Intro to Haskell
Lecture Outline

- Haskell
 - Covered syntax, algebraic data types and pattern matching
 - Lazy evaluation
 - Static typing and static type inference
 - Type classes
 - Monads … and more
Lazy Evaluation

- Unlike Scheme (and most programming languages), Haskell does lazy evaluation, i.e., normal order reduction
 - It won’t evaluate an expression until it is needed

> f x = [] --- f takes x and returns the empty list

> f (repeat 1) --- repeat produces infinite list [1,1...

> []

> head ([1..]) --- [1..] is the infinite list of integers

> 1

- Lazy evaluation allows work with infinite structures
Lazy Evaluation

> f x = x*x
> f (5+1)

--- evaluates to (5+1) * (5+1)
--- evaluates argument only when needed

> fun n = n : fun(n+1)

> head (fun 5)

Exercise: write a function that returns the (infinite) list of prime numbers
Lazy Evaluation

- Exercise: write a function that returns the (infinite) list of prime numbers
Static Typing and Type Inference

- Unlike Scheme, which is dynamically typed, Haskell is \textit{statically typed}!
- Unlike Java/C++ we don’t have to write type annotations. Haskell \textit{infers} types!

\begin{verbatim}
> let f x = head x in f True

• Couldn't match expected type '[a]' with actual type 'Bool'
• In the first argument of 'f', namely 'True'
 In the expression: f True …
\end{verbatim}
Static Typing and Type Inference

- Recall `apply_n f n x`:

```haskell
> apply_n f n x = if n==0 then x else apply_n f (n-1) (f x)
```

```haskell
> apply_n ((+) 1) True 0
<interactive>:32:1: error:
  • Could not deduce (Num Bool) arising from a use of ‘apply_n’
    from the context: Num t2
    bound by the inferred type of it :: Num t2 => t2
    at <interactive>:32:1-22
  • In the expression: apply_n ((+) 1) True 0
    In an equation for ‘it’: it = apply_n ((+) 1) True 0
```
Lecture Outline

- Haskell
 - Covered syntax, algebraic data types and pattern matching
 - Lazy evaluation
 - Static typing and static type inference
 - Type classes
 - Monads … and more
Generic Functions in Haskell

- We can generalize a function when a function makes no assumptions about the type:

```haskell
const :: a -> b -> a
const x y = x
```

```haskell
apply :: (a->b)->a->b
apply g x = g x
```
Generic Functions

-- List datatype

data List a = Nil | Cons a (List a)

Can we write function `sum` over a list of `a`’s?

```haskell
sum :: a -> List a -> a

sum n Nil = n

sum n (Cons x xs) = sum (n + x) xs
```

No. `a` no longer unconstraint. Type and function definition imply that we can apply `+` on `a` but

- `+` is not defined on **all types**!
- Type error: No instance for (Num a) arising from a use of `+`
Haskell Type Classes

- Not to be confused with Java classes/interfaces
- Define a type class containing the arithmetic operators

```haskell
class Num a where
    (==) :: a -> a -> Bool
    (+) :: a -> a -> a
    ...
instance Num Int where
    x == y = ...
    ...
instance Num Float where
    ...
```

Read: A type `a` is an instance of the type class `Num` if it provides “overloaded” definitions of operations `==`, `+`, …

Read: `Int` and `Float` are instances of `Num`
Generic Functions with Type Class

sum :: (Num a) => a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

- One view of type classes: predicates
 - (Num a) is a predicate in type definitions
 - Constrains the types we can instantiate a generic function to specific types

- A type class has associated laws
Type Class Hierarchy

Code Snippet
```haskell
class Eq a where
  (==), (/=) :: a -> a -> Bool

class (Eq a) => Ord where
  (<), (<=), (>), (>=) :: a -> a -> Bool
  min, max :: a -> a -> a
```

- Each type class corresponds to one concept
- Class constraints give rise to a hierarchy
- **Eq** is a superclass of **Ord**
 - **Ord** inherits specification of (==) and (/=)
 - Notion of “true subtyping”
Lecture Outline

- Haskell
 - Covered syntax, algebraic data types and pattern matching

- Lazy evaluation
- Static typing and static type inference
- Type classes
- Monads … and more
Monads

- One source: All About Monads (haskell.org)
- Another source: Scott’s book
- A way to cleanly **compose** computations
 - E.g., \(f \) may return a value of type \(a \) or \textbf{Nothing}

 Composing computations becomes tedious:

  ```
  case (f s) of
    Nothing \rightarrow Nothing
    Just m \rightarrow \text{case (f m) ...}
  ```

