Intro to Haskell, conclusion

Announcements

m Quiz 7

= HWG6 due Tuesday Nov. 29

= Please to install GHC as soon as possible
=« Post on Submitty forum if you hit a snag

= Released Exam 2 and latest Rainbow grades
= Please let me know if you find anything amiss

7

Programming Languages CSCI 4430, A. Milanova 2

Lecture Outline

= Haskell
= Basic syntax and interpreters
= Lazy evaluation
= Static typing and static type inference
= Algebraic data types and pattern matching

s [ype classes
= Monads ... and more

Programming Languages CSCI 4430, A. Milanova

Generic Functions in Haskell

= \We can generalize a function when a function
makes no assumptions about the type:

&—Db—ac —

const::a->b ->a
Q——v(bac)

constxy=x

9 r;_(_‘ ’t’_c,szu laoec

apply ::'(a->b)->a->b
apply g x =g X

Programming Languages CSCI 4430, A. Milanova (examples from MIT 2015 Program Analysis OCW) 4

Generic Functions

-- List datatype
data List a = Nil | Cons a (List a)
= Can we write a function sum over a list of a’s?
sum ::a->Lista->a
sumn Nil=n
-sum n (Cons x xs) = sum (n+Xx) xs

m Type error: No instance for (Num a) arising from a
use of ‘+’
= a no longer unconstrained. Type and function
definition imply we apply + on a but
« +is not defined on all types!

Haskell Type Classes

= Not to be confused with Java classes/interfaces

= Let us define a type class containing the
arithmetic and comparison operators:

Read: A type a is an instance of the type

class Num a where class Num if it provides “overloaded”
(== ::a->a->Bool definitions of operators ==, +, ...

(+) =a->a->a
o Read: Int and Float are instances of Num
instance Num Int where

X==y=..

instance Num Float where

Programming Languages CSCI 4430, A. Milanova

Generic Functions with Type Class
(W e, E5a) =

sum :: (Numa)=>a->Lista->a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

= One view of type classes: predicates
= (Num a) is a predicate in type definitions

= Constrains the specific types we can instantiate a
generic function with

= A type class has associated laws

Programming Languages CSCI 4430, A. Milanova

Type Class Hierarchy

class Eq a where
(==), (I-) a->a->Bool

class (Eq a) => Ord a where
(<), (<=), (*), (>=) ::a->a->Bool
min, max sa->a->a

= Each type class corresponds to one concept
= Class constraints give rise to a hierarchy

= Eqis a superclass of Ord
= Ord inherits specification of (==) and (/=)
= Notion of “true subtyping”

Programming Languages CSCI 4430, A. Milanova (modified from MIT 2015 Program Analysis OCW) 8

Lecture Outline

= Haskell
= Covered syntax and interpreters

= Lazy evaluation

= Static typing and static type inference

= Algebraic data types and pattern matching
= Type classes

= Monads ... and more

Programming Languages CSCI 4430, A. Milanova

Monads

= One source: All About Monads (haskell.org)

s Another source: textbook

= A way to cleanly compose computations
= E.g., f may return a value of type a or Nothing

Composing computations becomes tedious:
case (f s) of

Nothing = Nothing >0
Justm -> case (fm)...

= In Haskell, monads encapsulate IO and other
imperative features

10

An Example: Cloned Sheep

type Sheep = ...
father :: Sheep - Maybe Sheep
father s = ...

mother :: Sheep - Maybe Sheep

mother s = ...
(A sheep may have a mother and a father, just a mother, or just a father.)

maternalGrandfather :: Sheep 2> Maybe Sheep

maternalGrandfather s = case (mother s) of
Nothing =2 Nothing
Just m - father m

Programming Languages CSCI 4430, A Milanova (Example from All About Monads Tutorial) 11

An Example

mothersPaternalGrandfather :: Sheep - Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of
Nothing > Nothing
Just m - case (father m) of
Nothing = Nothing
Just gf - father gf

s [edious, unreadable, difficult to maintain
= Monads help!

