!'_ Exam 2 Topics

Topics

= Scheme (Lectures 12 and 13, plus chapters)
= S-expression syntax
» Lists and recursion
= Shallow and deep recursion
= Equality
« Higher-order functions
= map, foldl, and foldr
=« Programming with map, foldl, and foldr
= Tail recursion

Programming Languages CSCI 4430, A. Milanova

Topics

= Scheme (Lecture 14, plus chapters)
=« Binding with let, let*, letrec
= Scoping in Scheme
= Closures and closure bindings

Programming Languages CSCI 4430, A. Milanova

Topics

= Scoping, revisited (Lecture 14, plus chapters)

« Static scoping
= Reference environment
= Functions as third-class values vs.
= Functions as first-class values
= Dynamic scoping
« With shallow binding
« With deep binding

Programming Languages CSCI 4430, A. Milanova 4

Topics dopre (B %) S-tcu
[[d:?me 76;:&([za)atbcé. (Y)/«S'-fo))
= Lambda calculus (Lectures 15, 16, and 17)

= Syntax and semantics

= Free and bound variables

= Substitution

= Rules of the Lambda calculus: Alpha-conversion
and Beta-reduction

= Normal forms

= Reduction strategies: Normal order and
Applicative order

= Fix-point combinator and recursion

Quiz 5

Question 1. (2pts) Scheme’s scoping discipline is

Select one:
ic scoping

O dynamic scoping

Question 2. (2pts) Scheme’s typing discipline is

Select one: (CC{F é)

O static typing
amic typing

Programming Languages CSCI 4430, A Milanova

Quiz 5

Questions 3 and 4 refer to the following Scheme function:

(define (fun a b)
(cond ((= a b) a)
((> ab) (fun (- a b) b))
(else (fun a (- b a)))))

Question 3. (2pts) What does fun compute? Note: you may assume that the arguments are

positive integers.
gac(
Nauwdard : o/,;h'mr‘u.l;

Question 4. (2pts) fun is tail-recursive.

A Sig/c frtctue ou chaek.

Select one:

-l

O false

Programming Languages CSCI 4430, A Milanova

Quiz 5

Question 5. (2pts) Function atomcount, defined below, attempts to count the number of atoms
nested in a list. Recall predicate atom? that we wrote in class — it returns true if given an
object that is not a pair (i.e., an object we cannot take the car or the cdr of).
(define (atomcount lis)
(cong X (atom? 1lis) 1
((null? 1lis) 0)
(else (+ (atomcount (car 1is)) (atomcount (cdr 1is))))))
(atomcount '(1 (2 (3)))) yields N

[—————

Programming Languages CSCI 4430, A Milanova 8

Scoping with First-Class Functions

s Functions as first-class values

= Static scoping is more involved

« Function value may outlive static referencing
environment!

= Therefore, we need “immortal” closure bindings

Programming Languages CSCI 4430, A Milanova

Scoping with First-Class Functions

= Dynamic scoping is more involved
=« Shallow binding vs. deep binding

= Dynamic scoping with shallow binding

= Reference environment for function/routine is not
created until the function is called

= As a result, all non-local references are resolved using
the most-recent-frame-on-stack rule

Programming Languages CSCI 4430, A. Milanova 10

Scoping with First-Class Functions

= Dynamic scoping with deep binding

= When a function/routine is gassed as an
argument, the code that passes the
#ncflon/routine has a particular reference
environment (the current one!) in mind. It passes

this reference environment along with the
function value (it passes a closure
unction v (itp)4 ’7’{ i of

l«" ﬁucﬁ"d\a alue o local 183

B(C)/ w (wses live
4 C) A ref. ecv.
Jucleede

| b A
Cts e elooure

ﬂwc/ (ou l/ala ¢ 4+ A% ie/-ereuce
Programming Languages CSCI 4430, A. Milanova Luvirotcwend. 11

