!L Types, conclusion

Read: Scott, Chapters 7.1-7.2 and 8

Announcements

m Quiz 8

x Welcome back!

= Check your Rainbow grades

« Exam 1-2, Quiz 1-7, HW 1-5
= HW 6 due Wednesday at midnight
= HW 7 out

Programming Languages CSCI 4430, A Milanova

Quiz 8 Q1 to Q3

CDA/oiLf ators: Bules:
’//‘u - \x)y. X A Cowbing For s a Lowbds abikacfa. wikt
Y W VI PR g et
l) Wi y[ausj abbreyiatio [e, a:r) ik
/S?‘ = >\/.')- /D'ffk ;‘Y;:f Duék —-é)(resiiey , a/wayg ﬂafﬂk/h.f/z&/
ep ablrevicha. as b ible, ol ¢
Qf: hw v w (é/m v) w) g ;l;m roa:{f Za/:{os;ﬂon/)fziliz
O" o<) vw —p (V) w—plv/ heed o expoed o) -expretint
'DQJ/‘ v W = p
(A7£ As.)b. b £8) V w-a,,é&ké. bvs)w -—>) 5bo b v »i—}

..fg'l- (l‘;a.r v WJ —Ds .n‘ (AA LVW) —_
[X(/a.)o o) (A bvw) —Pp

C)b.bvw) Fric —-b/,f‘ﬂ«. v W —2x |V
[&1 reaﬁtmg

Lecture Outline

= Types (last time)

= Type systems (last time)
= [ype checking
= [ype safety

= [ype equivalence (last time)
= TypesinC

= Primitive types
= Composite types

Programming Languages CSCI 4430, A. Milanova

Type Equivalence

= Two ways of defining type equivalence

= Structural equivalence: based on “shape”

= Roughly, two types are the same if they consists of the
same components, put together in the same way

= Name equivalence: based on lexical occurrence
of the type definition
= Strict name equivalence: aliased types are distinct
=« Loose name equivalence: aliased types are same

Tl x;
T2 vy;
x=y;\/ 7(5

Exercise: Structural Equivalence

type cell = ...// record type

type alink = pointer to cell
type blink = alink

p,q : pointer to cell

r : alink p,q,r,s,t,u
: blink

: pointer to cell

£ ¢ 0

alink

Exercise: Loose Name Equivalence

type cell = .../l record type
type alink = pointer[%o cell

type blink = aliik
:o

5
p,q : polinter cell
r : alink P,q
s : blink

r,s,u
t : pointer to cell
u alink t

Exercise: Strict Name Equivalence

type cell = ...// rectype
type alink = pointer to cell

type blink = alink

iy

p,q : pointer to cell

r : alink
: pointer qgj%ell
S

£ ¢ 0

Example: Type Equivalence in C

= First, in the Algol family, field names are part of the
record/struct constructed type. E.g., the record
types below are NOT even structurally equivalent

type A = record
X,y ¢ real

end;

type B = record
zZ,W : real

end;

Programming Languages CSCI 4430, A. Milanova/BG Ryder

Type Equivalence in C

= Compiler assigns internal (compiler-
generated) names to anonymous types

This struct is of type anon1.

struct RecA typedef struct struct

{ char x; { char x; { char x;
int y; int y; int y;

} a; } RecB; } c;

RecB b;

Lok ae is c# distivet @PZ-

What variables are of equivalent type according to the rules in C?

@ © O

Programming Languages CSCI 4430, A. Milanova/BG Ryder 10

Type Equivalence in C

= C uses structural equivalence for everything, except unions
and structs, for which it uses loose name equivalence

struct A struct B -

{ char x; { char x; @
int y; int y;

)) Sruek b | €

typedef struct A C;
typedef C *‘E_’.;

typedef struct B * T
typedef struct A *

typedef int Age; <:::jii>
typedef int (*F) (int);

tvpedef Age (*G) (Age):;

&

7@

(

Z

[} |\.

11

Type Equivalence in C

struct B { char x; int y; };

typedef struct B A;

struct { A a; A *next; } aa;
—_—

struct { struct B a; struct B *next;

struct { struct B a; struct B *next;

i o
Q\o
)8)8

A aj;
struct B b;

a = b; \///

aa = bb; y(
bb = cc;)(

Which of the above assignments pass the type checker?
12

Question

= Structural equivalence for record types is

considered a bad idea. Can you think of a
reason why? Lovse (tue is A BeETTER corce!

