Intro to Haskell
So Far

- Essential functional programming concepts
 - Reduction semantics
 - Lists and recursion
 - Higher-order functions
 - Map and fold (also known as reduce)
 - Scoping
 - Evaluation order

- Scheme

- Lambda calculus --- theoretical foundation
Coming Up: Haskell

- Haskell: a functional programming language
 - Rich syntax (syntactic sugar), rich modules
 - Lazy evaluation

- Static typing and type inference

- Algebraic data types and pattern matching
- Monads
Lecture Outline

- Haskell: getting started
- Interpreters for the Lambda calculus

Key ideas
- Rich syntax, rich libraries (modules)
- Lazy evaluation
- Static typing and polymorphic type inference
- Algebraic data types and pattern matching
Haskell Resources

- https://www.haskell.org/
 - Try tutorial on front page to get started!

- http://www.seas.upenn.edu/~cis194/spring13/

- Stack Overflow!
- Getting started: slides + tutorial
Getting Started

- Download the Glasgow Haskell Compiler:
 - https://www.haskell.org/ghc

- Run Haskell in interactive mode:
 - ghci
 - Type functions in a file (e.g., `fun.hs`), then load the file and call functions interactively

```haskell
Prelude > :l fun.hs
[1 of 1] Compiling Main ( fun.hs, interpreted )
Ok, one module loaded.
*Main > square 25
```
Getting Started: Infix Syntax

- You can use prefix syntax, like in Scheme:

```
> ((+) 1 2) or (+) 1 2 or (+ 1) 2
```

3

```
> (quot 5 2) --- or quot 5 2
```

2

- Or you can use **infix syntax**:

```
> 1 + 2 + 3
```

```
> 5 `quot` 2 --- function value to infix operator
```
Lists are important in Haskell too!

> [1,2]

[1,2]

> “ana” == ['a','n','a'] --- also, ['a','n','a'] == 'a' : ['n...

True --- strings are of type [Char], Char lists

> map (+ 1) [1,2]

[2,3]

Caveat: in Haskell, all elements of a list must be of same type! You can’t have [[1,2],2]!
Getting Started: Lists

- map, foldl, foldr, filter and more are built-in!

> foldl (+) 0 [1,2,3]
6

> foldr (-) 0 [1,2,3]
2

> filter ((<) 0) [-1,2,0,5]
[2,5]

Note: different order of arguments from ones we defined in Scheme.

foldl : (b * a → b) * b * [a] → b

In Haskell, functions are curried:

foldl:: (b → a → b) → b → [a] → b
→ is right associative:
a → b → c is a → (b → c)
Getting Started: Functions

- Function definition:
 > square x = x*x --- name params = body

- Evaluation:
 > square 5
 25

- Anonymous functions:
 > map (\x->x+1) [1,2,3] --- "\x->" is "λx."
 [2,3,4]
Getting Started: Functions

- Function definition:

  ```
  > square x = x*x  --- name params = body
  ```

- Just as in Scheme, you can define a function using the lambda construct:

  ```
  > square = \x->x*x
  > square 5
  ```
Of course, higher-order functions are everywhere!

--- defining `apply_n` in ghci:

```haskell
> apply_n f n x = if n==0 then x else apply_n f (n-1) (f x)

--- applies f n times on x: e.g., f (f (f (f x))
```

```haskell
> apply_n (+ 1) 10 0 or apply_n (+ 1) 10 0
10

> fun a b = apply_n (+ 1) a b
```
Getting Started: Let Bindings

- let in Haskell is a letrec

> let square x = x*x in square 5
25

> let lis = ['a','n','a'] in head lis
’a’

> let lis = ['a','n','a'] in tail lis
“na”
Getting Started: Indentation

- Haskell supports ; and {} to delineate blocks
- Haskell supports indentation too!

```haskell
isEven n =
    let
        even n = if n == 0 then True else odd (n-1)
        odd n = if n == 0 then False else even (n-1)
    in
        even n

> isEven 100
```

Define function in file. Can’t use indentation syntax in ghci!
Lecture Outline

- Haskell: getting started
- Interpreters for the Lambda Calculus

Key ideas

- Rich syntax, rich libraries (modules)
- Lazy evaluation
- Static typing and polymorphic type inference
- Algebraic data types and pattern matching
Interpreters for the Lambda Calculus (for Haskell Homework!)

