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Announcements
n Quiz 7

n HW6 due Tuesday Nov. 29
n Please to install GHC as soon as possible
n Post on Submitty forum if you hit a snag

n Released Exam 2 and latest Rainbow grades
n Please let me know if you find anything amiss
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Lecture Outline 
n Haskell

n Basic syntax and interpreters
n Lazy evaluation
n Static typing and static type inference
n Algebraic data types and pattern matching

n Type classes
n Monads … and more
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Generic Functions in Haskell

n We can generalize a function when a function 
makes no assumptions about the type:

const :: a -> b -> a
const x y = x

apply :: (a->b)->a->b
apply g x = g x 
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Generic Functions
-- List datatype
data List a = Nil | Cons a (List a)
n Can we write a function sum over a list of a’s?
sum :: a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs
n Type error: No instance for (Num a) arising from a 
use of ‘+’

n a no longer unconstrained. Type and function 
definition imply we apply + on a but
n + is not defined on all types! 5



Haskell Type Classes

n Not to be confused with Java classes/interfaces
n Let us define a type class containing the 

arithmetic and comparison operators:
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class Num a where 
(==)   :: a -> a -> Bool
(+)     :: a -> a -> a
…

instance Num Int where
x == y = ...
...

instance Num Float where
…

Read: A type a is an instance of the type 
class Num if it provides “overloaded” 
definitions of operators ==, +, …

Read: Int and Float are instances of Num
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Generic Functions with Type Class

sum :: (Num a) => a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

n One view of type classes: predicates
n (Num a) is a predicate in type definitions
n Constrains the specific types we can instantiate a 

generic function with
n A type class has associated laws
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Type Class Hierarchy

n Each type class corresponds to one concept
n Class constraints give rise to a hierarchy
n Eq is a superclass of Ord

n Ord inherits specification of (==) and (/=)
n Notion of “true subtyping”
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class Eq a where 
(==), (/=)  :: a -> a -> Bool

class (Eq a) => Ord a where
(<), (<=), (>), (>=)  :: a -> a -> Bool
min, max               :: a -> a -> a
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Lecture Outline 
n Haskell

n Covered syntax and interpreters

n Lazy evaluation
n Static typing and static type inference
n Algebraic data types and pattern matching
n Type classes
n Monads … and more
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Monads
n One source: All About Monads (haskell.org)
n Another source: textbook
n A way to cleanly compose computations

n E.g., f may return a value of type a or Nothing
Composing computations becomes tedious:

case (f s) of
Nothing à Nothing 
Just m   à case (f m) …

n In Haskell, monads encapsulate IO and other 
imperative features
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An Example: Cloned Sheep

type Sheep = …
father :: Sheep à Maybe Sheep
father s = ...
mother :: Sheep à Maybe Sheep
mother s = …
(A sheep may have a mother and a father, just a mother, or just a father.)

maternalGrandfather :: Sheep à Maybe Sheep
maternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à father m
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An Example

mothersPaternalGrandfather :: Sheep à Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à case (father m) of

Nothing à Nothing
Just gf à father gf

n Tedious, unreadable, difficult to maintain
n Monads help!
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The Monad Type Class

n Haskell’s Monad class requires 2 operations, 
>>= (bind) and return

class Monad m where 
// >>= (the bind operation) takes a monad

// m a, and a function that takes a and turns 
// it into a monad m b
(>>=) :: m a à (a à m b) à m b
// return encapsulates a value into the monad
return :: a à m a
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The Maybe Monad
data Maybe a = Nothing | Just a
instance Monad Maybe where 

Nothing >>= f = Nothing
(Just x) >>= f = f x
return = Just

n Cloned Sheep example:
mothersPaternalGrandfather s = 

(return s) >>= mother >>= father >>= father
(Note: if at any point, some function returns 
Nothing, Nothing gets cleanly propagated.) 14



The List Monad

n The List type is a monad!
lis >>= f = concat (map f lis)
return x = [x]
Note: concat::[[a]] à [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
n Use any f s.t. f::aà[b]. f may yield a list of 

0,1,2,… elements of type b, e.g.,
> f x = [x+1]
> [1,2,3] >>= f  --- yields ?
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The List Monad

parents :: Sheep à [Sheep]
parents s = MaybeToList (mother s) ++    

MaybeToList (father s)   

grandParents :: Sheep à [Sheep]
grandParents s = (parents s) >>= parents
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The do Notation

n do notation is syntactic sugar for monadic bind

> f x = x+1
> g x = x*5
> [1,2,3] >>= (return . f) >>= (return . g)
Or
> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]
Or, make encapsulated element explicit with do
> do { v <- [1,2,3]; w <- (\x->[x+1]) v; (\y->[y*5]) w }
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List Comprehensions

> [ x | x <- [1,2,3,4] ] 
[1,2,3,4]
> [ x | x <- [1,2,3,4], x `mod` 2 == 0 ]
[2,4]
> [ [x,y] | x <- [1,2,3], y <- [6,5,4] ]
[[1,6],[1,5],[1,4],[2,6],[2,5],[2,4],[3,6],[3,5],[3,4]]
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List Comprehensions

n List comprehensions are syntactic sugar on 
top of the do notation!

[ x | x <- [1,2,3,4] ] is syntactic sugar for
do { x <- [1,2,3,4]; return x }
[ [x,y] | x <- [1,2,3], y <- [6,5,4] ] is syntactic 

sugar for
do { x <- [1,2,3]; y<-[6,5,4]; return [x,y] }
n Which in turn, we can translate into monadic 

bind…
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So What’s the Point of the Monad…

n Conveniently chains (builds) computation

n Encapsulates “mutable” state. E.g., IO:
openFile :: FilePath -> IOMode -> IO Handle 
hClose :: Handle -> IO () -- void 
hIsEOF :: Handle -> IO Bool 
hGetChar :: Handle -> IO Char 
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These operations break “referentially transparency”. 
For example, hGetChar typically returns different value 
when called twice in a row!



The End
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