
Announcements

n Quiz 6

n HW5 due on Friday
n Exam 2 in one week
n Practice tests on Submitty
n Review and practice on Friday

Programming Languages CSCI 4430, A. Milanova 1

Lambda Calculus

Lecture Outline

n Quiz 6
n Lambda calculus

n Reduction strategies (catch-up)

n Applied lambda calculus
n Introduction to types and type systems
n Simply typed lambda calculus (System F1)

n If we have time

Programming Languages CSCI 4430, A. Milanova 3

4

Reduction Strategy
n Look again at (lx.ly.lz. x z (y z)) (lu. u) (lv. v)

n Actually, there are (at least) two “reduction paths”:
Path 1: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ

(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(lz. (lu. u) z ((lv. v) z)) àβ (lz. z ((lv. v) z)) àβ
lz. z z

Path 2: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ
(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(ly.lz. z (y z)) (lv. v) àβ (lz. z ((lv. v) z)) àβ
lz. z z

Programming Languages CSCI 4430, A. Milanova 5

Reduction Strategy

n A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
n How do we arrive at a normal form (answer)?

n Applicative order reduction chooses the
leftmost-innermost redex in an expression
n Also referred to as call-by-value reduction

Programming Languages CSCI 4430, A. Milanova 6

Reduction Strategy

n A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
n How do we arrive at a normal form (answer)?

n Normal order reduction chooses the leftmost-
outermost redex in an expression
n Also referred to as call-by-name reduction

7

Reduction Strategy: Examples

n Evaluate (lx. x x) ((ly. y) (lz. z))
n Using applicative order reduction:

n Using normal order reduction

Programming Languages CSCI 4430, A. Milanova 8

Reduction Strategy

n In our examples, both strategies produced
the same result. This is not always the case
n First, look at expression (lx. x x) (lx. x x). What

happens when we apply β-reduction to this
expression?

n Then look at (lx.ly. y) ((lx. x x) (lx. x x)) z
n Applicative order reduction – what happens?
n Normal order reduction – what happens?

9

Church-Rosser Theorem

n Normal form implies that there are no more
reductions possible

n Church-Rosser Theorem, informally
n If normal form exists, then it is unique (i.e., result of

computation does not depend on the order that
reductions are applied; i.e., no expression can have
two distinct normal forms)

n If normal form exists, then normal order will find it
n Church-Rosser Theorem, more formally:

n For all pure l-expressions M, P and Q, if
M à* P and M à* Q, then there must exist an
expression R such that P à* R and Q à* R

10

Reduction Strategy

n Intuitively:

n Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

n Normal order (call-by-name) is a lazy
evaluation strategy

n What order of evaluation do most
programming languages use?

Exercises

n Evaluate (lx.ly. x y) ((lz. z) w)
n Using applicative order reduction

n Using normal order reduction

11Programming Languages CSCI 4430, A. Milanova

Exercise

n Let S = lxyz. x z (y z) and let I = lx. x
n Evaluate S I I I using applicative order

12Programming Languages CSCI 4430, A. Milanova

Exercise

n Let S = lxyz. x z (y z) and let I = lx. x
n Evaluate S I I I using normal order

13Programming Languages CSCI 4430, A. Milanova

Lecture Outline

n Quiz 6
n Lambda calculus

n Reduction strategies (catch-up)

n Applied lambda calculus
n Introduction to types and type systems
n Simply typed lambda calculus (System F1)

n If we have time

Programming Languages CSCI 4430, A. Milanova 14

15

Applied Lambda Calculus (from
Sethi)

n E ::= c | x | (lx.E1) | (E1 E2)
An applied lambda calculus augments the pure
lambda calculus with constants. It defines its set of
constants and reduction rules. For example:
Constants: Reduction rules:
if, true, false
(all these are l terms,
e.g., true=lx.ly. x)
0, iszero, pred, succ

if true M N àδ M
if false M N àδ N

iszero 0 àδ true
iszero (succk 0) àδ false, k>0
iszero (predk 0) àδ false, k>0
succ (pred M) àδ M
pred (succ M) àδ MProgramming Languages CSCI 4430, A. Milanova

16

From an Applied Lambda Calculus to
a Functional Language

Construct Applied l-Calculus A Language (ML)

Variable x x
Constant c c
Application M N M N
Abstraction lx.M fun x => M
Integer succk 0, k>0 k

predk 0, k>0 -k
Conditional if P M N if P then M else N

Let (lx.M) N let val x = N in M end
Programming Languages CSCI 4430, A. Milanova

17

The Fixed-Point Operator

n One more constant and one more rule:
fix fix M àδ M (fix M)

n Needed to define recursive functions:

n Therefore, we need:
plus = lx.ly. if (iszero x) y (plus (pred x) (succ y))

y if x = 0

plus (pred x) (succ y) otherwise
plus x y =

x-1 y+1

M(M(M…))

Programming Languages CSCI 4430, A. Milanova

18

The Fixed-Point Operator

n But how do we define plus?

Define plus = fix M, where
M = lf. lx.ly. if (iszero x) y (f (pred x) (succ y))

We must show that
fix M =δβ
lx.ly. if (iszero x) y ((fix M) (pred x) (succ y))

Programming Languages CSCI 4430, A. Milanova

?

plus = fix M

19

)

?
otherwise

The Fixed-Point Operator

We have to show
fix M =δβ
lx.ly. if (iszero x) y ((fix M) (pred x) (succ y))

fix M =δM (fix M) =
(lf. lx.ly. if (iszero x) y (f (pred x) (succ y))) (fix M) =β
lx.ly. if (iszero x) y ((fix M) (pred x) (succ y))

Programming Languages CSCI 4430, A. Milanova 20

21

Define times =
fix (lf.lx.ly. if (iszero (pred x)) y (plus y (f (pred x) y)))

Exercise: define factorial = ?

