!'_ Intro to Haskell

i So Far

= Essential functional programming concepts
= Reduction semantics
= Lists and recursion

« Higher-order functions
= Map and fold (also known as reduce)

= Scoping
= Evaluation order
s Scheme

s Lambda calculus --- theoretical foundation

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

i Coming Up: Haskell

= Haskell: a functional programming language
= Rich syntax (syntactic sugar), rich modules
= Lazy evaluation

= Static typing and type inference

= Algebraic data types and pattern matching
= Monads

Programming Languages CSCI 4430, A. Milanova/B. G. Ryder

i Lecture Outline

= Haskell: getting started
= Interpreters for the Lambda calculus

= Key ideas
= Rich syntax, rich libraries (modules)
= Lazy evaluation
= Static typing and polymorphic type inference
= Algebraic data types and pattern matching

Programming Languages CSCI 4430, A. Milanova

i Haskell Resources

s https://www.haskell.org/
= [ry tutorial on front page to get started!

s http://www.seas.upenn.edu/~cis194/spring13/

= Stack Overflow!
= Getting started: slides + tutorial

Programming Languages CSCI 4430, A. Milanova 5

https://www.haskell.org/
http://www.seas.upenn.edu/~cis194/spring13/

i Getting Started

= Download the Glasgow Haskell Compiler:
= https://www.haskell.org/ghc

= Run Haskell in interactive mode:
= ghci
= Type functions in a file (e.g., fun.hs), then load
the file and call functions interactively
Prelude > :l fun.hs
[1 of 1] Compiling Main (fun.hs, interpreted)
Ok, one module loaded.
*Main > square 25

https://www.haskell.org/ghc

i Getting Started: Infix Syntax

= You can use prefix syntax, like in Scheme:
>((+)12) or (+)12 or (+1)2

3

> (quot 5 2) --- or quot 5 2

2

= Or you can use infix syntax:
>1+2+3

> 5 ‘quot’ 2 --- function value to infix operator

7

i Getting Started: Lists

= Lists are important in Haskell too!

>[1,2]
[1,2] Syntactic sugar:
> “ana” == ['a’,’n’,’a’] --- also, [‘a’,’n’,’a’] == ‘a" : ['n...

True --- strings are of type [Char], Char lists
> map (+ 1) [1,2]
[2,3]

s Caveat: in Haskell, all elements of a list must
be of same type! You can’t have [[1,2],2]!

i Getting Started: Lists

= map, foldl, foldr, filter and more are built-in!

Note: different order of arguments

from ones we defined in Scheme.
> foldl (+) 0 [1,2,3] |[foldl:(b*a>b)*b*[a]> b

6 In Haskell, functions are curried:

> foldr (-) 0 [1 ,2,3] foldl:: (b>a—->b)=>b->[a]>Db
—> is right associative:
2 a>b—>cisa—>(b->c)

> filter ((<) 0) [-1,2,0,5]
[2,5]

i Getting Started: Functions

= Function definition:

> square X = X*X =--- name params = body
= Evaluation:

> square 5

25

= Anonymous functions:

> map (\x->x+1) [1,2,3] --- “\x->" is “Ax.”
[2,3,4]

Programming Languages CSCI 4430, A. Milanova

10

i Getting Started: Functions

= Function definition:
> square X = X*X =--- name params = body

= Just as in Scheme, you can define a function
using the lambda construct:

> square = \x->x*x
> square 5

Programming Languages CSCI 4430, A. Milanova

11

Getting Started: Higher-order

i Functions

= Of course, higher-order functions are
everywhere!

--- defining apply_n in ghci:

> apply_n f n x =if n==0 then x else apply_n f (n-1) (f x)

--- applies f n times on x: e.g., f (f (f (f X)

>apply n(+1)100orapply n(+1)100
10
>funab=apply n(+1)ab

Programming Languages CSCI 4430, A. Milanova 12

i Getting Started: Let Bindings

= let in Haskell is a letrec

> let square x = x*x in square 5
25

> let lis =[‘a’,’n’,’a’] in head lis
‘g’

> let lis =[‘a’,’n’,’a@’] in tail lis
“na”

Programming Languages CSCI 4430, A. Milanova

13

i Getting Started: Indentation

= Haskell supports ; and { } to delineate blocks
= Haskell supports indentation too!

