fix M =6B
AX.Ay. if (iszero x) y ((fix M) (pred x) (succ y))

fixM=sM(fixM) =
(M. AX.Ay. if (iszero x) y (f (pred x) (succ y))) (fix M) =g
AX.Ay. if (iszero x) y ((fix M) (pred x) (succ y))

Programming Languages CSCI 4430, A. Milanova 20

i The Fixed-Point Operator

Define times =
fix (AMf.AX.Ay. if (iszero (pred x)) y (plus y (f (pred x) y)))

Exercise: define factorial = ?

Programming Languages CSCI 4430, A. Milanova 21

| P(é) = X
i The Y Combinator o0 =

= fix is, of course, a lambda expression!
= One possiblility, the famous Y combinator:
Y = Af. (AX. f (x X)) (AX. f (X X))

Show that Y M indeed reduces to M (Y M)
Y M ,(}9{} (Xx. Qﬁ(x‘og))<)\x7(’(»<x))) U —p

Chx b (x %)) Tax. h(xx)y,_?/g

M (e M Cxx) DA e Cex))) = M(ru
R - !

i Types!

s Constants are convenient

= But they raise problems because they permit
“bad” terms such as

« ifO0yz (0O doesn’'t make sense as first

argument; true/false values do)
= (0 x) (0O does not apply as a function)
= succ true (undefined in our language)

= plus true 0 etc.

Programming Languages CSCI 4430, A. Milanova 23

i Types!

= Why types?
« Safety. Catch semantic errors early
»« Data abstraction. Simple types and ADTs
= Documentation (statically-typed languages only)
= Type signature is a form of specification!

= Statically typed vs. dynamically typed
languages

= [ype annotations vs. type inference
= Type safe vs. type unsafe

Programming Languages CSCI 4430, A. Milanova 24

i Type System

= Informally, it is a set of rules that we apply on
syntactic constructs in the language

= In type theory, it is defined in terms of
= Type environment
= Typing rules, also called type judgments
= This is typically referred to as the type system

Programming Languages CSCI 4430, A. Milanova 25

Example, More On This Later

(\ looks up the type of x in environment I’
xit & T (Variable)

(Application)

binding: augments environment I’

[" with binding of x to type o

'xie |-E;: 71
|- (Ax:6.Eq):6>7

(Abstraction)

Programming Languages CSCI 4430, A. Milanova

26

i Type System

= A type system either accepts a term (i.e.,
term is “well-typed”), or rejects it

= [ype soundness, also called type safety
=« Well-typed terms never “go wrong”

= A sound type system never accepts a term that
can “go wrong’

= A complete type system never rejects a term that
cannot “go wrong”

= Whether a term can “go wrong” is undecidable
= Type systems choose type soundness (i.e., safety)

i Putting It All Together, Formally

= Simply typed lambda calculus (System F,)

s Syntax of the simply typed lambda calculus

s [he type system: type expressions,
environment, and type judgments

= The dynamic semantics
» Stuck states

= Type soundness theorem: progress and
preservation theorem

28

i Type Expressions

= Introducing type expressions
sTi=b|To7
= A type is a basic type b (we will only consider int
and bool, for simplicity), or a function type

= Examples
int
bool — (int — int) // — Is right-associative, thus
can write just bool — int — int

= Syntax of terms:
« Ei=x|(AXxit.E{) | (E4 Ey)

Programming Languages CSCI 4430, A. Milanova 29

Type Environment and Type
i Judgments

= A term in the simply typed lambda calculus is
= [ype correct i.e., well-typed, or
= [ype incorrect

= The rules that judge type correctness are given
in the form of type judgments in an environment

= Environment |-E:1 (]-is the turnstile)
= Read: environment I' entails that E has type 7

, Premises

= Type judgment T I-Eitoot T|-Eyio
M- (B1E2) * T —— conctusion

Semantics

looks up the type of x in environment I’
xit €T (\

Variable
MN-x:7 ()
N-Ey:0ot IT|-E;:0 (Application)
r I' (E1 E2) - T

binding: augments environment I’

[" with binding of x to type o

'xie |-E;: 71
|- (A\x:6.E4):6>7

(Abstraction)

Programming Languages CSCI 4430, A. Milanova

31

i Examples

= Deduce the type for
AX: Int.Ay: bool. x in the nil environment

Programming Languages CSCI 4430, A. Milanova

32

|-E,:int IM|-E,:int
M|-c:int I |- E{+E, : int
|-E,:int I|-E,:int (Comparison)

I |- E,=E, : bool

N|-b:bool T|-E;:t I|-Ey:71

M|-ifbthen E else E;: 7

Programming Languages CSCI 4430, A. Milanova

33

i Examples

= Is this a valid type?
Nil |- Ax: int.Ay: bool. x+y : int - bool — int

= No. It gets rightfully rejected. Term reaches a
state that goes wrong as it applies + on a value
of the wrong type (y is bool, + is defined on ints)

= Is this a valid type?

Nil |- Ax: bool.Ay: Int. if x then y else y+1 :
bool — Int — int

Programming Languages CSCI 4430, A. Milanova 34

i Examples

= Can we deduce the type of this term?
Af. Ax. if x=1 then x else (f (f (x-1))) : ?
I |-E,:int [-E,:int
I |- E,=E, : bool

[|-E, : int [|-E,: int
[|- E.+E, : int

N-b:bool IT|-E;:7 I|-E;:1
M|-ifbthen E else E;: 7

Programming Languages CSCI 4430, A. Milanova (example from MIT 2015 Program Analysis OCW) 35

i Examples

= Can we deduce the type of this term?

foldl = ‘
AMAXAyY.if x=() then y else (foldl f (cdr x) (f y (car x))):

|-E:listt |-E:listt
|-(carE):t |- (cdrE):listt

Programming Languages CSCI 4430, A. Milanova

36

i Examples

= How about this
(Ax. x (Ay.y) (x1)) (Az.2) : ?

= X cannot have two “different” types
= (x 1) demands int > ?
= (X (Ay.y))demands(tT—>1t)—> ?
= Program does not reach a “stuck state” but is

nevertheless rejected. A sound type system
typically rejects some correct programs

37

Programming Languages CSCI 4430, A. Milanova

38

