Announcements

- Quiz 6
- HW5 due on Friday
- Exam 2 in one week
- Practice tests on Submitty
- Review and practice on Friday

Lambda Calculus

Lecture Outline

- Quiz 6
- Lambda calculus
- Reduction strategies (catch-up)
- Applied lambda calculus
- Introduction to types and type systems
- Simply typed lambda calculus (System F_{1})
- If we have time

Reduction Strategy

I) I

- Look again at ($\lambda x . \lambda y . \lambda z . x z(y z))(\lambda u . u)(\lambda v . v)$
- Actually, there are (at least) two "reduction paths":

Path 1: $\left(\lambda x . \lambda y . \lambda z . x^{\prime} z(y z)\right) \sqrt{(\lambda u . u)}(\lambda v . v) \rightarrow_{\beta}$
$(\lambda y . \lambda z .(\lambda u . u) z(y z)),(\lambda v . v) \rightarrow_{\beta}$
$(\lambda z .(\lambda u . u) z((\lambda v . v) z)) \rightarrow_{\beta}(\lambda z . z((\lambda v . v) z)) \rightarrow_{\beta}$ $\lambda z . \mathrm{zz}$
Path 2: $(\lambda x . \lambda y . \lambda z . x z(y z))(\lambda u . u)(\lambda v . v) \rightarrow_{\beta}$
($\lambda \mathrm{y} . \lambda z \mathrm{z}(\lambda \mathrm{u} . \mathrm{u}) \mathrm{z}(\mathrm{yz}))(\lambda \mathrm{v} . \mathrm{v}) \rightarrow_{\beta}$
$(\lambda y . \lambda z . z(y z))(\lambda v . v) \rightarrow_{\beta}(\lambda z . z((\lambda v . v) z)) \rightarrow_{\beta}$ $\lambda z . z z$

Reduction Strategy

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes - How do we arrive at a normal form (answer)?
- Applicative order reduction chooses the leftmost-innermost redex in an expression
- Also referred to as call-by-value reduction

Reduction Strategy

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes
- How do we arrive at a normal form (answer)?
- Normal order reduction chooses the leftmostoutermost redex in an expression
- Also referred to as call-by-name reduction

$$
E: \overline{\operatorname{redex} 1}
$$

Reduction Strategy: Examples

- Evaluate $(\lambda x . x \mathbf{x})((\lambda y . y)(\lambda z . z) \nrightarrow \rightarrow$ Hoplicative order
- Using applicative order reduction: ${ }^{\bullet}$ Normal order
- Using normal order reduction

Reduction Strategy

- In our examples, both strategies produced the same result. This is not always the case
- First, look at expression ($\lambda \mathbf{x} . \mathbf{x} \mathbf{x}$) ($\lambda \mathbf{x} . \mathbf{x ~ x}$). What happens when we apply β-reduction to this expresssion?
$(\lambda x \cdot x x)(\lambda x, x x) \rightarrow \beta(\lambda x, x x)(\lambda x, x x) \rightarrow_{\beta} \cdots$
- Then look at $(\lambda x . \lambda y . y)((\lambda x, x \mathbf{x})(\lambda x . x \mathbf{x})) \mathbf{z}$
- Applicative order reduction - what happens?
- Normal order reduction - what happens?

Church-Rosser Theorem

- Normal form implies that there are no more reductions possible
- Church-Rosser Theorem, informally
- If normal form exists, then it is unique (i.e., result of computation does not depend on the order that reductions are applied; i.e., no expression can have two distinct normal forms)
- If normal form exists, then normal order will find it
- Church-Rosser Theorem, more formally:
- For all pure λ-expressions \mathbf{M}, \mathbf{P} and \mathbf{Q}, if $\mathbf{M} \rightarrow{ }^{*} \mathbf{P}$ and $\mathbf{M} \rightarrow^{*} \mathbf{Q}$, then there must exist an expression \mathbf{R} such that $\mathbf{P} \rightarrow^{*} \mathbf{R}$ and $\mathbf{Q} \rightarrow^{*} \mathbf{R}$

Reduction Strategy

- Intuitively:
- Applicative order (call-by-value) is an eager evaluation strategy. Also known as strict
- Normal order (call-by-name) is a lazy evaluation strategy
- What order of evaluation do most $\left(e_{1} \underline{l}_{2} e_{3}\right)$ programming languages use?

