
Programming Language Syntax

Read: Scott, Chapter 2.1

Announcements

n No class Tuesday next week

n HW1 will be out today

n Office hours schedule coming any day now
n Check Submitty and course page:

https://www.cs.rpi.edu/~milanova/csci4430/

Programming Languages CSCI 4430, A Milanova 2

https://www.cs.rpi.edu/~milanova/csci4430/

Timeline

n Mid 1950’s: FORTRAN
n 1969: Hoare logic
n 1970’s: Verification
n Late 1970’s: Enthusiasm cools
n 1979: “Can programming be liberated…” by Backus
n 1980’s and on: Research on functional programming

and type theory

n Mid 2000’s: Z3 and resurgence of verification

Programming Languages CSCI 4430, A Milanova 3

Programming Languages CSCI 4430, A. Milanova 4

Lecture Outline

n Formal languages
n Regular expressions
n Context-free grammars

n Derivation
n Parse
n Parse trees
n Ambiguity

n Expression grammars

Programming Languages CSCI 4430, A. Milanova 5

Last Class: Compiler

Scanner

Parser

Machine-independent
code improvement

Code generation

character stream

token stream

parse tree modified
intermediate form

target language
(assember)

Semantic analysis and
intermediate code generation

abstract syntax tree
and intermediate form Machine-dependent

code improvement
modified
target language

Programming Languages CSCI 4430, A. Milanova 6

Syntax and Semantics

n Syntax is the form or structure of expressions,
statements, and program units of a given language
n Syntax of a Java while statement:

n while (boolean_expr) statement

n Semantics is the meaning of expressions,
statements and program units of a given language
n Semantics of while (boolean_expr) statement

n Execute statement repeatedly (0 or more times) as long as
boolean_expr evaluates to true

Programming Languages CSCI 4430, A. Milanova 7

Formal Languages

n Theoretical foundations – Automata theory
n A language is a set of strings (also called

sentences) over a finite alphabet
n A generator is a set of rules that generate the

strings in the language
n A recognizer reads input strings and determines

whether they belong to the language
n Languages are characterized by the complexity of

generation/recognition rules
n E.g., regular languages
n E.g., context-free languages

Question

n What are the classes of formal languages?

n The Chomsky hierarchy:
n Regular languages
n Context-free languages
n Context-sensitive languages
n Recursively enumerable languages

Programming Languages CSCI 4430, A. Milanova 8

Programming Languages CSCI 4430, A. Milanova 9

Formal Languages
n Generators and recognizers become more complex

as languages become more complex
n Regular languages

n Describe PL tokens (e.g., keywords, identifiers, numeric literals)
n Generated by Regular Expressions
n Recognized by a Finite Automaton (scanner)

n Context-free languages
n Describe more complex PL constructs (e.g., expressions and

statements)
n Generated by a Context-free Grammar
n Recognized by a Push-down Automaton (parser)

n Even more complex constructs

Programming Languages CSCI 4430, A. Milanova 10

Formal Languages

n Main application of formal languages: enable
proof of relative difficulty of computational
problems

n Our focus: formal languages provide the
formalism for describing PL constructs
n A compelling application of formal languages!
n Building a scanner
n Building a parser
n Central issue: build efficient, linear-time parsers

Programming Languages CSCI 4430, A. Milanova 11

A Single Pass

Scanner

Parser

position = initial + rate * 60;

id

id

• Scanner emits next token
• Parser consumes the token

and continues building the
parse tree (typically bottom up)

= …

=

…

expr

assign

Programming Languages CSCI 4430, A. Milanova 12

Lecture Outline

n Formal languages
n Regular expressions
n Context-free grammars

n Derivation
n Parse
n Parse trees
n Ambiguity

n Expression grammars

Programming Languages CSCI 4430, A. Milanova 13

Regular Expressions

n Simplest structure
n Formalism to describe the simplest

programming language constructs, the
tokens
n each symbol (e.g., “+”, “-”) is a token
n an identifier (e.g., position, rate, initial) is a token
n a numeric constant (e.g., 59) is a token
n etc.

