Intro to Haskell, conclusion

Announcements

Quiz 7

HW6 due Tuesday Nov. 29

- Please to install GHC as soon as possible
- Post on Submitty forum if you hit a snag

Released Exam 2 and latest Rainbow grades

Please let me know if you find anything amiss

Programming Languages CSCI 4430, A. Milanova

Lecture Outline

- Haskell
 - Basic syntax and interpreters
 - Lazy evaluation
 - Static typing and static type inference
 - Algebraic data types and pattern matching
 - Type classes
 - Monads ... and more

Generic Functions in Haskell

We can generalize a function when a function makes no assumptions about the type:

 $a \rightarrow b \rightarrow c = a \rightarrow (b \rightarrow c)$

```
const :: a \rightarrow b \rightarrow a
const x y = x
apply :: (a \rightarrow b) \rightarrow a \rightarrow b
apply g x = g x
```

Generic Functions

-- List datatype

data List a = Nil | Cons a (List a)

- Can we write a function sum over a list of a's?
- sum :: a -> List a -> a
- sum n Nil = n
- •sum n (Cons x xs) = sum (n+x) xs

Type error: No instance for (Num a) arising from a use of '+'

a no longer unconstrained. Type and function definition imply we apply + on a but

+ is not defined on <u>all types</u>!

Haskell Type Classes

- Not to be confused with Java classes/interfaces
- Let us define a type class containing the arithmetic and comparison operators:

class Num a where

(==) :: a -> a -> Bool (+) :: a -> a -> a

instance Num Int where x == y = ...

...

instance Num Float where

. . .

Read: A type **a** is an instance of the type class **Num** if it provides "overloaded" definitions of operators **==**, **+**, ...

Read: Int and Float are instances of Num

Generic Functions with Type Class $(Mua, Eqa) \Rightarrow$

- sum :: (Num a) => a -> List a -> a
 sum n Nil = n
 sum n (Cons x xs) = sum (n+x) xs
- One view of type classes: predicates
 - (Num a) is a predicate in type definitions
 - Constrains the specific types we can instantiate a generic function with
- A type class has associated laws

Type Class Hierarchy

- Each type class corresponds to one concept
- Class constraints give rise to a hierarchy
- Eq is a superclass of Ord
 - Ord inherits specification of (==) and (/=)
 - Notion of "true subtyping"

Programming Languages CSCI 4430, A. Milanova (modified from MIT 2015 Program Analysis OCW)

Lecture Outline

Haskell

- Covered syntax and interpreters
- Lazy evaluation
- Static typing and static type inference
- Algebraic data types and pattern matching
- Type classes
- Monads ... and more

Monads

- One source: All About Monads (haskell.org)
- Another source: textbook
- A way to cleanly compose computations
 - E.g., f may return a value of type a or Nothing
 Composing computations becomes tedious: case (f s) of
 - Nothing \rightarrow Nothing

- Just m \rightarrow case (f m) ...
- In Haskell, monads encapsulate IO and other imperative features

An Example: Cloned Sheep

```
type Sheep = ...
father :: Sheep \rightarrow Maybe Sheep
father s = \dots
mother :: Sheep \rightarrow Maybe Sheep
mother s = \dots
(A sheep may have a mother and a father, just a mother, or just a father.)
maternalGrandfather :: Sheep \rightarrow Maybe Sheep
maternalGrandfather s = case (mother s) of
                                  Nothing \rightarrow Nothing
                                  Just \mathbf{m} \rightarrow father \mathbf{m}
```

mothersPaternalGrandfather :: Sheep \rightarrow Maybe Sheep mothersPaternalGrandfather $\mathbf{s} = \text{case}$ (mother \mathbf{s}) of Nothing \rightarrow Nothing Just $\mathbf{m} \rightarrow \text{case}$ (father \mathbf{m}) of Nothing \rightarrow Nothing Just $\mathbf{gf} \rightarrow$ father \mathbf{gf}

Tedious, unreadable, difficult to maintainMonads help!

