
Intro to Haskell, conclusion

2

Announcements
n Quiz 7

n HW6 due Tuesday Nov. 29
n Please to install GHC as soon as possible
n Post on Submitty forum if you hit a snag

n Released Exam 2 and latest Rainbow grades
n Please let me know if you find anything amiss

Programming Languages CSCI 4430, A. Milanova

3

Lecture Outline
n Haskell

n Basic syntax and interpreters
n Lazy evaluation
n Static typing and static type inference
n Algebraic data types and pattern matching

n Type classes
n Monads … and more

Programming Languages CSCI 4430, A. Milanova

Generic Functions in Haskell

n We can generalize a function when a function
makes no assumptions about the type:

const :: a -> b -> a
const x y = x

apply :: (a->b)->a->b
apply g x = g x

Programming Languages CSCI 4430, A. Milanova (examples from MIT 2015 Program Analysis OCW) 4

Generic Functions
-- List datatype
data List a = Nil | Cons a (List a)
n Can we write a function sum over a list of a’s?
sum :: a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs
n Type error: No instance for (Num a) arising from a
use of ‘+’

n a no longer unconstrained. Type and function
definition imply we apply + on a but
n + is not defined on all types! 5

Haskell Type Classes

n Not to be confused with Java classes/interfaces
n Let us define a type class containing the

arithmetic and comparison operators:

6

class Num a where
(==) :: a -> a -> Bool
(+) :: a -> a -> a
…

instance Num Int where
x == y = ...
...

instance Num Float where
…

Read: A type a is an instance of the type
class Num if it provides “overloaded”
definitions of operators ==, +, …

Read: Int and Float are instances of Num

Programming Languages CSCI 4430, A. Milanova

Generic Functions with Type Class

sum :: (Num a) => a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

n One view of type classes: predicates
n (Num a) is a predicate in type definitions
n Constrains the specific types we can instantiate a

generic function with
n A type class has associated laws

7Programming Languages CSCI 4430, A. Milanova

Type Class Hierarchy

n Each type class corresponds to one concept
n Class constraints give rise to a hierarchy
n Eq is a superclass of Ord

n Ord inherits specification of (==) and (/=)
n Notion of “true subtyping”

Programming Languages CSCI 4430, A. Milanova (modified from MIT 2015 Program Analysis OCW) 8

class Eq a where
(==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
min, max :: a -> a -> a

9

Lecture Outline
n Haskell

n Covered syntax and interpreters

n Lazy evaluation
n Static typing and static type inference
n Algebraic data types and pattern matching
n Type classes
n Monads … and more

Programming Languages CSCI 4430, A. Milanova

Monads
n One source: All About Monads (haskell.org)
n Another source: textbook
n A way to cleanly compose computations

n E.g., f may return a value of type a or Nothing
Composing computations becomes tedious:

case (f s) of
Nothing à Nothing
Just m à case (f m) …

n In Haskell, monads encapsulate IO and other
imperative features

10

An Example: Cloned Sheep

type Sheep = …
father :: Sheep à Maybe Sheep
father s = ...
mother :: Sheep à Maybe Sheep
mother s = …
(A sheep may have a mother and a father, just a mother, or just a father.)

maternalGrandfather :: Sheep à Maybe Sheep
maternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à father m

Programming Languages CSCI 4430, A Milanova (Example from All About Monads Tutorial) 11

An Example

mothersPaternalGrandfather :: Sheep à Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à case (father m) of

Nothing à Nothing
Just gf à father gf

n Tedious, unreadable, difficult to maintain
n Monads help!

12Programming Languages CSCI 4430, A Milanova (Example from All About Monads Tutorial)

The Monad Type Class

n Haskell’s Monad class requires 2 operations,
>>= (bind) and return

class Monad m where
// >>= (the bind operation) takes a monad

// m a, and a function that takes a and turns
// it into a monad m b
(>>=) :: m a à (a à m b) à m b
// return encapsulates a value into the monad
return :: a à m a

13

The Maybe Monad
data Maybe a = Nothing | Just a
instance Monad Maybe where

Nothing >>= f = Nothing
(Just x) >>= f = f x
return = Just

n Cloned Sheep example:
mothersPaternalGrandfather s =

(return s) >>= mother >>= father >>= father
(Note: if at any point, some function returns
Nothing, Nothing gets cleanly propagated.) 14

The List Monad

n The List type is a monad!
lis >>= f = concat (map f lis)
return x = [x]
Note: concat::[[a]] à [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
n Use any f s.t. f::aà[b]. f may yield a list of

0,1,2,… elements of type b, e.g.,
> f x = [x+1]
> [1,2,3] >>= f --- yields ?

15

The List Monad

parents :: Sheep à [Sheep]
parents s = MaybeToList (mother s) ++

MaybeToList (father s)

grandParents :: Sheep à [Sheep]
grandParents s = (parents s) >>= parents

Programming Languages CSCI 4430, A. Milanova 16

The do Notation

n do notation is syntactic sugar for monadic bind

> f x = x+1
> g x = x*5
> [1,2,3] >>= (return . f) >>= (return . g)
Or
> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]
Or, make encapsulated element explicit with do
> do { v <- [1,2,3]; w <- (\x->[x+1]) v; (\y->[y*5]) w }

17Programming Languages CSCI 4430, A. Milanova

List Comprehensions

> [x | x <- [1,2,3,4]]
[1,2,3,4]
> [x | x <- [1,2,3,4], x `mod` 2 == 0]
[2,4]
> [[x,y] | x <- [1,2,3], y <- [6,5,4]]
[[1,6],[1,5],[1,4],[2,6],[2,5],[2,4],[3,6],[3,5],[3,4]]

18Programming Languages CSCI 4430, A. Milanova

List Comprehensions

n List comprehensions are syntactic sugar on
top of the do notation!

[x | x <- [1,2,3,4]] is syntactic sugar for
do { x <- [1,2,3,4]; return x }
[[x,y] | x <- [1,2,3], y <- [6,5,4]] is syntactic

sugar for
do { x <- [1,2,3]; y<-[6,5,4]; return [x,y] }
n Which in turn, we can translate into monadic

bind…
19

So What’s the Point of the Monad…

n Conveniently chains (builds) computation

n Encapsulates “mutable” state. E.g., IO:
openFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO () -- void
hIsEOF :: Handle -> IO Bool
hGetChar :: Handle -> IO Char

Programming Languages CSCI 4430, A. Milanova 20

These operations break “referentially transparency”.
For example, hGetChar typically returns different value
when called twice in a row!

The End

Programming Languages CSCI 4430, A. Milanova 21

