
Exam 2 Topics

1

Programming Languages CSCI 4430, A. Milanova 2

Topics

n Scheme (Lectures 12 and 13, plus chapters)
n S-expression syntax
n Lists and recursion
n Shallow and deep recursion
n Equality
n Higher-order functions
n map, foldl, and foldr
n Programming with map, foldl, and foldr
n Tail recursion

Programming Languages CSCI 4430, A. Milanova 3

Topics

n Scheme (Lecture 14, plus chapters)
n Binding with let, let*, letrec
n Scoping in Scheme
n Closures and closure bindings

Programming Languages CSCI 4430, A. Milanova 4

Topics

n Scoping, revisited (Lecture 14, plus chapters)
n Static scoping

n Reference environment
n Functions as third-class values vs.
n Functions as first-class values

n Dynamic scoping
n With shallow binding
n With deep binding

5

Topics

n Lambda calculus (Lectures 15, 16, and 17)
n Syntax and semantics
n Free and bound variables
n Substitution
n Rules of the Lambda calculus: Alpha-conversion

and Beta-reduction
n Normal forms
n Reduction strategies: Normal order and

Applicative order
n Fix-point combinator and recursion

Quiz 5

Programming Languages CSCI 4430, A Milanova 6

Quiz 5

Programming Languages CSCI 4430, A Milanova 7

Quiz 5

Programming Languages CSCI 4430, A Milanova 8

Scoping with First-Class Functions

n Functions as first-class values

n Static scoping is more involved
n Function value may outlive static referencing

environment!
n Therefore, we need “immortal” closure bindings

9Programming Languages CSCI 4430, A Milanova

Scoping with First-Class Functions

n Dynamic scoping is more involved
n Shallow binding vs. deep binding

n Dynamic scoping with shallow binding
n Reference environment for function/routine is not

created until the function is called
n As a result, all non-local references are resolved using

the most-recent-frame-on-stack rule

10Programming Languages CSCI 4430, A. Milanova

Scoping with First-Class Functions

n Dynamic scoping with deep binding
n When a function/routine is passed as an

argument, the code that passes the
function/routine has a particular reference
environment (the current one!) in mind. It passes
this reference environment along with the
function value (it passes a closure).

Programming Languages CSCI 4430, A. Milanova 11

Example
v : integer := 10
people : database

print_routine (p : person)
if p.age > v

write_person(p)

other_routine (db : database, P : procedure)
v : integer := 5
foreach record r in db

P(r)

other_routine(people, print_routine) /* call in main */
12

Quiz 6

Programming Languages CSCI 4430, A Milanova 13

Quiz 6

Programming Languages CSCI 4430, A Milanova 14

Quiz 6

Programming Languages CSCI 4430, A Milanova 15

Unification (simplified)

n Unify: tries to unify terms τ1 and τ2 and binds variables
to values if τ1 = τ2 if unification is successful

def Unify(τ1,τ2) =
case (τ1,τ2)

(τ1,V2) -> success with binding [τ1/V2] if V2 does not occur in τ1;
fail otherwise

(V1,τ2) -> success with binding [τ2/V1] if V1 does not occur in τ2;
fail otherwise

(c1,c2) -> success if (eq? c1 c2); fail otherwise
(p(τ11,τ12), p(τ21,τ22)) -> Unify(τ11,τ21); Unify(τ12,τ22)

otherwise = fail 16

This is the occurs check!

Questions?

Programming Languages CSCI 4430, A Milanova 17

The End

Programming Languages CSCI 4430, A Milanova 18