H — /M Define function in file.
ISEVGH n= Can’t use indentation
|et syntax in ghci!

even n = if n == 0 then True else odd (n-1)
odd n =if n == 0 then False else even (n-1)
in
even n
> isEven 100

14

i Lecture Outline

= Haskell: getting started
m Interpreters for the Lambda Calculus

= Key ideas
= Rich syntax, rich libraries (modules)
= Lazy evaluation
= Static typing and polymorphic type inference
= Algebraic data types and pattern matching

Programming Languages CSCI 4430, A. Milanova 15

Interpreters for the Lambda
i Calculus (for Haskell Homework!)

= An interpreter for the lambda calculus is a
program that reduces lambda expressions to
“answers’

= We must specify
= Definition of “answer”. Which normal form?

= Reduction strategy. How do we choose redexes
INn an expression?

Programming Languages CSCI 4430, A. Milanova 16

Haskell syntax:
letIn

i An Interpreter case f of

9

= Definition by caseson E ::=x| Ax. E, | E4 E,
interpret(x) = x po—
pply function

interpret(Ax.E4) = AX.E; before “interpreting”
the argument

interpret(E4 E,) = let f = interpret(E,)
in case f of —V
AX.E; =2 interpret(E5[E,/X])
- 2>fE,
= WWhat normal form: Weak head normal form

= \What strategy: Normal order

Programming Languages CSCI 4430, A. Milanova (modified from MIT 2015 Program Analysis OCW) 17

i Another Interpreter

= Definition by caseson E ::=x| Ax. E, | E4 E,
interpret(x) = x
interpret(Ax.E4) = AX.E;
interpret(E4 E,) = let f = interpret(E,)

a = interpret(E,)

in case f of
AX.E; =2 interpret(Es[alx])
- >fa

= What normal form: Weak head normal form
= \What strategy: Applicative order 18

i An Interpreter

s In Haskell Homework

= First, you will write the pseudocode for an
interpreter that
= Reduces to answers in Normal Form
= Using Normal Order

= Then, you'll code this interpreter in Haskell

Programming Languages CSCI 4430, A. Milanova

19

i Lecture Outline

= Haskell: getting started
= Interpreters for the Lambda Calculus

= Key ideas
= Rich syntax, rich libraries (modules)
= Lazy evaluation
= Static typing and polymorphic type inference
= Algebraic data types and pattern matching

Programming Languages CSCI 4430, A. Milanova 20

i Lazy Evaluation

= Unlike Scheme (and most programming languages)
Haskell does lazy evaluation, i.e., normal order
reduction

= It won't evaluate an expression until it is needed
>fxy=x*y
> f (5+1) (5+2)
--- evaluates to (5+1) * (5+2)
--- evaluates argument when needed

Programming Languages CSCI 4450/6450, A Milanova 21

i Lazy Evaluation

= [n Scheme:
(define (fun x y) (* X y))
>(fun(+51)(+52))->

(define (fun n)
(cons n (fun (+ n 1))))

> (car (fun 0))
>

22

: denotes “cons” ;

head n and tail fun(n+1)

i Lazy Evaluat|on constructs a list with

= In Haskell:

fun n = n: fun(n+1)
> head (fun 0)

>

23

i Lazy Evaluation

> f x =[] --- f takes x and returns the empty list
> f (repeat 1) --- repeat produces infinite list [1,1...

>]
> head ([1..]) --- [1..] is the infinite list of integers

> 1

= Lazy evaluation allows infinite structures!

Programming Languages CSCI 4430, A. Milanova 24

i Aside: Python Generators

def gen(start):
n = start
while True:
yield n
n=n+1

gen obj = gen(0)
print(next(gen_obj))
print(next(gen_obj))
print(next(gen_obj))

25

i Lazy Evaluation

= Generate the (infinite) list of even numbers

= Generate an (infinite) list of “fresh variables”

Programming Languages CSCI 4430, A. Milanova

26

i Lazy Evaluation

= EXxercise: write a function that generates the
(infinite) list of prime numbers

Programming Languages CSCI 4430, A. Milanova

27

i Static Typing and Type Inference

= Unlike Scheme, which is dynamically typed,
Haskell is statically typed!