Programming Languages CSCI 4430, A. Milanova 13

Lecture Outline

= Types

= [ype systems
= Type checking
= [ype safety

= [ype equivalence
m TypesinC

= Primitive types
= Composite types

Programming Languages CSCI 4430, A. Milanova

14

Pointers and Arrays in C

= Pointers and arrays are interoperable:

int n;
int *a;
int b[10];

b
a[3];‘b//

{Z§+3); V4
EL}]; v
= *(b+3); V7

Ul = w N =
=T = R = R =
I

Programming Languages CSCI 4430, A Milanova/BG Ryder

15

Declarations in C

= What is the meaning of the following
declarationtin C? Draw the type trees.

— it l 4. @ t:arrab»,
1. oint *g[n] /

2. int (:;“n] 15'1:/7);144,
3. int (*£)(int) b1 it
2. a {«‘-'}I/wmfeo - f 6-’/’;‘“«
t: cure -3
/
h*‘ (M')/ \“VF
[V

Programming Languages CSCI 4430, A. Milanova/BG Ryder

16

Declarations in C

typedef int (*PFB)(); // Type variable PFB: what type?
struct parse_table { // Type struct parse_table: what type?
char *name;
PFB func; };
int func1(){ ... } // Function func1: what type?

int func2() { ... }

struct parse_table table[] = { // Variable table: what type?
{"name1", &func1},
{"name2", &func2}
};
PFB find_p func(char *s) { // Function find_p_func: what type?
for (i=0; i<num_func; i++)
if (strcmp(table[i].name,s)==0) return table[i].func;
return NULL; }
int main(int argc,char *argv(]) {

2

Programming Languages CSCI 4430, A. Milanova 17

Declarations in C

Type tree for PFB: Pointer

_>

PN

() int

Type tree for type of find_p_func:

English: a function that takes

a pointer to char as argument,
and returns a pointer to a function
that takes void as argument and
returns int.

Programming Languages CSCI 4430, A. Milanova

Chuel

/N

Vhu ok
/' \

o~

pointer

l

char

pointer

l

RN

0

Int

18

Exercise

struct _chunk { // Type struct_chunk: what type?
char name[10];
int id; };

struct obstack { I/ Type struct obstack: what type?

struct _chunk *chunk;
struct _chunk *(*chunkfun)();
void (*freefun) (); };

void chunk_fun(struct obstack *h, void *f) { // Function chunk_fun: what type?
h->chunkfun = (struct _chunk *(*)()) f; }

void free fun(struct obstack *h, void *f) { // Function free_fun: what type?
h->freefun = (void (*)()) f; }

int main() {
struct obstack h;
chunk_fun(&h,&xmalloc);
free_fun(&h,&xfree); ... }

Programming Languages CSCI 4430, A. Milanova 19

Declarations in C

Type tree for type of field chunkfun:

Programming Languages CSCI 4430, A. Milanova

pointer

|
()/_)\

pointer

|

struct _chunk: struct

<N

name: array id: int
char
20

Lecture Outline

= Types

= [ype systems
= Type checking
= [ype safety

= [ype equivalence
= TypesinC

= Primitive types
s Composite types

Programming Languages CSCI 4430, A. Milanova

21

Primitive Types

= A small collection of built-in types
= integer, float/real, etc.
= Design issues: e.g., boolean
= Use integer non-0/0 vs. true/false?

= Implementation issues: representation in the
machine
= Integer
= Length fixed by standards or implementation (portability issues)

= Multiple lengths (C: short, int, long)
= Signs

= Float/real
= All issues of integers and more

22

Composite Types: Record (Struct)

m Collection of heterogeneous fields

= Operations
= Selection through field names (s.num, p->next)

= Assignment
= Example: structures in C
typedef struct cell listcell;

struct cell {

int num;
listcell *next;

} s,t;

23

Record (Struct)

= Definition of type. What is part of the type?

= order and type of fields (but not the name)

= hame and type of fields

= order, name and type of fields

= Implementation issues: memory layout

= Successive memory locations at offset from first byte.
Usually, word-aligned, but sometimes Qacked

typedef struct {
char name[10];
int age;

} Person;

Person p;

4 bytes/32 bits

“holes”

24

Composite Types: Variant (Union)

= Allow a collection of alternative fields; only one
alternative Is valid during execution
= Fortran: equivalence
= Algol68 and C: unions
« Pascal: variant records

= Problem: how can we assure type-safety?
» Pascal and C are not type-safe
= Algol68 is type-safe! Uses run-time checks

= Usually, alternatives use same storage
= Mutually exclusive value access

Programming Languages CSCI 4430, A. Milanova/BG Ryder 25

Variants (Unions)

= Example: unions in C ¢ /L—".';‘
union data { d1e m T Quad
int k;
char c;
} d1,d2;
o= &
= Operations
= Selection through field names, Assignment:

dl.k = 3; d2 = dl; d2.c = b’;

= What about type safety?
if (n>0) dl.k=5 else|dl.c='a’;

m|d1.k << 2|m // What is the problem?

