!'_ Programming Language Syntax

Read: Scott, Chapter 2.1

i Announcements

= No class Tuesday next week

= HW1 will be out today

= Office hours schedule coming any day now

== Check Submitty and course page:
https://www.cs.rpi.edu/~milanova/csci44 30/

Programming Languages CSCI 4430, A Milanova

https://www.cs.rpi.edu/~milanova/csci4430/

i Timeline

= Mid 1950’s: FORTRAN
= 1969: Hoare logic
= 1970’s: Verification
= Late 1970’s: Enthusiasm cools
= 1979: “Can programming be liberated...” by Backus

= 1980’s and on: Research on functional programming
and type theory

= Mid 2000’s: Z3 and resurgence of verification

Programming Languages CSCI 4430, A Milanova

i Lecture Outline

Regular expressions
= Context-free grammars

a
= Derivation
= Parse
= Parse trees
= Ambiguity

= EXpression grammars

EFormaI languages

Programming Languages CSCI 4430, A. Milanova

Last Class: Compiler

T —
character stream N\
Scanner —
token stream Mach!ne-lndependent
Parser code |mpro.v-ement
| parse tree modified
)) intermediate form
Semantic analysis and |
intermediate cod¢ generation | | Code generation
\ﬂﬁ/ target language
ract syntax tree | (assember)
and intermediate form Machine-dependent
code improvement
modified

target language

Programming Languages CSCI 4430, A. Milanova

i Syntax and Semantics

= Syntax is the form or structure of expressions,
statements, and program units of a given language

= Syntax of a Java while statement:
= while (boolean expr) statement

= Semantics is the meaning of expressions,
statements and program units of a given language

= Semantics of while (boolean expr) statement

= Execute statement repeatedly (O or more times) as long as
boolean expr evaluates to true

Pro!arMJages CSCI 4430, A. Milanova

i Formal Languages

= [heoretical foundations — Automata theory

= Alanguage is a set of strings (also called
==sentences) over a finite alphabet

= A generator is a set of rules that generate the
strings in the language

= A recognizer reads input strings and determines
whether they belong to the language

= Languages are characterized by the complexity of
generation/recognition rules
= E.g., regular languages

" E.g., context-free languages

Programming Languages CSCI 4430, A. Milanova

i Question

= What are the classes of formal languages?

= The Chomsky hierarchy:
& Regular languages
@mges
= Context-sensitive languages
= Recursively enumerable languages

Programming Languages CSCI 4430, A. Milanova

Formal Languages

enerators and recognizers become more complex
as languages become more complex

= Regular languages
=« Describe PL tokens (e.g., keywords, identifiers, numeric literals)
=« Generated by Regular Expressions
= Recognized by a Finite Automaton (scanner)

= Context-free languages

= Describe more complex PL constructs (e.g., expressions and
statements)

=« Generated by a Context-free Grammar
=« Recognized by a Push-down Automaton (parser)

= Even more complex constructs

Programming Languages CSCI 4430, A. Milanova 9

i Formal Languages

= Main application of formal languages: enable
proof of relative difficulty of computational
problems

= Our focus: formal languages provide the
formalism for describing PL constructs
= A compelling application of formal languages!
= Building a scanner

’ . .
_= Building a parser LL | LR, LHi

= Central issue: build efficient, linear-time parsers

Programming Languages CSCI 4430, A. Milanova 10

A Single Pass

position = initial + rate * 60;

|

Scanner
l

« Scanner emits next token

« Parser consumes the token
and continues building the
parse tree (typically bottom up)

id

l

Parser

!

id

Programming Languages CSCI 4430, A. Milanova

assign

RN

expr

11

i Lecture Outline

= Formal languages

= Regular expressions
o

= Context-free grammars

= Derivation
= Parse
= Parse trees
= Ambiguity
= EXpression grammars

Programming Languages CSCI 4430, A. Milanova

12

i Regular Expressions

= Simplest structure

= Formalism to describe the simplest
programming language constructs, the
tokens
= each symbol (e.g., "+", "]) is a token
= an identifier (e.q., position, rate, initial) is a token
= a numeric constant (e.g., 59) is a token
= etc.