Exercises

- Evaluate ($\lambda \mathbf{x} . \lambda \mathbf{y} . \mathbf{x} \mathbf{y})((\lambda \mathbf{z} . \mathbf{z}) \mathbf{w})$
- Using applicative order reduction
- Using normal order reduction

Exercise

Let $S=\lambda x y z . x z(y z)$ and let $I=\lambda x . x$ - Evaluate S I I I using applicative order

Exercise

- Let S = $\lambda x y z$. $\mathbf{x ~ z ~ (~} \mathbf{y z}$ z) and let $\mathrm{I}=\lambda \mathbf{x}$. \mathbf{x} - Evaluate S I I I using normal order

Lecture Outline

- Quiz 6
- Lambda calculus
- Reduction strategies (catch-up)
- Applied lambda calculus
- Introduction to types and type systems
- Simply typed lambda calculus (System F_{1})
- If we have time

Applied Lambda Calculus (from Sethi)

- $E:=c|x|\left(\lambda x . E_{1}\right) \mid\left(E_{1} E_{2}\right)$

An applied lambda calculus augments the pure lambda calculus with constants. It defines its set of constants and reduction rules. For example:

Constants:
if, true, false
(all these are λ terms, e.g., true= $\lambda \mathbf{x} . \lambda \mathbf{y} . \mathbf{x}$)

0 , iszero, pred, succ

Reduction rules:
if true $\mathrm{M} \mathrm{N} \rightarrow_{\delta} \mathrm{M}$
if false $\mathrm{M} N \rightarrow_{\delta} \mathrm{N}$
iszero $0 \rightarrow_{\delta}$ true
iszero (succk 0) \rightarrow_{δ} false, $k>0$
iszero (predk 0) \rightarrow_{δ} false, $k>0$
succ (pred M) $\rightarrow_{\delta} \mathrm{M}$
pred (succ M$) \rightarrow_{\delta} \mathrm{M}$

From an Applied Lambda Calculus to a Functional Language

Construct
Variable
Constant
Application
Abstraction Integer

Conditional

Applied λ-Calculus A Language (ML)
X X
C C
M N
$\lambda x . M$
suck $^{k} 0, k>0$
pred k k, k>0
if PM N
($\lambda x . \mathrm{M}$) N
Programming Languages CSCI 4430, A. Milanova
let polymorphism
\rightarrow et val $x=N$ in M end
(let $((\times N)) M)$

The Fixed-Point Operator

- One more constant and one more rule: fix

fix $\mathbf{M} \rightarrow_{\mathbf{\delta}} \mathbf{M}$ (fix M)

M(M(M...))

- Needed to define recursive functions:
plus $x y= \begin{cases}y & \text { if } x=0 \\ \text { plus (pred } x)(\text { succ } y \text {) } & \text { otherwise }\end{cases}$
$\sqrt{\overline{x-1}} \sqrt{y+1}$
- Therefore, we need:
plus $=\lambda x$. $\lambda \mathbf{y}$. if (iszero x) y (plus (pred x) (succ $\mathbf{y})$)

The Fixed-Point Operator

- But how do we define plus?

Define plus = fix M, where
$\mathbf{M}=\lambda f . \lambda x . \lambda y$. if (iszero $x) y(f(\operatorname{pred} x)(s u c c ~ y))$

$$
\left(f_{i x} M_{1}\right) \times y \stackrel{?}{=}\left\{\begin{array}{l}
y \text { if } x \text { is } 0 \\
(f i \times \mu)(\text { pred } x)(\operatorname{succ}, y) \text { otheronse }
\end{array}\right.
$$

We must show that
fix $M={ }_{\delta \beta}$

plus $=$ fix M
(1) $f(x) \mu \rightarrow \beta M(f i x \mu)$
(2) $\boldsymbol{\mu}=\lambda f_{0} \lambda x_{0} \lambda y_{0}$ if (isero $\left.x\right) y(f($ pred $x)(\operatorname{seccc} y))$

$$
\begin{aligned}
& \left(\text { fix M) ab } \stackrel { ? } { = } \left\{\begin{array}{l}
b \text { if } a \text { is } 0 \\
(\text { fix M) (pred } a)
\end{array}\right.\right. \\
& (\text { fix } M) \text { ab } \rightarrow \frac{\mu(\text { fix } \mu) a b=}{}
\end{aligned}
$$

$$
(f i x M) a b \stackrel{?}{=}\{(\text { fix M) }(\text { pred } a)(\text { suck } b) \text { otherwise }
$$