Example |
Vie (
v : integer := 10 ,,m,() '
people : database prait)
| | l = §v1—->lo}
print_routine (p : person) - P /
If p.age > v : V res ’j/‘,,’ fo 5
write_person (euoluctyns foltevs resolue
_P (P) dyuo tic bulLS‘) (re‘;/ow.m /D“ol;lo

other_routine (db : database, P : procedure) U« # «en)
V. integer ;=95
foreach record r in db
P(r)
=

other_routine(people, print_routine) /* call in main */

——— 12

Quiz 6

Questions 1-3 below refer to the following Scheme function:

(define A
(lambda ()
(let* ((x 2

o (€ Qlambda (P) (letgq((x 4)) ®))Y _
e (O (Qambda () X»)D§¢§(:-fﬂ' E
® (B (lambda () (let ({x 3)2) (c D))))

(B))))

Question 1. (1pts) What gets printed when we call the function in the interpreter?
‘= '

Z

Question 2. (2pts) What would get printed if Scheme used dynamic scoping with shallow
o

binding? 4

Question 3. (2pts) What would get printed if Scheme used dynamic scoping with deep binding?

S

Programming Languages CSCI 4430, A Milanova 13

Quiz 6

pas Kal venlt
Question 4. (2pts) Will azowyie ﬂgqgc&)_?_f . What does it do?

(define (f_lis) /7
(foldl (]'.ambda (x ¥) (if (and (number? x) (> x 5)) (coms x y) y)) lis 2Q0)))
N vx X
Select one: (qff(&'d X (COH& /()))

O selects all numerical elements in lis greater than 5

O selects all numerical elements in lis less or equal than 5

r; Willy's function has a bug

Programming Languages CSCI 4430, A Milanova

14

Quiz 6

Question 5. (1pt) Consider the lambda term ()\v v) (Aw.v) (Azx.(Az.xz) 2)). There are this
many reducible expressions in this term: -

S
£ &

Question 6. (1pt) Is lambda term'z (()\y Y) 2) 1n Weak Head Normal Form (WHNF)?

Yes Mo (Ayiy) &3¢ 15 e WHE

XX, (){y\y)k)(i< Mot M
HUF

Question 7. (1pt) Is term z ((A\y.y) z) in Normal Form (NF)?
[0

Programming Languages CSCI 4430, A Milanova

i Unification (simplified)

= Unify: tries to unify terms 14 and 1, and binds variables
to values if T = 7, if unification is successful

def Unify(t4,7,) = This is the occurs check!
case (14,73)

(t4,V2) -> success with binding [t4/V,] if V, does not occur in t4;
fail otherwise

(V4,T5) -> success with binding [t,/V,] if V, does not occur in t,;
fail otherwise
(c4,C5) > success if (eq? ¢4 ¢,); fail otherwise

(P(T11,T12)s P(T21,T22)) -> Unify(t44,724); Unify(t42,72,)

otherwise = fail 16

Questions? g e dydEe ¢ F (v 2)
Sc)XyZ XY (yz) ? = Axx
Abs

S‘ll *((SI)I)I @cabw order Xx/ \A'b(

‘(7 N\
(}nyAz KZ(yzzz I i T-'—PF }.\9/,4!)(4

(byd2. 2% (y2)) T1 oy
(Ay M. (Au);ﬂy‘z)) TT "”’F A/\
Oy Az 7 (%)) 7T~ e
(% % (2%)) 1= X XY

(x. 2 (xdzwi
(ka.zz)éft —, 17T :Qx.x)z—?@;?:«_m_x

Programming Languages CSCI 4430, A Milanova 17

The End Norucl order
('A)-K.)V.XZ.X%[yZ)>212 —
(ky.kz.l ¥ (yg)) oL —
f(kz.lz (ZZ)) i —

77 (2T)-= bpp
= s . e
xoc) i) W
Gxx) (22) —» sl abs Mg s
/ /
;Z_’l_ — (A)«X)l"’@ e x M \>< {x\x >v<\><

Programming Languages CSCI 4430, A Milanova 18