= Recognized by a finite automaton

L N R}

Programming Languages CSCI 4430, A. Milanova 13

i Regular Expressions

= A Regular Expression is one of the following:
= A character, e.g., a

g
= The empty string, denoted b}f_?;

= [wo regular expressions next to each other,
R, R, Lag x Len

=« Meaning: R, R, generates the language of strings that are
made up of any string generated by R, followed by any
string generated by R,

= Two regular expressions separated by |, R, | R,

=« Meaning: R, | R, generates the language that is the union of
the strings generated by R, with the strings generated by R,

Programming Languages CSCI 4430, A. Milanova 14

i Question

= What is the language defined by reg. exp.
(a | b) (aa]|]bb)?

Z o, b § Za&,béj
f& aea , ehb, baa, bbb 4

s We saw concatenation and alternation. What
operation is still missing?

S

Programming Language CSCI 4430, A. Milanova 15

i Regular Expressions

= A Regular Expression is one of the following:
= A character, e.g., a

guunid

= The empty string, denoted by ¢

—> R Ry
—> = Ry | Ry
__»= Regular expression followed by a Kleene star, R

=« Meaning: the concatenation of zero or more strings
generated by R

: E.g.,‘a—* generates{¢, a, aa, aaa, ..}

« E.g., (a|b) * generates all s’zi&gs of a'sand b’s

o
Programming Languages CSCI 4430, A. Milanova a 16

i Regular Expressions

= Precedence

o .

= Kleene * has highest precedence
= Followed by concatenation

« Followed by alternation |

sEg,ab | cis(ab) | cnota (b |
= Generates {ab,cl not {a%c}

« E.g., a b* generates {a,ab,abb,..} not
{e, ab, abab, ababab,..}

Programming Languages CSCI 4430, A. Milanova

c)

17

i Question

= What is the language defined by regular
expression (0 | 1)* 1 ?

= Whatabout 0* (1 0* 1 O*)* ?

Programming Languages CSCI 4430, A. Milanova

18

Regular Expressions In
i Programming Languages

= Describe tokens

s Let

e letter »alblc| .. |z

e digit—> 112|3]1415]16|718]9]|0

= Which token is this?

—>1. letter (letter | digit)* ? ideskfien

—s 2. digit digit * = 2 hek-iggofve t.
el % drtt gt % Coudf-ouf—

—>3. digit *. digit digit ?

Programming Languages CSCI 4430, A. Milanova

Regular Expressions In
Programming Languages

10 £~ 40
= Which token is this: —
number — integer | real l0E-2, (oE+20

: TR
real — integer exponent | decimal (exponent | €)

e decimal »ldigit*(. digit | digit .) digit™ o117, 1.9

sexponent » (e |E)(+|-|¢€)integer E+2,6E2
- integer —» digit digit* eg. lo, 110, 900 E°%
odigit »112|3]14|5]16|1718]|9]0

Programming Languages CSCI 4430, A. Milanova 20

i Lecture Outline

= Formal languages
= Regular expressions

s Context-free grammars

- L.
= Derivation

=« Parse
= Parse trees
= Ambiguity
= EXpression grammars

Programming Languages CSCI 4430, A. Milanova

21

i Context-Free Grammars

= Unfortunately, regular languages cannot
specify all constructs in programming

= E.g., can we write a regular expression that
specifies valid arithmetic expressions?
_=id * [id + id * (number - id) }
o Among’other things, we need to ensure that™
parentheses are matched!

= Answer is no. We need context-free languages

M
and context-free grammars!

Programming Languages CSCI 4430, A. Milanova 22

i Grammar

= A grammar is a formalism to describe the strings of
a (formal) language

= A grammar consists of a set of terminals, set of
nonterminals, a set of productions, and a start
O— P ——— G—
symbol
-~ .
= [erminals are the characters in the alphabet
= Nonterminals represent language constructs

= Productions are rules for forming syntactically correct
constructs

« Start symbol tells where to start applying the rules

Programming Languages CSCI 4430, A. Milanova 23

Notation

Specification of identifier:
Regular expression: letter (letter | digit)*

BNF: <digit>::=1|2|3|4|5|6|7|8|9]0
WS <Jefter>=a|b|c|...|x|y|z
<id> ::= <letter> | <id> <letter> | <id> <digit>

Textbook and slides: _~(digi—» 1|2|3]|4|5]|6|7|8(9|0
(also BNF) letter »a|b|c|d]..|z
id — letter | id letter | id digit