The Monad Type Class

Haskell's Monad class requires 2 operations,
 >= (bind) and return

class Monad m where

// >>= (the bind operation) takes a monad
// m a, and a function that takes a and turns

// it into a monad **m b**

$$\xrightarrow{} (>>=) :: ma \rightarrow (a \rightarrow mb) \rightarrow mb'$$

// return <u>encapsulates</u> a value into the monad \rightarrow return :: $a \rightarrow m a$

The Maybe Monad

data Maybe a = Nothing | Just a instance Monad Maybe where

- Nothing >>= f = Nothing
 (Just x) >>= f = f x
 - - = Just return

- (return e) >>= one Step >>= one Step >>=
- Cloned Sheep example:

mothersPaternalGrandfather **s** =

 \rightarrow (return s) >>= mother >>= father >>= father (Note: if at any point, some function returns

Nothing, Nothing gets cleanly propagated.) 14

The List Monad

- The List type is a monad!
- lis >>= f = concat (map f lis) $\int [7] [r_4 n_7] [r_1' r_2' r_3 7]$
- return x = [x]
- $\sum_{r_{s}r_{s}}r_{s}',r_{s}',r_{s}''$ Note: concat:: $[[a]] \rightarrow [a]$ la >>=f
 - e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
 - Use any f s.t. $f::a \rightarrow [b]$. f may yield a list of $0, 1, 2, \ldots$ elements of type **b**, e.g.,
 - > f x = [x+1] > [1,2,3] >>= f --- yields ?

[e1, e2 - en]

lf Jf Jf

The List MonadMaybe To List (Nothing = []
Maybe To List (Just x = [x]parents :: Sheep \rightarrow [Sheep]Maybe $a \rightarrow [a]$ parents s = MaybeToList (mother s) ++
MaybeToList (father s)

grandParents :: Sheep \rightarrow [Sheep] grandParents $\mathbf{s} = (\text{parents } \mathbf{s}) >>= \text{parents}$ $\begin{bmatrix} \mathbf{u} \mathbf{7} \ \mathcal{C} \mathbf{f} \mathbf{7} \ \mathcal{C} \mathbf{h} \ \mathcal{F} \mathbf{7} \end{bmatrix}$

Programming Languages CSCI 4430, A. Milanova

The do Notation

- do notation is syntactic sugar for monadic bind
- > f x = x+1 Touposition > g x = x*5 > [1,2,3] >>= (return \hat{f}) >>= (return \hat{g}) Or > [1,2,3] >>= \x->[x+1] >>= \y->[y*5] **Or,** make encapsulated element explicit with **do** > do { v <- [1,2,3]; w <- (\x->[x+1]) v; (\y->[y*5]) w } [1p. 37 >= (return.id) Programming Languages CSCI 4430, A. Milanova

> [x | x <- [1,2,3,4]] [1,2,3,4] > [x | x <- [1,2,3,4], x `mod` 2 == 0] [X | X & [1..7, X 'mod 2==0] [2,4] > [[x,y] | x <- [1,2,3], y <- [6,5,4]] [[1,6],[1,5],[1,4],[2,6],[2,5],[2,4],[3,6],[3,5],[3,4]] ford neur - head bool (var, bool) - eur, var == n]

- List comprehensions are syntactic sugar on top of the do notation!
- [x | x <- [1,2,3,4]] is syntactic sugar for
- do { x <- [1,2,3,4]; return x }
- [[x,y] | x <- [1,2,3], y <- [6,5,4]] is syntactic sugar for
- do { x <- [1,2,3]; y<-[6,5,4]; return [x,y] }
- Which in turn, we can translate into monadic bind...

So What's the Point of the Monad...

Conveniently chains (builds) computation

Encapsulates "mutable" state. E.g., IO: openFile :: FilePath -> IOMode -> IO Handle hClose :: Handle -> IO () -- void hIsEOF :: Handle -> IO Bool hGetChar :: Handle -> IO Char

> These operations break "referentially transparency". For example, **hGetChar** typically returns different value when called twice in a row!

The End