- An interpreter for the lambda calculus is a program that reduces lambda expressions to “answers”

- We must specify
 - Definition of “answer”. Which normal form?
 - Reduction strategy. How do we choose redexes in an expression?
An Interpreter

Definition by cases on $E ::= x \mid \lambda x. E_1 \mid E_1 E_2$

- $\text{interpret}(x) = x$
- $\text{interpret}(\lambda x. E_1) = \lambda x. E_1$
- $\text{interpret}(E_1 E_2) = \text{let } f = \text{interpret}(E_1) \text{ in case } f \text{ of }$
 - $\lambda x. E_3 \Rightarrow \text{interpret}(E_3[E_2/x])$
 - $\Rightarrow f E_2$

- What normal form: Weak head normal form
- What strategy: Normal order
Another Interpreter

Definition by cases on $E ::= x \mid \lambda x. E_1 \mid E_1 E_2$

- $\text{interpret}(x) = x$
- $\text{interpret}(\lambda x. E_1) = \lambda x. E_1$
- $\text{interpret}(E_1 E_2) = \text{let } f = \text{interpret}(E_1) \text{ in case } f \text{ of } \lambda x. E_3 \rightarrow \text{interpret}(E_3[a/x]) - \rightarrow f \ a$

- What normal form: Weak head normal form
- What strategy: Applicative order
An Interpreter

In Haskell Homework

First, you will write the pseudocode for an interpreter that

- Reduces to answers in Normal Form
- Using Normal Order

Then, you’ll code this interpreter in Haskell
Lecture Outline

- Haskell: getting started
- Interpreters for the Lambda Calculus

Key ideas
- Rich syntax, rich libraries (modules)
- Lazy evaluation
- Static typing and polymorphic type inference
- Algebraic data types and pattern matching
Lazy Evaluation

- Unlike Scheme (and most programming languages), Haskell does **lazy evaluation**, i.e., **normal order reduction**
 - It won’t evaluate an expression until it is needed

```plaintext
> f x y = x*y
> f (5+1) (5+2)
--- evaluates to (5+1) * (5+2)
--- evaluates argument when needed
```
Lazy Evaluation

- In Scheme:

\[
\text{(define (fun x y) (* x y))}
\]

\[
> \text{(fun (+ 5 1) (+ 5 2)) -}>
\]

\[
\text{(define (fun n)}
\]

\[
\text{\quad (cons n (fun (+ n 1))))}
\]

\[
> \text{(car (fun 0))}
\]
Lazy Evaluation

- In Haskell:

 \[
 \text{fun } n = n : \text{fun}(n+1)
 \]

 > head (fun 0)

 >
Lazy Evaluation

\[f \ x = [] \] --- \(f \) takes \(x \) and returns the empty list
\[f \ (\text{repeat} \ 1) \] --- \text{repeat} produces infinite list \([1, 1, \ldots]\)
\[[] \]

\[\text{head} \ ([1..]) \] --- \([1..]\) is the infinite list of integers
\[1 \]

- Lazy evaluation allows infinite structures!
def gen(start):
 n = start
 while True:
 yield n
 n = n+1

gen_obj = gen(0)
print(next(gen_obj))
print(next(gen_obj))
print(next(gen_obj))
print(next(gen_obj))
Lazy Evaluation

- Generate the (infinite) list of even numbers

- Generate an (infinite) list of “fresh variables”
Lazy Evaluation

Exercise: write a function that generates the (infinite) list of prime numbers
Unlike Scheme, which is dynamically typed, Haskell is **statically typed**!