Nonterminals shown in italic

Terminals shown in typewriter
Programming Languages CSCI 4430, A. Milanova 24

i Regular Grammars

= Regular grammars generate regular languages

= The rules in regular grammars are of the form:
= Each left-hand-side (lhs) has exactly one nonterminal

« Each right-hand-side (rhs) is one of the following
= A single terminal symbol or
= A single nonterminal symbol or
= A nonterminal followed by a terminal

eg.,1 2*| ot S—> A|B
K(uuo."‘ A>3 1|A2
ooil" B—> 0|BO0

Programming Languages CSCI 4430, A. Milanova 25

i Question

= Is this a regular grammar:

S>0A S'-—DOA—/ﬁ
A—> S1
S > ¢

= No, this is a context-free grammar

=« It generates 071", the canonical example of a context-
free language

= rhs should be nonterminal followed by a terminal, thus,
S — 0 Ais not a valid production

Programming Languages CSCI 4430, A. Milanova 26

i Lecture Outline

= Formal languages
= Regular expressions

s Context-free grammars

= Derivation
= Parse
= Parse trees
= Ambiguity
= EXpression grammars

Programming Languages CSCI 4430, A. Milanova

27

i Context-free Grammars (CFGs)

= Context-free grammars generate context-free

*Tanguages

= Most of what we need in programming languages can be
specified with CFGs

= Context-free grammars have rules of the form:

« Each left-hand-side has exactly one nonterminal
e

« Each right-hand-side contains an arbitrary sequence of
terminals and nonterminals
= A context-free grammar
e.g. 0"1" n21eS -»0S1
<
oS -0 1

Programming Languages CSCI 4430, A. Milanova 28

i Question

= Examples of non-context-free languages”?

~sn E.g., @a"bMc"d™ n21, m21

- E£.9., wew where wisin (0]1) *
= E.g., a"b"c" n21 (canonical example)
——

Programming Languages CSCI 4430, A. Milanova

29

i Context-free Grammars

= Can be used to generate strings in the
context-free language (derivation)

= Can be used to recognize well-formed strings
in the context-free language (parse)

o

= In Programming Languages and compilers,
we are concerned with two special CFGs,
called LL and LR grammars

S o

Programming Languages CSCI 4430, A. Milanova 30

i Derivation

Simple context-free grammar for expressions:
expr > id | (expr) | exprop expr
op >+ | *

We can generate (derive) expressions:

expr = expr op expr
= expr op id
— expr+ id
— exprop expr+ id < sentential form
— exprop id + id
—> expr * id + id
—id * id + id <«— sentence, string or yield

i Derivation

= A derivation is the process that starts from
the start symbol, and at each step, replaces a
nonterminal with the right-hand side of a
production

=« E.9., expr op expr derives expr op id
We replaced the right (underlined) expr with id
due to production expr — id

s An intermediate sentence is called a
sentential form

= E.9., exprop id is a sentential form

32

i Derivation

= The resulting sentence is called yield
« E.g., id*id+id is the yield of our derivation

» What is a left-most derivation?

= Replaces the left-most nonterminal in the
sentential form at each step

= What is a right-most derivation?

= Replaces the right-most nonterminal in the
sentential form at each step

s [here are derivations that are neither left- nor
right-most 33

i Question

s What kind of derivation is this:

expr = expr op expr
= exprop id
— expr+ id
= exprop expr+ id
— exprop id + id
= expr * id + id
—>1d * i1d + 1id

= A right-most derivation. At each step we replace
the right-most nonterminal

Programming Languages CSCI 4430, A. Milanova

34

i Question

s What kind of derivation is this:

expr = expr op expr

—> expr op 1d

— expr + id

= exprop expr + id
— 1d opexpr + 1id
— 1d op id + 1id

—1d * 1d + 1id

= Neither left-most nor right-most

Programming Languages CSCI 4430, A. Milanova

35

i Parse

expr —» id | (expr) | exprop expr
op >+ | *

Recall our context-free grammar for expressions:

= A parse is the reverse of a derivation

id * 1id + id = expr * id + id
—> exprop id + id
—> exprop expr + id
—> expr + id
—> exprop id
—> expr op expr