Programming Languages CSCI 4430, A Milanova (Example from All About Monads Tutorial) 12

The Monad Type Class

= Haskell's Monad class requires 2 operations,
>>= (bind) and return

class Monad m where

/[>>= (the bind operation) takes a monad
/[m a, and a function that takes a and turns

/[itintoamonad mb
~c>=):ma>@>mb) >mb

// return encapsulates a value into the monad
—~return::a-> ma

13

The Maybe Monad

data Maybe a = Nothing | Just a
instance Monad Maybe where
' Nothing >>= f = Nothing

Gustx)>>=f=fx (ke 0=
return = Just Sre Shep >5 =

= Cloned Sheep example:
mothersPaternalGrandfather s =
—> (return s) >>= mother >>= father >>= father

(Note: if at any point, some function returns
Nothing, Nothing gets cleanly propagated.) *

The List Monad

_ _ [,—21‘ ¢, - G ?
= The List type is a monad! ey,

o lis >>=f = concat (map flis) [T 7 nny [re/n7 T
o return x = [X] Ff;: PP
Note: concat::[[a]] = [a] Vo 55—
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,0]
= Use any f s.t. f::a->[b]. f may yield a list of
0,1,2,... elements of type b, e.qg.,
> f x = [x+1]

>[1,2,3] >>=f ---yields ?
2,%43 15

: Masbe T Lizl. UoHi s/~
The List Monad 7% L %

,/'4&(7/24 o —(a]

parents :: Sheep =2 [Sheep]
parents s = MaybeToList (mother s) ++
MaybeToList (father s)

grandParents :: Sheep =2 [Sheep]

grandParents s = (parents s) >>= parents
Cuf CfT Ok T

/

Z\uxac««,wg,f] [’m:».,ra(:(
—
Programming Languages CSCI 4430, A. Milanova 16

The do Notation

= do notation is syntactic sugar for monadic bind

>fx =x+1 .
>gx=x*5 /7 COhﬁoJ/ o
> [1,2,3] >>= (return . f) >>= (return . ?) -
Or T2, 847 [_'to 1S, 20

/

> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]
Or, make encapsulated element explicit with do

>do {v<-[1,2,3]; w<-((\x->[x+1]) v; (\y->[y*5]) w}
\ .37 >if<ﬁ4.ru o) > 4—

Programming Languages CSCI 4430, A. Milanova 17

List Comprehensions

> [X | X <- [1!253!4]]

[1,2,3,4]
>[x]|x<-[1,2,3,4], x mod 2==0]
[2,4] [X[x4 CrT, % twedr2220

>[[xyl|x<-[1,2,3],y <-[6,5,4]]
[[1,6],[1,5],[1,4],12,6],[2,9],[2,4],[3,6],[3,5],[3,4]]
fm‘{ U ey — heed Lw// @ar,bw{)d-—eau, var-:':h]

Programming Languages CSCI 4430, A. Milanova 18

List Comprehensions

= List comprehensions are syntactic sugar on
top of the do notation!

[x| x <-[1,2,3,4]] is syntactic sugar for

do { x <-[1,2,3,4]; return x }

[[x,y]]| x<-[1,2,3], y <-[6,5,4]] is syntactic
sugar for

do { x <-[1,2,3]; y<-[6,5,4]; return [Xx,y] }

= \Which in turn, we can translate into monadic
bind...

19

So What's the Point of the Monad...

= Conveniently chains (builds) computation

= Encapsulates "mutable” state. E.qg., 10:
openkFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO () -- void

hiseOF :: Handle -> 10 Bool

hGetChar :: Handle -> |0 Char

These operations break “referentially transparency”.
For example, hGetChar typically returns different value
when called twice in a row!

Programming Languages CSCI 4430, A. Milanova

20

The Enad

Programming Languages CSCI 4430, A. Milanova

21