Unlike Java/C++ we don’t have to write type annotations. Haskell **infers** types!

```haskell
> let f x = head x in f True

• Couldn't match expected type `[a]` with actual type `Bool`
• In the first argument of `f`, namely `True`
  In the expression: f True …
Recall \( \text{apply\_n } f \ n \ x \):

\[
> \text{apply\_n } f \ n \ x = \text{if } n==0 \text{ then } x \text{ else } \text{apply\_n } f \ (n-1) \ (f \ x)
\]

\[
> \text{apply\_n } (+ \ 1) \ True \ 0
\]

<interactive>:32:1: error:

- Could not deduce (Num Bool) arising from a use of ‘apply\_n’ from the context: Num t2 bound by the inferred type of it :: Num t2 => t2 at <interactive>:32:1-22

- In the expression: apply\_n (+ 1) True 0
  In an equation for ‘it’: it = apply\_n (+ 1) True 0
Lecture Outline

- Haskell: a functional programming language

- Key ideas
  - Rich syntax, rich libraries (modules)
  - Lazy evaluation
  - Static typing and polymorphic type inference
  - Algebraic data types and pattern matching
Algebraic Data Types

- Algebraic data types are tagged unions (aka sums) of products (aka records)

```
data Shape = Line Point Point |
progression Triangle Point Point Point |
progression Quad Point Point Point Point
```

Haskell keyword
new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary …
the new type
Algebraic Data Types

- Constructors **create** values of the data type

```plaintext
let

l1::Shape = Line e1 e2

l1 = Line e1 e2

in

```

```plaintext
t1::Shape = Triangle e3 e4 e5

q1::Shape = Quad e6 e7 e8 e9

```

Programming Languages CSCI 4430, A Milanova (example from MIT 2015 Program Analysis OCW)
Defining a lambda expression

```haskell
type Name = String

data Expr = Var Name
 | Lambda Name Expr
 | App Expr Expr

deriving (Eq, Show)
```

```haskell
> e1 = Var "x" // Lambda term \(\lambda x.x\)
> e2 = Lambda "x" e1 // Lambda term \(\lambda x.x\)
```
Exercise: Define an ADT for Expressions as in your HW4

type Name = String

data Expr = Var Name
    | Val Bool
    | Myand Expr Expr
    | Myor Expr Expr
    | Mylet Name Expr Expr Expr

evaluate :: Expr \rightarrow [(\text{Name,Bool})] \rightarrow \text{Bool}

evaluate e env = ...
Pattern Matching

- Examine values of an algebraic data type

\[
\text{anchorPnt} :: \text{Shape} \rightarrow \text{Point}
\]

\[
\text{anchorPnt} \ s = \ \text{case} \ s \ \text{of}
\]

- Line \ p1 \ p2 \rightarrow \ p1
- Triangle \ p3 \ p4 \ p5 \rightarrow \ p3
- Quad \ p6 \ p7 \ p8 \ p9 \rightarrow \ p6

- Two points
  - Test: does the given value match this pattern?
  - Binding: if it matches, deconstruct it and bind corresponding arguments with pattern params

Type signature of anchorPnt: takes a Shape and returns a Point.
Pattern Matching

- Pattern matching “deconstructs” a term

```
> let h:t = "ana" in t
"na"

> let (x,y) = (10,"ana") in x
10
```
Examples of Algebraic Data Types

data Bool = True | False

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Node (Tree a) (Tree a)

data Maybe a = Nothing | Just a

Maybe type denotes that result of computation can be a or Nothing. Maybe is a monad.
Type Constructor vs. Data Constructor

Bool and Day are nullary type constructors:

```haskell
data Bool = True | False

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
```

E.g., \(x::\text{Bool} \ y::\text{Day}\)

Maybe is a unary type constructor

```haskell
data Maybe \(a\) = \text{Nothing} \mid \text{Just } a
```

E.g., \(s::\text{Maybe Sheep} \ e::\text{Maybe Expr}\)
The End