The Fixed-Point Operator

Programming Languages CSCI 4430, A. Milanova

The Y Combinator

n fix is, of course, a lambda expression!
n One possibility, the famous Y combinator:
Y = lf. (lx. f (x x)) (lx. f (x x))

Show that Y M indeed reduces to M (Y M)

22

23

Types!

n Constants are convenient
n But they raise problems because they permit

“bad” terms such as
n if 0 y z (0 doesn’t make sense as first

argument; true/false values do)
n (0 x) (0 does not apply as a function)
n succ true (undefined in our language)
n plus true 0 etc.

Programming Languages CSCI 4430, A. Milanova

Types!

n Why types?
n Safety. Catch semantic errors early
n Data abstraction. Simple types and ADTs
n Documentation (statically-typed languages only)

n Type signature is a form of specification!

n Statically typed vs. dynamically typed
languages

n Type annotations vs. type inference
n Type safe vs. type unsafe

24Programming Languages CSCI 4430, A. Milanova

Type System

n Informally, it is a set of rules that we apply on
syntactic constructs in the language

n In type theory, it is defined in terms of
n Type environment
n Typing rules, also called type judgments
n This is typically referred to as the type system

25Programming Languages CSCI 4430, A. Milanova

26

Example, More On This Later

Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Γ |- x : τ

Γ,x:σ |- E1 : τ
Γ |- (lx:σ. E1) : σ® τ

(Variable)

(Application)

(Abstraction)

binding: augments environment Γ
with binding of x to type σ

looks up the type of x in environment Γ

x:τ Γ∈

Programming Languages CSCI 4430, A. Milanova

Type System

n A type system either accepts a term (i.e.,
term is “well-typed”), or rejects it

n Type soundness, also called type safety
n Well-typed terms never “go wrong”
n A sound type system never accepts a term that

can “go wrong”
n A complete type system never rejects a term that

cannot “go wrong”
n Whether a term can “go wrong” is undecidable

n Type systems choose type soundness (i.e., safety)
27

Putting It All Together, Formally

n Simply typed lambda calculus (System F1)

n Syntax of the simply typed lambda calculus
n The type system: type expressions,

environment, and type judgments
n The dynamic semantics

n Stuck states
n Type soundness theorem: progress and

preservation theorem
28

29

Type Expressions

n Introducing type expressions
n τ ::= b | τ® τ
n A type is a basic type b (we will only consider int

and bool, for simplicity), or a function type
n Examples

int
bool ® (int ® int) // ® is right-associative, thus

can write just bool ® int ® int
n Syntax of terms:

n E ::= x | (lx:τ. E1) | (E1 E2)
Programming Languages CSCI 4430, A. Milanova

Type Environment and Type
Judgments

n A term in the simply typed lambda calculus is
n Type correct i.e., well-typed, or
n Type incorrect

n The rules that judge type correctness are given
in the form of type judgments in an environment
n Environment Γ |- E : τ (|- is the turnstile)
n Read: environment Γ entails that E has type τ

n Type judgment Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Premises

Conclusion

31

Semantics

Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Γ |- x : τ

Γ,x:σ |- E1 : τ
Γ |- (lx:σ. E1) : σ® τ

(Variable)

(Application)

(Abstraction)

binding: augments environment Γ
with binding of x to type σ

looks up the type of x in environment Γ

x:τ Γ∈

Programming Languages CSCI 4430, A. Milanova

32

Examples

n Deduce the type for
lx: int.ly: bool. x in the nil environment

Programming Languages CSCI 4430, A. Milanova

Extensions

33

Γ |- c : int
Γ |- E1 : int Γ |- E2 : int

Γ |- E1+E2 : int

Γ |- E1 : int Γ |- E2 : int
Γ |- E1=E2 : bool

Γ |- b : bool Γ |- E1 : τ Γ |- E2 : τ
Γ |- if b then E1 else E2 : τ

(Comparison)

Programming Languages CSCI 4430, A. Milanova

Examples

n Is this a valid type?
Nil |- lx: int.ly: bool. x+y : int ® bool ® int
n No. It gets rightfully rejected. Term reaches a

state that goes wrong as it applies + on a value
of the wrong type (y is bool, + is defined on ints)

n Is this a valid type?
Nil |- lx: bool.ly: int. if x then y else y+1 :

bool ® int ® int
34Programming Languages CSCI 4430, A. Milanova

Examples

n Can we deduce the type of this term?
lf. lx. if x=1 then x else (f (f (x-1))) : ?

Programming Languages CSCI 4430, A. Milanova (example from MIT 2015 Program Analysis OCW) 35

Γ |- E1 : int Γ |- E2 : int
Γ |- E1+E2 : int

Γ |- E1 : int Γ |- E2 : int
Γ |- E1=E2 : bool

Γ |- b : bool Γ |- E1 : τ Γ |- E2 : τ
Γ |- if b then E1 else E2 : τ

Examples

n Can we deduce the type of this term?
foldl =
lf.lx.ly.if x=() then y else (foldl f (cdr x) (f y (car x))):

36

Γ |- E : list τ
Γ |- (car E) : τ

Γ |- E : list τ
Γ |- (cdr E) : list τ

Programming Languages CSCI 4430, A. Milanova

Examples

n How about this
(lx. x (ly. y) (x 1)) (lz. z) : ?

n x cannot have two “different” types
n (x 1) demands int ® ?
n (x (ly. y)) demands (τ® τ) ® ?

n Program does not reach a “stuck state” but is
nevertheless rejected. A sound type system
typically rejects some correct programs

37

The End

Programming Languages CSCI 4430, A. Milanova 38