n Recognized by a finite automaton

Regular Expressions

n A Regular Expression is one of the following:
n A character, e.g., a
n The empty string, denoted by e
n Two regular expressions next to each other,

R1 R2
n Meaning: R1 R2 generates the language of strings that are

made up of any string generated by R1, followed by any
string generated by R2

n Two regular expressions separated by |, R1 | R2
n Meaning: R1 | R2 generates the language that is the union of

the strings generated by R1 with the strings generated by R2
14Programming Languages CSCI 4430, A. Milanova

Question

n What is the language defined by reg. exp.
(a | b) (a a | b b) ?

n We saw concatenation and alternation. What
operation is still missing?

Programming Language CSCI 4430, A. Milanova 15

Regular Expressions

n A Regular Expression is one of the following:
n A character, e.g., a
n The empty string, denoted by e
n R1 R2

n R1 | R2

n Regular expression followed by a Kleene star, R*
n Meaning: the concatenation of zero or more strings

generated by R
n E.g., a* generates {e, a, aa, aaa, … }
n E.g., (a|b)* generates all strings of a’s and b’s

Programming Languages CSCI 4430, A. Milanova 16

Regular Expressions

n Precedence
n Kleene * has highest precedence
n Followed by concatenation
n Followed by alternation |

n E.g., a b | c is (a b) | c not a (b | c)
n Generates {ab,c} not {ab,ac}

n E.g., a b* generates {a,ab,abb,…} not
{ε, ab, abab, ababab,…}

Programming Languages CSCI 4430, A. Milanova 17

Question

n What is the language defined by regular
expression (0 | 1)* 1 ?

n What about 0* (1 0* 1 0*)* ?

Programming Languages CSCI 4430, A. Milanova 18

Programming Languages CSCI 4430, A. Milanova 19

Regular Expressions in
Programming Languages

n Describe tokens
n Let

letter ® a|b|c| … |z
digit ® 1|2|3|4|5|6|7|8|9|0

n Which token is this?
1. letter (letter | digit)* ?
2. digit digit * ?
3. digit * . digit digit * ?

Regular Expressions in
Programming Languages

n Which token is this:

number ® integer | real
real ® integer exponent | decimal (exponent | ε)
decimal ® digit* (. digit | digit .) digit*
exponent ® (e | E) (+ | - | ε) integer
integer ® digit digit*
digit ® 1|2|3|4|5|6|7|8|9|0

Programming Languages CSCI 4430, A. Milanova 20

Programming Languages CSCI 4430, A. Milanova 21

Lecture Outline

n Formal languages
n Regular expressions
n Context-free grammars

n Derivation
n Parse
n Parse trees
n Ambiguity

n Expression grammars

Context-Free Grammars

n Unfortunately, regular languages cannot
specify all constructs in programming

n E.g., can we write a regular expression that
specifies valid arithmetic expressions?
n id * (id + id * (number – id))

n Among other things, we need to ensure that
parentheses are matched!

n Answer is no. We need context-free languages
and context-free grammars!

Programming Languages CSCI 4430, A. Milanova 22

Programming Languages CSCI 4430, A. Milanova 23

Grammar

n A grammar is a formalism to describe the strings of
a (formal) language

n A grammar consists of a set of terminals, set of
nonterminals, a set of productions, and a start
symbol
n Terminals are the characters in the alphabet
n Nonterminals represent language constructs
n Productions are rules for forming syntactically correct

constructs
n Start symbol tells where to start applying the rules

Programming Languages CSCI 4430, A. Milanova 24

Notation
Specification of identifier:

Regular expression: letter (letter | digit)*

BNF: <digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
<letter> ::= a | b | c | … | x | y | z