= Unlike Java/C++ we don’t have to write type
annotations. Haskell infers types!

> let f x =head xin f True

« Couldn't match expected type ‘[a]’ with actual type ‘Bool’
* In the first argument of ‘f’, namely ‘True’
In the expression: f True ... -8

i Static Typing and Type Inference

= Recall apply_n f n x:
> apply_n f n x =if n==0 then x else apply_n f (n-1) (f x)

>apply n(+1) True 0
<interactive>:32:1: error:
e Could not deduce (Num Bool) arising from a use of ‘apply n’
from the context: Num t2
bound by the inferred type of it :: Num t2 => t2
at <interactive>:32:1-22
* In the expression: apply n(+1) True 0
In an equation for ‘it’: it =apply n(+ 1) True 0 29

i Lecture Outline

= Haskell: a functional programming language

= Key ideas
= Rich syntax, rich libraries (modules)
= Lazy evaluation
= Static typing and polymorphic type inference
= Algebraic data types and pattern matching

Programming Languages CSCI 4430, A. Milanova 30

i Algebraic Data Types

= Algebraic data types are tagged unions (aka
sums) of products (aka records)

data Shape = Line Point Point
| Triangle Point Point Point union
| Quad Point Point Point Point

Haskell keyword | new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary ...

the neW type

Programming Languages CSCI 4430, A Milanova (example from MIT 2015 Program Analysis OCW) 31

i Algebraic Data Types

= Constructors create values of the data type

let
11::Shape
11 = Line el e2

t1::Shape = Triangle e3 e4 €5
g1::Shape = Quad e6 e7 €8 €9
In

Programming Languages CSCI 4430, A Milanova (example from MIT 2015 Program Analysis OCW) 32

Algebraic Data Types in Haskell

i Homework

= Defining a lambda expression

type Name = String

data Expr = Var Name
Lambda Name Expr
App Expr Expr
deriving (Eq, Show)

> e1 = Var “x” // Lambda term x
> e2 = Lambda “x” e1 // Lambda term Ax.x

33

Exercise: Define an ADT for
i Expressions as in your HW4

type Name = String

data Expr = Var Name

Val Bool

Myand Expr Expr

Myor Expr Expr

Mylet Name Expr Expr
evaluate :: Expr = [(Name,Bool)] - Bool
evaluate e env = ...

Programming Languages CSCI 4430, A. Milanova

34

Type signature of anchorPnt: takes

i Patte rn MatCh | ng a Shape and returns a Point.

= Examine values-of an algebraic data type

anchorPnt :: Shape -> Point

anchorPnt s = case s of
Line p1 p2 -> p1
Triangle p3 p4 p5 -> p3
Quad pb6 p7 p8 p9 -> pb6

= Two points
= [est: does the given value match this pattern?

= Binding: if it matches, deconstruct it and bind

corresponding arguments with pattern params
Programming Languages CSCI 4430, A Milanova (from MIT 2015 Program Analysis OCW) 35

i Pattern Matching

= Pattern matching “deconstructs” a term

>let h:t="ana" in t
!!na!!

> let (x,y) = (10,”ana”) in x
10

Programming Languages CSCI 4430, A. Milanova

36

Examples of Algebraic Data
i Types Polymorphic types.

a is a type parameter!

data Bool = True | False
data Day = Mon | Tue | Wed+{Thu | Fri | Sat | Sun

data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)

data Maybe a = Nothing | Just a

Maybe type denotes that result of computation can
be a or Nothing. Maybe is a monad.

Programming Languages CSCI 4430, A Milanova (examples from MIT 2015 Program Analysis OCW) 37

Type Constructor vs. Data
i Constructor

Bool and Day are nullary type constructors:

data Bool = True | False
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
E.g., x::Bool y::Day

Maybe is a unary type constructor
data Maybe a = Nothing | Just a
E.g., s::Maybe Sheep, e::Maybe Expr

Programming Languages CSCI 4430, A Milanova

38

Programming Languages CSCI 4430, A. Milanova

39

Programming Languages CSCI 4430, A. Milanova

40

