
Announcements

n Quiz 6

n HW5 due on Friday
n Exam 2 in one week
n Practice tests on Submitty
n Review and practice on Friday
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Lambda Calculus



Lecture Outline

n Quiz 6
n Lambda calculus

n Reduction strategies (catch-up)

n Applied lambda calculus
n Introduction to types and type systems
n Simply typed lambda calculus (System F1)

n If we have time
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Reduction Strategy
n Look again at (lx.ly.lz. x z (y z)) (lu. u) (lv. v)

n Actually, there are (at least) two “reduction paths”:
Path 1: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ

(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(lz. (lu. u) z ((lv. v) z)) àβ (lz. z ((lv. v) z)) àβ
lz. z z

Path 2: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ
(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(ly.lz. z (y z)) (lv. v) àβ (lz. z ((lv. v) z)) àβ
lz. z z
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Reduction Strategy

n A reduction strategy (also called evaluation 
order) is a strategy for choosing redexes
n How do we arrive at a normal form (answer)?

n Applicative order reduction chooses the 
leftmost-innermost redex in an expression
n Also referred to as call-by-value reduction
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Reduction Strategy

n A reduction strategy (also called evaluation 
order) is a strategy for choosing redexes
n How do we arrive at a normal form (answer)?

n Normal order reduction chooses the leftmost-
outermost redex in an expression
n Also referred to as call-by-name reduction
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Reduction Strategy: Examples 

n Evaluate (lx. x x) ( (ly. y) (lz. z) )
n Using applicative order reduction:

n Using normal order reduction
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Reduction Strategy

n In our examples, both strategies produced 
the same result. This is not always the case
n First, look at expression (lx. x x) (lx. x x). What 

happens when we apply β-reduction to this 
expression?

n Then look at (lx.ly. y) ((lx. x x) (lx. x x)) z
n Applicative order reduction – what happens?
n Normal order reduction – what happens?
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Church-Rosser Theorem

n Normal form implies that there are no more 
reductions possible 

n Church-Rosser Theorem, informally
n If normal form exists, then it is unique (i.e., result of 

computation does not depend on the order that 
reductions are applied; i.e., no expression can have 
two distinct normal forms)

n If normal form exists, then normal order will find it
n Church-Rosser Theorem, more formally: 

n For all pure l-expressions M, P and Q, if 
M à* P and M à* Q, then there must exist an 
expression R such that P à* R and Q à* R
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Reduction Strategy

n Intuitively:

n Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

n Normal order (call-by-name) is a lazy
evaluation strategy

n What order of evaluation do most 
programming languages use?



Exercises

n Evaluate (lx.ly. x y) ((lz. z) w) 
n Using applicative order reduction

n Using normal order reduction
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Exercise

n Let S = lxyz. x z (y z) and let I = lx. x
n Evaluate S I I I using applicative order
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Exercise

n Let S = lxyz. x z (y z) and let I = lx. x
n Evaluate S I I I using normal order
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Lecture Outline

n Quiz 6
n Lambda calculus

n Reduction strategies (catch-up)

n Applied lambda calculus
n Introduction to types and type systems
n Simply typed lambda calculus (System F1)

n If we have time
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Applied Lambda Calculus (from 
Sethi)

n E ::= c | x | ( lx.E1 ) | ( E1 E2 )
An applied lambda calculus augments the pure 
lambda calculus with constants. It defines its set of 
constants and reduction rules. For example:
Constants: Reduction rules:
if, true, false
(all these are l terms,
e.g., true=lx.ly. x)
0, iszero, pred, succ

if true M N  àδ M
if false M N àδ N

iszero 0 àδ true
iszero (succk 0) àδ false, k>0
iszero (predk 0) àδ false, k>0
succ (pred M) àδ M
pred (succ M) àδ MProgramming Languages CSCI 4430, A. Milanova
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From an Applied Lambda Calculus to 
a Functional Language

Construct Applied l-Calculus  A Language (ML)

Variable x x
Constant c c
Application M N M N
Abstraction lx.M fun x => M
Integer succk 0, k>0 k

predk 0, k>0 -k
Conditional if P M N if P then M else N

Let (lx.M) N let val x = N in M end
Programming Languages CSCI 4430, A. Milanova
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The Fixed-Point Operator

n One more constant and one more rule:
fix fix M àδ M (fix M)

n Needed to define recursive functions:

n Therefore, we need:
plus = lx.ly. if (iszero x) y (plus (pred x) (succ y))

y if x = 0

plus (pred x) (succ y) otherwise
plus x y =

x-1 y+1

M(M(M… ))
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The Fixed-Point Operator

n But how do we define plus?

Define plus = fix M, where
M = lf. lx.ly. if (iszero x) y (f (pred x) (succ y))

We must show that 
fix M =δβ
lx.ly. if (iszero x) y ((fix M) (pred x) (succ y))
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plus = fix M
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)

?
otherwise



The Fixed-Point Operator

We have to show
fix M =δβ
lx.ly. if (iszero x) y ((fix M) (pred x) (succ y))

fix M =δM ( fix M ) =
(lf. lx.ly. if (iszero x) y (f (pred x) (succ y))) ( fix M ) =β
lx.ly. if (iszero x) y ((fix M) (pred x) (succ y))
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Define times =
fix (lf.lx.ly. if (iszero (pred x)) y (plus y (f (pred x) y)))

Exercise: define factorial = ?

