
1

Read: Scott, Chapters 7.1-7.2 and 8

Types, conclusion

Announcements

n Quiz 8

n Welcome back!
n Check your Rainbow grades

n Exam 1-2, Quiz 1-7, HW 1-5
n HW 6 due Wednesday at midnight
n HW 7 out

Programming Languages CSCI 4430, A Milanova 2

Quiz 8 Q1 to Q3

3

4

Lecture Outline
n Types (last time)
n Type systems (last time)

n Type checking
n Type safety

n Type equivalence (last time)
n Types in C

n Primitive types
n Composite types
Programming Languages CSCI 4430, A. Milanova

5

Type Equivalence

n Two ways of defining type equivalence
n Structural equivalence: based on “shape”

n Roughly, two types are the same if they consists of the
same components, put together in the same way

n Name equivalence: based on lexical occurrence
of the type definition

n Strict name equivalence: aliased types are distinct
n Loose name equivalence: aliased types are same

T1 x; …
T2 y;
x = y;

Exercise: Structural Equivalence
type cell = … // record type
type alink = pointer to cell
type blink = alink
p,q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink

6

p,q,r,s,t,u

Exercise: Loose Name Equivalence
type cell = … // record type
type alink = pointer to cell
type blink = alink
p,q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink

7

p,q

r,s,u

t

Exercise: Strict Name Equivalence
type cell = … // record type
type alink = pointer to cell
type blink = alink
p,q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink

8

p,q

r,u

s

t

Programming Languages CSCI 4430, A. Milanova/BG Ryder 9

Example: Type Equivalence in C
n First, in the Algol family, field names are part of the

record/struct constructed type. E.g., the record
types below are NOT even structurally equivalent

type A = record
x,y : real

end;
type B = record
z,w : real

end;

Programming Languages CSCI 4430, A. Milanova/BG Ryder 10

Type Equivalence in C
n Compiler assigns internal (compiler-

generated) names to anonymous types

struct RecA typedef struct struct
{ char x; { char x; { char x;
int y; int y; int y;

} a; } RecB; } c;

RecB b;

What variables are of equivalent type according to the rules in C?

This struct is of type anon1.

11

Type Equivalence in C
n C uses structural equivalence for everything, except unions

and structs, for which it uses loose name equivalence
struct A struct B
{ char x; { char x;
int y; int y;

} }
typedef struct A C;
typedef C *P;
typedef struct B *Q;
typedef struct A *R;
typedef int Age;
typedef int (*F) (int);
typedef Age (*G) (Age);

12

Type Equivalence in C
struct B { char x; int y; };
typedef struct B A;
struct { A a; A *next; } aa;
struct { struct B a; struct B *next; } bb;
struct { struct B a; struct B *next; } cc;

A a;
struct B b;

a = b;
aa = bb;
bb = cc;

Which of the above assignments pass the type checker?

Question

n Structural equivalence for record types is
considered a bad idea. Can you think of a
reason why?

Programming Languages CSCI 4430, A. Milanova 13

14

Lecture Outline
n Types
n Type systems

n Type checking
n Type safety

n Type equivalence
n Types in C

n Primitive types
n Composite types
Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A Milanova/BG Ryder 15

Pointers and Arrays in C
n Pointers and arrays are interoperable:

int n;
int *a;
int b[10];

1. a = b;
2. n = a[3];
3. n = *(a+3);
4. n = b[3];
5. n = *(b+3);

Programming Languages CSCI 4430, A. Milanova/BG Ryder 16

Declarations in C

n What is the meaning of the following
declaration in C? Draw the type trees.

1. int *a[n]
2. int (*a)[n]
3. int (*f)(int)

Programming Languages CSCI 4430, A. Milanova 17

Declarations in C
typedef int (*PFB)(); // Type variable PFB: what type?
struct parse_table { // Type struct parse_table: what type?

char *name;
PFB func; };

int func1() { ... } // Function func1: what type?
int func2() { ... }

struct parse_table table[] = { // Variable table: what type?
{"name1", &func1},
{"name2", &func2}

};
PFB find_p_func(char *s) { // Function find_p_func: what type?

for (i=0; i<num_func; i++)
if (strcmp(table[i].name,s)==0) return table[i].func;

return NULL; }
int main(int argc,char *argv[]) {

... }

Programming Languages CSCI 4430, A. Milanova 18

Declarations in C

Type tree for PFB: pointer

®

() int

Type tree for type of find_p_func:

English: a function that takes
a pointer to char as argument,
and returns a pointer to a function
that takes void as argument and
returns int.

pointer

®

() int

®

pointer

char

Programming Languages CSCI 4430, A. Milanova 19

Exercise
struct _chunk { // Type struct_chunk: what type?

char name[10];
int id; };

struct obstack { // Type struct obstack: what type?
struct _chunk *chunk;
struct _chunk *(*chunkfun)();
void (*freefun) (); };

void chunk_fun(struct obstack *h, void *f) { // Function chunk_fun: what type?
h->chunkfun = (struct _chunk *(*)()) f; }

void free_fun(struct obstack *h, void *f) { // Function free_fun: what type?
h->freefun = (void (*)()) f; }

int main() {
struct obstack h;
chunk_fun(&h,&xmalloc);
free_fun(&h,&xfree); ... }

Programming Languages CSCI 4430, A. Milanova 20

Declarations in C

Type tree for type of field chunkfun:

pointer

struct _chunk: struct

id: int

®

()

pointer

name: array

char

21

Lecture Outline
n Types
n Type systems

n Type checking
n Type safety

n Type equivalence
n Types in C

n Primitive types
n Composite types
Programming Languages CSCI 4430, A. Milanova

22

Primitive Types
n A small collection of built-in types

n integer, float/real, etc.
n Design issues: e.g., boolean

n Use integer non-0/0 vs. true/false?
n Implementation issues: representation in the

machine
n Integer

n Length fixed by standards or implementation (portability issues)
n Multiple lengths (C: short, int, long)
n Signs

n Float/real
n All issues of integers and more

23

Composite Types: Record (Struct)
n Collection of heterogeneous fields
n Operations

n Selection through field names (s.num, p->next)
n Assignment
n Example: structures in C

typedef struct cell listcell;
struct cell {

int num;
listcell *next;

} s,t;
s.num = 0;
s.next = 0;
t = s;

24

Record (Struct)
n Definition of type. What is part of the type?

n order and type of fields (but not the name)
n name and type of fields
n order, name and type of fields

n Implementation issues: memory layout
n Successive memory locations at offset from first byte.

Usually, word-aligned, but sometimes packed
typedef struct {

char name[10];
int age;

} Person;

Person p;

name

age

4 bytes/32 bits

“holes”

Programming Languages CSCI 4430, A. Milanova/BG Ryder 25

Composite Types: Variant (Union)
n Allow a collection of alternative fields; only one

alternative is valid during execution
n Fortran: equivalence
n Algol68 and C: unions
n Pascal: variant records

n Problem: how can we assure type-safety?
n Pascal and C are not type-safe
n Algol68 is type-safe! Uses run-time checks

n Usually, alternatives use same storage
n Mutually exclusive value access

26

Variants (Unions)
n Example: unions in C

union data {
int k;
char c;

} d1,d2;

n Operations
n Selection through field names, Assignment:
d1.k = 3; d2 = d1; d2.c = ‘b’;

n What about type safety?
if (n>0) d1.k=5 else d1.c=‘a’;
… d1.k << 2 … // What is the problem?

Programming Lang CSCI 4430, A. Milanova/BG Ryder 27

Pascal’s Variant Record
program main(input,output);
type paytype = (salaried,hourly);
var employee : record

id : integer;
dept: integer;
age : integer;
case payclass: paytype of
salaried:

(monthlyrate : real;
startdate : integer);

hourly:
(rateperhour : real;
reghours : integer;
overtime : integer);

end;

begin
employee.id:=001234;
employee.dept:=12;
employee.age:=38;
employee.payclass:=hourly;
employee.rateperhour:=2.75;
employee.reghours:=40;
employee.overtime:=3;
writeln(employee.rateperhour,

employee.reghours,
employee.overtime);

{this should bomb as there is no
monthlyrate because
payclass=hourly}

writeln(employee.monthlyrate);

Type tag

Output:
2.750000E+00 40 3
2.750000E+00

Programming Languages CSCI 4430, A. Milanova/BG Ryder 28

Pascal Variant Record
type paytype = (salaried,hourly);
var employee : record

id : integer;
dept: integer;
age : integer;
case payclass: paytype of
salaried:(

monthlyrate : real;
startdate : integer);

hourly: (
rateperhour : real;
reghours : integer;
overtime : integer);

end;

employee.payclass:=salaried;
employee.monthlyrate:=575.0;
employee.startdate:=13085;
{this should bomb as there are no

rateperhour, etc. because
payclass=salaried}

writeln(employee.rateperhour,
employee.reghours
employee.overtime);
writeln(employee.monthlyrate);
end.