$(\lambda f \cdot \lambda x \cdot \lambda y$. if $($ issei $x) y(\stackrel{F}{f}($ pred $x)(\operatorname{saccc} y))) \sqrt{(f x \mu)} a b$ $\hat{\beta}(\lambda x . \lambda y$. if (iszero $x) y((f i \alpha M)($ pred $x)($ secy $y))) a b \rightarrow \beta$ if (istero alb $($ (fix $\mu)($ pred a) (Such b) $)$

The Fixed-Point Operator

We have to show
fix $M={ }_{\delta \beta}$
$\lambda x . \lambda y$. if (iszero $x) y((f i x ~ M)($ pred $x)($ succ $y))$
fix $\mathbf{M}={ }_{\delta} \mathbf{M}(\operatorname{fix} \mathbf{M})=$
$(\lambda f . \lambda x . \lambda y$. if (iszero $x) y(f(\operatorname{pred} x)(\operatorname{succ} y)))($ fix $M)={ }_{\beta}$ $\lambda x . \lambda y$. if (iszero $x)$ y ((fix M) (pred x) (succ y))

The Fixed-Point Operator

Define times =

fix ($\lambda \mathrm{f} . \lambda \mathrm{x} . \lambda \mathrm{y}$. if (iszero (pred $\mathbf{x})$) y (plus y (f (pred $x) \mathrm{y})$))

Exercise: define factorial = ?

The Y Combinator

- fix is, of course, a lambda expression!
- One possibility, the famous Y combinator:
$\mathbf{Y}=\lambda \mathrm{f}$. ($\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} \mathbf{x}))(\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} \mathbf{x}))$

Show that $\mathbf{Y} \mathbf{M}$ indeed reduces to \mathbf{M} (Y M)
$Y M=\left(\lambda f_{\cdot} \cdot(\lambda x \cdot f(x \alpha))(\lambda x \cdot f(x x))\right) M \rightarrow \beta$
$\left(\lambda x \cdot \mu\left(x x^{x}\right)\right)(\lambda x \cdot \mu(x x)) \rightarrow \beta$ $M\left(\frac{(\lambda x \cdot M(x x))(\lambda x \cdot M(x x))}{Y M}\right)=M(Y M)$

Types!

- Constants are convenient
- But they raise problems because they permit "bad" terms such as
- if $\mathbf{0} \mathbf{y z} \quad$ (0 doesn't make sense as first argument; true/false values do)
- (0 x)
(0 does not apply as a function)
- succ true
(undefined in our language)
- plus true 0 etc.

Types!

- Why types?
- Safety. Catch semantic errors early
- Data abstraction. Simple types and ADTs
- Documentation (statically-typed languages only)
- Type signature is a form of specification!
- Statically typed vs. dynamically typed languages
- Type annotations vs. type inference
- Type safe vs. type unsafe

Type System

- Informally, it is a set of rules that we apply on syntactic constructs in the language
- In type theory, it is defined in terms of
- Type environment
- Typing rules, also called type judgments
- This is typically referred to as the type system

Example, More On This Later

looks up the type of \mathbf{x} in environment Γ
(Variable)

Type System

- A type system either accepts a term (i.e., term is "well-typed"), or rejects it
- Type soundness, also called type safety
- Well-typed terms never "go wrong"
- A sound type system never accepts a term that can "go wrong"
- A complete type system never rejects a term that cannot "go wrong"
- Whether a term can "go wrong" is undecidable
- Type systems choose type soundness (i.e., safety)

Putting It All Together, Formally

- Simply typed lambda calculus (System F_{1})
- Syntax of the simply typed lambda calculus
- The type system: type expressions, environment, and type judgments
- The dynamic semantics
- Stuck states
- Type soundness theorem: progress and preservation theorem

Type Expressions

- Introducing type expressions
- $\boldsymbol{\tau}::=\mathbf{b} \mid \boldsymbol{\tau} \rightarrow \boldsymbol{\tau}$
- A type is a basic type b (we will only consider int and bool, for simplicity), or a function type
- Examples
int
bool \rightarrow (int \rightarrow int) $/ / \rightarrow$ is right-associative, thus can write just bool \rightarrow int \rightarrow int
- Syntax of terms:
- $E:=x\left|\left(\lambda x: \tau . E_{1}\right)\right|\left(E_{1} E_{2}\right)$