- In Haskell, monads **encapsulate** IO and other \textbf{imperative} features
An Example: Cloned Sheep

type Sheep = ...
father :: Sheep \rightarrow \text{Maybe Sheep}
father = ...
mother :: Sheep \rightarrow \text{Maybe Sheep}
mother = ...
(Note: a cloned sheep may have both parents, or not...)
maternalGrandfather :: Sheep \rightarrow \text{Maybe Sheep}
maternalGrandfather s = \text{case } (\text{mother } s) \text{ of}
\quad \text{Nothing } \rightarrow \text{Nothing}
\quad \text{Just } m \rightarrow \text{father } m
An Example

mothersPaternalGrandfather :: Sheep \rightarrow Maybe Sheep

mothersPaternalGrandfather s = case (mother s) of
 Nothing \rightarrow Nothing
 Just m \rightarrow case (father m) of
 Nothing \rightarrow Nothing
 Just gf \rightarrow father gf

- Tedious, unreadable, difficult to maintain
- Monads help!
The Monad Type Class

- Haskell’s Monad class requires 2 operations, ` >>=` (bind) and `return`

```haskell
class Monad m where

  // >>= (the bind operation) takes a monad
  // m a, and a function that takes a and turns
  // it into a monad m b

  (>>=) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b

  // return encapsulates a value into the monad

  return :: a \rightarrow m a
```
The **Maybe** Monad

```haskell
data Maybe a = Nothing | Just a

instance Monad Maybe where
    Nothing >>= f = Nothing
    (Just x) >>= f = f x
    return = Just
```

- Cloned Sheep example:
  ```haskell```
  mothersPaternalGrandfather s =
      (return s) >>= mother >>= father >>= father
  ```haskell```
 (Note: if at any point, some function returns Nothing, Nothing gets cleanly propagated.)
The List Monad

- The List type is a monad!

 \[li >>= f = \text{concat} \left(\text{map} \ f \ li \right) \]

 \[\text{return} \ x = [x] \]

 Note: \(\text{concat}::[[a]] \rightarrow [a] \)

 e.g., \(\text{concat} \left[[1,2],[3,4],[5,6] \right] \) yields \([1,2,3,4,5,6] \)

- Use \textbf{any} \(f \) s.t. \(f::a\rightarrow[b] \). \(f \) may yield a list of 0,1,2,... elements of type \(b \), e.g.,

 \[> f \ x = [x+1] \]

 \[> [1,2,3] >>= f \quad \text{--- yields ?} \]
The List Monad

parents :: Sheep \rightarrow [Sheep]
parents \textbf{s} = \text{MaybeToList} \ (\text{mother} \ \textbf{s}) \ ++
\hspace{2cm} \text{MaybeToList} \ (\text{father} \ \textbf{s})

\textbf{grandParents} :: \text{Sheep} \rightarrow [\text{Sheep}]
\textbf{grandParents} \textbf{s} = (\text{parents} \ \textbf{s}) \ >>= \text{parents}
The **do** Notation

- **do** notation is syntactic sugar for monadic bind

```
> f x = x+1
> g x = x*5
> [1,2,3] >>= (return . f) >>= (return . g)
```

Or
```
> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]
```

Or, make encapsulated element explicit with **do**
```
> do { x <- [1,2,3]; y <- (\x->[x+1]) x; (\y->[y*5]) y }
```
List Comprehensions

> [x | x <- [1,2,3,4]]
[1,2,3,4]

> [x | x <- [1,2,3,4], x `mod` 2 == 0]
[2,4]

> [[x,y] | x <- [1,2,3], y <- [6,5,4]]
[[1,6],[1,5],[1,4],[2,6],[2,5],[2,4],[3,6],[3,5],[3,4]]
List Comprehensions

- List comprehensions are syntactic sugar on top of the do notation!

\[\{ x | x \leftarrow [1,2,3,4] \} \] is syntactic sugar for
\[
\text{do } \{ x \leftarrow [1,2,3,4]; \text{return } x \} \]

\[\{ [x,y] | x \leftarrow [1,2,3], y \leftarrow [6,5,4] \} \] is syntactic sugar for
\[
\text{do } \{ x \leftarrow [1,2,3]; y \leftarrow [6,5,4]; \text{return } [x,y] \} \]

- Which in turn, we can translate into monadic bind...
So What’s the Point of the Monad…

- Conveniently chains (builds) computation

- **Encapsulates** “mutable” state. E.g., **IO**:
 - `openFile :: FilePath -> IOMode -> IO Handle`
 - `hClose :: Handle -> IO () -- void`
 - `hIsEOF :: Handle -> IO Bool`
 - `hGetChar :: Handle -> IO Char`

These operations break “referentially transparency”. For example, `hGetChar` typically returns different value when called twice in a row!
The End