<id> ::= <letter> | <id> <letter> | <id> <digit>

Textbook and slides: digit ® 1|2|3|4|5|6|7|8|9|0
(also BNF) letter ® a|b|c|d|…|z

id ® letter | id letter | id digit
Nonterminals shown in italic

Terminals shown in typewriter

Programming Languages CSCI 4430, A. Milanova 25

Regular Grammars
n Regular grammars generate regular languages
n The rules in regular grammars are of the form:

n Each left-hand-side (lhs) has exactly one nonterminal
n Each right-hand-side (rhs) is one of the following

n A single terminal symbol or
n A single nonterminal symbol or
n A nonterminal followed by a terminal

e.g., 1 2* | 0+ S ® A | B
A ® 1 | A 2
B ® 0 | B 0

Question

n Is this a regular grammar:

n No, this is a context-free grammar
n It generates 0n1n, the canonical example of a context-

free language
n rhs should be nonterminal followed by a terminal, thus,

S ® 0 A is not a valid production

Programming Languages CSCI 4430, A. Milanova 26

S ® 0 A
A ® S 1
S ® ε

Programming Languages CSCI 4430, A. Milanova 27

Lecture Outline

n Formal languages
n Regular expressions
n Context-free grammars

n Derivation
n Parse
n Parse trees
n Ambiguity

n Expression grammars

Programming Languages CSCI 4430, A. Milanova 28

Context-free Grammars (CFGs)

n Context-free grammars generate context-free
languages
n Most of what we need in programming languages can be

specified with CFGs
n Context-free grammars have rules of the form:

n Each left-hand-side has exactly one nonterminal
n Each right-hand-side contains an arbitrary sequence of

terminals and nonterminals
n A context-free grammar

e.g. 0n1n ,n≥1 S ® 0 S 1
S ® 0 1

Question

n Examples of non-context-free languages?

n E.g., anbmcndm n≥1, m≥1
n E.g., wcw where w is in (0|1)*
n E.g., anbncn n≥1 (canonical example)

Programming Languages CSCI 4430, A. Milanova 29

Programming Languages CSCI 4430, A. Milanova 30

Context-free Grammars

n Can be used to generate strings in the
context-free language (derivation)

n Can be used to recognize well-formed strings
in the context-free language (parse)

n In Programming Languages and compilers,
we are concerned with two special CFGs,
called LL and LR grammars

Derivation

Simple context-free grammar for expressions:
expr ® id | (expr) | expr op expr
op ® + | *

We can generate (derive) expressions:
expr Þ expr op expr

Þ expr op id
Þ expr + id
Þ expr op expr + id
Þ expr op id + id
Þ expr * id + id
Þ id * id + id

sentential form

sentence, string or yield31

Derivation

n A derivation is the process that starts from
the start symbol, and at each step, replaces a
nonterminal with the right-hand side of a
production
n E.g., expr op expr derives expr op id

We replaced the right (underlined) expr with id
due to production expr ® id

n An intermediate sentence is called a
sentential form
n E.g., expr op id is a sentential form

32

Derivation

n The resulting sentence is called yield
n E.g., id*id+id is the yield of our derivation

n What is a left-most derivation?
n Replaces the left-most nonterminal in the

sentential form at each step
n What is a right-most derivation?

n Replaces the right-most nonterminal in the
sentential form at each step

n There are derivations that are neither left- nor
right-most 33

Question

n What kind of derivation is this:
expr Þ expr op expr

Þ expr op id
Þ expr + id
Þ expr op expr + id
Þ expr op id + id
Þ expr * id + id
Þ id * id + id

n A right-most derivation. At each step we replace
the right-most nonterminal

34Programming Languages CSCI 4430, A. Milanova

Question

n What kind of derivation is this:
expr Þ expr op expr

Þ expr op id
Þ expr + id
Þ expr op expr + id
Þ id op expr + id
Þ id op id + id
Þ id * id + id

n Neither left-most nor right-most
Programming Languages CSCI 4430, A. Milanova 35

Parse

Recall our context-free grammar for expressions:
expr ® id | (expr) | expr op expr
op ® + | *

n A parse is the reverse of a derivation

Programming Languages CSCI 4430, A. Milanova 36

id * id + id Þ expr * id + id
Þ expr op id + id
Þ expr op expr + id
Þ expr + id
Þ expr op id
Þ expr op expr
Þ expr