= expr
Programming Languages CSCI 4430, A. Milanova

36

i Parse

= A parse starts with the string of terminals,
and at each step, replaces the right-hand-
side (rhs) of a production with the left-hand-
side (lhs) of that production. E.g.,

... = exprop expr+ id
= expr + id
Here we replaced expr op expr (the rhs of

production expr — expr op expr) with expr
(the lhs of the production)

Programming Languages CSCI 4430, A. Milanova

37

i Parse Tree

expr —» id | (expr) | exprop expr
op >+ |*

expr = expr op expr

expr

= exprop id / \

— expr+ id expr op expr
= exprop expr+ id P \

= exprop id + id expr op expr *

= expr * id + id | |

—id * id + id id * id 1d

Internal nodes are nonterminals. Children are
the rhs of a rule for that nonterminal.
Leaf nodes are terminals.

38

i Ambiguity
= Ambiguity

= A grammar is ambiguous if some string can be
generated by two or more distinct parse trees

= There is no algorithm that can tell if an arbitrary
context-free grammar is ambiguous
= Ambiguity arises in programming language
grammars
= Arithmetic expressions
= If-then-else: the dangling else problem

= Ambiguity is bad

Programming Languages CSCI 4430, A. Milanova 39

L= ud 2 ida
Ambiguity Sy = bk Wy

expr —» id | (expr) | exprop expr

op >+ |*
= How many parse trees for id * id + id?
'62,‘2 L“-l- icfs
Tree 1:expr Tree 2: expr
T~ tgeid ar'(clt/ N\
expr op expr 4 T expr op expr

* expr op expr expr op expr

| | o .
id + id id, * 1d, 1d,

. . (14 b} ,
= \Which one is “correct’?

id

40

Ambiguity

op >+ |*

expr —» id | (expr) | exprop expr

= How many parse trees for id + id + id?

Tree 1:expr

T

expr op expr

AN

t expr op expr

| \ |
id id + id

= \Which one is “correct’?

Tree 2: oxpr
N

I\

expr op expr
RN
expr op expr t
L
id 4 id id
o=

41

i Lecture Outline

= Formal languages
= Regular expressions

= Context-free grammars
= Derivation
= Parse
= Parse trees
= Ambiguity

s EXpression grammars
-

Programming Languages CSCI 4430, A. Milanova

42

i Expression Grammars

= Generate expressions
= Arithmetic expressions

= Regular expressions
= Other

= Terminals: operands, operators, and
parentheses

_expr — id | (expr) | exprop expr
op >+|*

Programming Languages CSCI 4430, A. Milanova

43

daeid £
Handling Amb|QU|t39"” S idnd id,

ur ambiguous grammar, slightly simplified: {erw
expr — id | (expr) | expr «expr)|Expr¥k exp

i am

= Rewrite the grammar into unambiguous one:

—® exXpr — expr + term | tgﬂn_ af,w
—> term — term * factor | factor W@M“

factor - id | (expr)

Q*o*r
= Forces left associativity of + and *

= Forces higher precedence of * over +

44

Rewriting Expression Grammars:

i Intuition
expr —» id | (expr) | expr+|

= A new nonterminal, ferm

= expr * expr becomes term. Thus, * gets

pushed down the tree, forcing higher
precedence of *

= expr + expr becomes expr + term. Pushes
leftmost + down the tree, forcing operand to
associate with + on its left

= eXpr — expr + expr becomes expr — expr + term

| term
Programming Languages CSCI 4430, A. Milanova 45

Rewriting Expression Grammars:
|ntUItIOn /fterms in the sum \

. Iookat+ +

xpr + term id*id
|
id

expr term

T ||

term id*id*id

id

Programming Languages CSCI 4430, A. Milanova 46

Rewriting Expression Grammars:

i Intuition

» Another new nonterminal, factor and
productions:
= lerm — term * factor | factor

« factor — id | (expr)

Programming Languages CSCI 4430, A. Milanova

47

i Exercise

expr — expr x expr | expr ™ expr| id

= How many parse trees for id X id*idXid ?
= No need to draw them all
= Rewrite this grammar into an equivalent
unambiguous grammar where
~ has higher precedence than X
~ Is right-associative
x |s left-associative

Programming Languages CSCI 4430, A. Milanova 48

Programming Languages CSCI 4430, A. Milanova

49