The Fixed-Point Operator
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The Y Combinator

n fix is, of course, a lambda expression!
n One possibility, the famous Y combinator:
Y = lf. (lx. f (x x)) (lx. f (x x))

Show that Y M indeed reduces to M (Y M)
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Types!

n Constants are convenient
n But they raise problems because they permit 

“bad” terms such as
n if 0 y z (0 doesn’t make sense as first  

argument; true/false values do)
n (0 x) (0 does not apply as a function)
n succ true (undefined in our language)
n plus true 0 etc.
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Types!

n Why types?
n Safety. Catch semantic errors early
n Data abstraction. Simple types and ADTs
n Documentation (statically-typed languages only)

n Type signature is a form of specification!

n Statically typed vs. dynamically typed 
languages

n Type annotations vs. type inference
n Type safe vs. type unsafe
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Type System

n Informally, it is a set of rules that we apply on 
syntactic constructs in the language

n In type theory, it is defined in terms of
n Type environment
n Typing rules, also called type judgments
n This is typically referred to as the type system
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Example, More On This Later

Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Γ |- x : τ

Γ,x:σ |- E1 : τ
Γ |- (lx:σ. E1) : σ® τ

(Variable)

(Application)

(Abstraction)

binding: augments environment Γ
with binding of x to type σ

looks up the type of x in environment Γ

x:τ Γ∈
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Type System

n A type system either accepts a term (i.e., 
term is “well-typed”), or rejects it  

n Type soundness, also called type safety
n Well-typed terms never “go wrong”
n A sound type system never accepts a term that 

can “go wrong”
n A complete type system never rejects a term that 

cannot “go wrong”
n Whether a term can “go wrong” is undecidable

n Type systems choose type soundness (i.e., safety)
27



Putting It All Together, Formally

n Simply typed lambda calculus (System F1)

n Syntax of the simply typed lambda calculus
n The type system: type expressions, 

environment, and type judgments
n The dynamic semantics

n Stuck states
n Type soundness theorem: progress and 

preservation theorem
28
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Type Expressions

n Introducing type expressions
n τ ::= b | τ® τ
n A type is a basic type b (we will only consider int

and bool, for simplicity), or a function type
n Examples

int
bool ® (int ® int) // ® is right-associative, thus 

can write just bool ® int ® int
n Syntax of terms:

n E ::= x | ( lx:τ. E1 ) | ( E1 E2 ) 
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Type Environment and Type 
Judgments

n A term in the simply typed lambda calculus is
n Type correct i.e., well-typed, or
n Type incorrect 

n The rules that judge type correctness are given 
in the form of type judgments in an environment
n Environment Γ |- E : τ (|- is the turnstile)
n Read: environment Γ entails that E has type τ

n Type judgment Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Premises

Conclusion
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Semantics

Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Γ |- x : τ

Γ,x:σ |- E1 : τ
Γ |- (lx:σ. E1) : σ® τ

(Variable)

(Application)

(Abstraction)

binding: augments environment Γ
with binding of x to type σ

looks up the type of x in environment Γ

x:τ Γ∈

Programming Languages CSCI 4430, A. Milanova



32

Examples

n Deduce the type for 
lx: int.ly: bool. x in the nil environment
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Extensions
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Γ |- c : int
Γ |- E1 : int Γ |- E2 : int

Γ |- E1+E2 : int

Γ |- E1 : int Γ |- E2 : int
Γ |- E1=E2 : bool

Γ |- b : bool Γ |- E1 : τ Γ |- E2 : τ
Γ |- if b then E1 else E2 : τ

(Comparison)
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Examples

n Is this a valid type?
Nil |- lx: int.ly: bool. x+y : int ® bool ® int
n No. It gets rightfully rejected. Term reaches a 

state that goes wrong as it applies + on a value 
of the wrong type (y is bool, + is defined on ints)

n Is this a valid type?
Nil |- lx: bool.ly: int. if x then y else y+1 : 

bool ® int ® int
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Examples

n Can we deduce the type of this term?
lf. lx. if x=1 then x else (f (f (x-1))) : ?
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Γ |- E1 : int Γ |- E2 : int
Γ |- E1+E2 : int

Γ |- E1 : int Γ |- E2 : int
Γ |- E1=E2 : bool

Γ |- b : bool Γ |- E1 : τ Γ |- E2 : τ
Γ |- if b then E1 else E2 : τ



Examples

n Can we deduce the type of this term?
foldl = 
lf.lx.ly.if x=() then y else (foldl f (cdr x) (f y (car x))):

36

Γ |- E : list τ
Γ |- (car E) : τ

Γ |- E : list τ
Γ |- (cdr E) : list τ
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Examples

n How about this 
(lx. x (ly. y) (x 1)) (lz. z) : ?

n x cannot have two “different” types
n (x 1) demands int ® ?
n (x (ly. y)) demands ( τ® τ ) ® ?

n Program does not reach a “stuck state” but is 
nevertheless rejected. A sound type system 
typically rejects some correct programs
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The End
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