Parse

n A parse starts with the string of terminals,
and at each step, replaces the right-hand-
side (rhs) of a production with the left-hand-
side (lhs) of that production. E.g.,
… Þ expr op expr + id

Þ expr + id
Here we replaced expr op expr (the rhs of
production expr ® expr op expr) with expr
(the lhs of the production)

Programming Languages CSCI 4430, A. Milanova 37

Parse Tree

expr ® id | (expr) | expr op expr
op ® + | *

38

Internal nodes are nonterminals. Children are
the rhs of a rule for that nonterminal.
Leaf nodes are terminals.

expr Þ expr op expr
Þ expr op id
Þ expr + id
Þ expr op expr + id
Þ expr op id + id
Þ expr * id + id
Þ id * id + id

expr op expr

id id

expr op expr

id

expr

*

+

39

Ambiguity
n Ambiguity

n A grammar is ambiguous if some string can be
generated by two or more distinct parse trees

n There is no algorithm that can tell if an arbitrary
context-free grammar is ambiguous

n Ambiguity arises in programming language
grammars
n Arithmetic expressions
n If-then-else: the dangling else problem

n Ambiguity is bad
Programming Languages CSCI 4430, A. Milanova

Ambiguity
expr ® id | (expr) | expr op expr
op ® + | *

n How many parse trees for id * id + id ?

n Which one is “correct”?
40

id id+

expr op expr

id id

expr op expr

id

expr

*

+

expr op expr

id

expr op expr

expr

*

Tree 1: Tree 2:

Ambiguity
expr ® id | (expr) | expr op expr
op ® + | *

n How many parse trees for id + id + id ?

n Which one is “correct”?
41

id id+

expr op expr

id id

expr op expr

id

expr

+

+

expr op expr

id

expr op expr

expr

+

Tree 1: Tree 2:

Programming Languages CSCI 4430, A. Milanova 42

Lecture Outline

n Formal languages
n Regular expressions
n Context-free grammars

n Derivation
n Parse
n Parse trees
n Ambiguity

n Expression grammars

Expression Grammars

n Generate expressions
n Arithmetic expressions
n Regular expressions
n Other

n Terminals: operands, operators, and
parentheses

expr ® id | (expr) | expr op expr
op ® + | *
Programming Languages CSCI 4430, A. Milanova 43

44

Handling Ambiguity

n Rewrite the grammar into unambiguous one:
expr ® expr + term | term
term ® term * factor | factor
factor ® id | (expr)

n Forces left associativity of + and *
n Forces higher precedence of * over +

Our ambiguous grammar, slightly simplified:
expr ® id | (expr) | expr + expr | expr * expr

45

Rewriting Expression Grammars:
Intuition

n A new nonterminal, term
n expr * expr becomes term. Thus, * gets

pushed down the tree, forcing higher
precedence of *

n expr + becomes expr + term. Pushes
leftmost + down the tree, forcing operand to
associate with + on its left
n expr ® expr + expr becomes expr ® expr + term

| term

expr ® id | (expr) | expr + expr | expr * expr

Programming Languages CSCI 4430, A. Milanova

46

Rewriting Expression Grammars:
Intuition

E.g., look at id + id*id*id + id + id*id

expr + term

expr + term id*id

id

expr

terms in the sum

expr + term

id*id*id

id

term

Programming Languages CSCI 4430, A. Milanova

47

Rewriting Expression Grammars:
Intuition

n Another new nonterminal, factor and
productions:
n term ® term * factor | factor
n factor ® id | (expr)

Programming Languages CSCI 4430, A. Milanova

48

Exercise

expr ® expr × expr | expr ^ expr | id

n How many parse trees for id×id^id×id ?
n No need to draw them all

n Rewrite this grammar into an equivalent
unambiguous grammar where
^ has higher precedence than ×
^ is right-associative

× is left-associative
Programming Languages CSCI 4430, A. Milanova

The End

Programming Languages CSCI 4430, A. Milanova 49