Type Environment and Type Judgments

- A term in the simply typed lambda calculus is
- Type correct i.e., well-typed, or
- Type incorrect
- The rules that judge type correctness are given in the form of type judgments in an environment
- Environment Г|-E: $\boldsymbol{\tau}$ (|- is the turnstile)
- Read: environment Γ entails that E has type τ
- Type judgment

$$
\frac{\Gamma \mid-E_{1}: \sigma \rightarrow \tau \xrightarrow{ } \xrightarrow{\Gamma \mid-\left(E_{2}\right.}: \sigma}{} \text { Premises }
$$

Semantics

\longrightarrow looks up the type of \mathbf{x} in environment Γ
 (Variable)

$$
\Gamma\left|-\mathrm{E}_{1}: \sigma \rightarrow \tau \quad \Gamma\right|-\mathrm{E}_{2}: \sigma
$$

(Application)
$\Gamma \mid-\left(E_{1} E_{2}\right): \tau$
binding: augments environment Γ $\longrightarrow \begin{aligned} & \text { with binding of } \mathbf{x} \text { to type } \sigma\end{aligned}$
Г,x:б |- $\mathrm{E}_{1}: \tau$
Г|- ($\left.\lambda \mathrm{x}: \sigma . \mathrm{E}_{1}\right): \sigma \rightarrow \tau$
(Abstraction)

Examples

- Deduce the type for
$\lambda \mathbf{x}$: int. $\lambda \mathbf{y}$: bool. \mathbf{x} in the nil environment

Extensions

$$
\Gamma \mid-E_{1}: \text { int } \quad \Gamma \mid-E_{2}: i n t
$$

「 1 - c: int
$\Gamma \mid-E_{1}+E_{2}$: int
$\Gamma \mid-E_{1}:$ int $\quad \Gamma \mid-E_{2}:$ int
Г $-\mathrm{E}_{1}=\mathrm{E}_{2}$: bool
(Comparison)
$\Gamma \mid-b:$ bool $\Gamma\left|-E_{1}: \tau \quad \Gamma\right|-E_{2}: \tau$
$\Gamma \mid-$ if b then E_{1} else $E_{2}: \tau$

Examples

- Is this a valid type?

Nil |- $\lambda \mathbf{x}$: int. $\lambda \mathbf{y}$: bool. $\mathbf{x + y}$: int \rightarrow bool \rightarrow int

- No. It gets rightfully rejected. Term reaches a state that goes wrong as it applies + on a value of the wrong type (\mathbf{y} is bool, $\mathbf{+}$ is defined on ints)
- Is this a valid type?

Nil |- $\lambda \mathrm{x}$: bool. $\lambda \mathrm{y}$: int. if x then y else $\mathrm{y}+1$: bool \rightarrow int \rightarrow int

Examples

- Can we deduce the type of this term? λf. λx. if $x=1$ then x else ($f(f(x-1))$): ?
$\Gamma \mid-E_{1}:$ int $\quad \Gamma \mid-E_{2}$: int
Г $\mid-E_{1}=E_{2}$: bool
$\Gamma \mid-E_{1}:$ int $\quad \Gamma \mid-E_{2}:$ int
$\Gamma \mid-E_{1}+E_{2}:$ int
Г|-b:bool $\Gamma\left|-E_{1}: \tau \quad \Gamma\right|-E_{2}: \tau$
$\Gamma \mid$ - if b then E_{1} else $E_{2}: \tau$

Examples

- Can we deduce the type of this term? foldl = $\lambda f . \lambda x . \lambda y$.if $x=()$ then y else (foldl $f(c d r x)(f y(c a r x))$):

$\Gamma \mid-\mathrm{E}:$ list $\tau \quad \Gamma \mid-\mathrm{E}$: list τ
「|-(car E): τ
$\Gamma \mid-(\operatorname{cdr} E):$ list τ

Examples

- How about this
($\lambda \mathrm{x} . \mathrm{x}(\lambda \mathrm{y} . \mathrm{y})(\mathrm{x} 1))(\lambda z . z): ?$
- x cannot have two "different" types
- ($\mathbf{x} 1$) demands int \rightarrow ?
$-(x(\lambda y . y)$) demands ($\tau \rightarrow \tau) \rightarrow$?
- Program does not reach a "stuck state" but is nevertheless rejected. A sound type system typically rejects some correct programs

The End