Output:
5.750000E+02 13085 3
5.750000E+02

Programming Languages CSCI 4430, A. Milanova/BG Ryder 29

Composite Types: Array

n Homogeneous, indexed collection of values
n Access to individual elements through subscript

n There are many design choices
n Subscript syntax
n Subscript type, element type
n When to set bounds, compile time or run time?
n How to initialize?
n What built-in operations are allowed?

Programming Languages CSCI 4430, A. Milanova/BG Ryder 30

Array
n Definition of type. What is part of the type?

n bounds/dimension/element type
n Pascal

n dimension/element type
n C, FORTRAN, Algol68

n What is the lifetime of the array?
n Global lifetime, static shape (in static memory)
n Local lifetime (in stack memory)

n Static shape (stored in fixed-length portion of stack frame)
n Shape bound when control enters a scope

n (e.g., Ada, Fortran allow definition of array bounds when function is
entered; stored in variable-length portion of stack frame)

n “Global” lifetime, dynamic shape (in heap memory)

Programming Langauges CSCI 4430, A. Milanova/BG Ryder 31

Example: Algol68 Arrays
n Array type includes dimension and element type; it

does not include bounds
[1:12] int month; [1:7] int day; row int
[0:10,0:10] real matrix;
[-4:10,6:9] real table; (row,row) real

Example - [1:10] [1:5,1:5] int kinglear;

n What is the type of kinglear?
n What is the type of kinglear[j]?
n What is the type of kinglear[j][1,2]?
n kinglear[1,2,3] ?

Programming Languages CSCI 4430, A. Milanova/BG Ryder 32

Array Addressing

n One dimensional array
n X[low:high] each element is E bytes
n Assuming that elements are stored into

consecutive memory locations, starting at address
addr(X[low]), what is the address of X[j]?

addr(X[low]) + (j-low)*E
n E.g, let X[0:10] be an array of reals (4 bytes)

n X[3]? is addr(X[0]) + (3 - 0)*4 = addr(X) + 12
n X[1] is at address addr(X[0]) + 4
n X[2] is at address addr(X[0]) + 8, etc

Programming Languages CSCI 4430, A. Milanova/BG Ryder 33

Array Addressing
n Memory is a sequence of contiguous locations
n Two memory layouts for two-dimensional arrays:

n Row-major order and column-major order
n Row-major order:

n y[0,0], y[0,1], y[0,2], …, y[0,n], y[1,*],
y[2,*],…

n y[low1:hi1,low2:hi2] in Algol68, location
y[j,k] is
addr(y[low1,low2]) + (hi2-low2+1)*E*(j-low1) + (k-low2)*E

#locs per row #rows in front # elements in row j in
of row j front of element [j,k]

34

Array Addressing

Consider y[0:2, 0:5] int matrix.
Assume row-major order and find the address of y[1,3].
address of y[1,3] = addr(y[0,0])+(5-0+1)*4*(1-0)+(3-0)*4

6 elements per row
1 row before row 1
3 elements in row 1 before 3

= addr(y[0,0])+24+12
= addr(y[0,0])+36

n Analogous formula holds for column-major order
n Row-major and column-major layouts generalize to

n-dimensional arrays

35

Composite Types: Pointers

n A variable or field whose value is a reference to
some memory location
n In C: int *p;

n Operations
n Allocation and deallocation of objects on heap

n p = malloc(sizeof(int)); free(p);

n Assignment of one pointer into another
n int *q = p; int *p = &a;

n Dereferencing of pointer
n *q = 1;

n Pointer arithmetic
n p + 2

Programming Languages CSCI 4430, A. Milanova/BG Ryder 36

Pointers: Recursive Types

n A recursive type is a type whose objects may
contain objects of the same type
n Necessary to build linked structures such as linked lists

n Pointers are necessary to define recursive types in
languages that use the value model for variables:

struct cell {
int num;
struct cell *next;

}

Programming Languages CSCI 4430, A. Milanova/BG Ryder 37

Pointers: Recursive Types

n Recursive types are defined naturally in languages
that use the reference model for variables:

class Cell {
int num;
Cell next;

Cell() { … }
…

}