Pascal’s Variant Record

program main(input,output);

type paytype = (salaried,hourly);

var employee : record
id : integer;
dept: integer;
age : integer;
case payclass: paytype of
salaried:
(monthlyrate : real;
startdate : integer);
hourly:
(rateperhour : real;
reghours : integer,
overtime : integer);
end;

Type tag

begin
employee.id:=001234;
employee.dept:=12;
employee.age:=38;
employee.payclass:=hourly;
employee.rateperhour:=2.75;
employee.reghours:=40;
employee.overtime:=3;
writeln(employee.rateperhour,
employee.reghours,
employee.overtime);

{this should bomb as there is no
monthlyrate because

payclass=hourly}
writeln(employee.monthlyrate);

Output:
2.750000E+00 40 3

Programming Lang CSCI 4430, A. Milanova/BG Ryder 2.750000E+00

27

Pascal Variant Record

type paytype = (salaried,hourly);
var employee : record
id : integer;
dept: integer;
age : integer;
case payclass: paytype of
salaried:(
monthlyrate : real;
startdate : integer);
hourly: (
rateperhour : real;
reghours : integer;
overtime : integer);
end;

employee.payclass:=salaried,;
employee.monthlyrate:=575.0;
employee.startdate:=13085;

{this should bomb as there are no
rateperhour, etc. because
payclass=salaried}

writeln(employee.rateperhour,
employee.reghours
employee.overtime);
writeln(employee.monthlyrate);
end.

Output:
5.750000E+02 13085 3
5.750000E+02

Programming Languages CSCI 4430, A. Milanova/BG Ryder

28

Composite Types: Array

s Homogeneous, indexed collection of values
= Access to individual elements through subscript

= [here are many design choices
= Subscript syntax
= Subscript type, element type
= When to set bounds, compile time or run time?
= How to initialize?
= What built-in operations are allowed?

Programming Languages CSCI 4430, A. Milanova/BG Ryder

29

Array

= Definition of type. What is part of the type?
= bounds/dimension/element type
« Pascal

= dimension/element type
= C, FORTRAN, Algol68

= What is the lifetime of the array?
= Global lifetime, static shape (in static memory)

= Local lifetime (in stack memory)
= Static shape (stored in fixed-length portion of stack frame)

= Shape bound when control enters a scope

(e.g., Ada, Fortran allow definition of array bounds when function is
entered; stored in variable-length portion of stack frame)

= “Global” lifetime, dynamic shape (in heap memory)

Programming Languages CSCI 4430, A. Milanova/BG Ryder

30

Example: Algol68 Arrays

= Array type includes dimension and element type; it
does not include bounds

1:12] int month; [1:7] int day; row int

(0:10,0:10] real matrix;

—

(-4:10,6:9] real table; (row,row) real

Example- [1:10] [1:5,1:5] int kinglear;

= What is the type of kinglear? mw(rw, rec) b)
= Whatis the type of kinglear[j]? (Vmo, 1 IX Ny Al
= Whatis the type of kinglear[j][1,2]? [iF

= kinglear[1l,2,3]7? >< ERLoR
Programming Langauges CSCI 4430, A. Milanova/BG Ryder 31

Array Addressing

= One dimensional array
= X[low:high] each element is E bytes

= Assuming that elements are stored into
consecutive memory locations, starting at address
addr (X[low]), what is the address of X[j]?

addr(X[low]) + (j-1low)"E

= E.g,let X[0:10] be an array of reals (4 bytes)
« X[3]?isaddr(xX[0]) + (3 - 0)*4 = addr(xX) + 12
= X[1] is at address addr(X[0]) + 4
= X[2] is at address addr(X[0]) + 8, elc

Programming Languages CSCI 4430, A. Milanova/BG Ryder 32

Array Addressing

= Memory is a sequence of contiguous locations

= Two memory layouts for two-dimensional arrays:
= Row-major order and column-major order

——
= Row-major order: l——‘ly
u Y[Olo]l Y[oll]l Y[olzlg [or rl Y 11*11

yi2,*],..

= y[lowl:hil,low2:hi2] in Algol68, location
vli, k] Is
addr(y[lowl,low2]) + (hi2-low2+1)*E*(j-1lowl) + (k-1low2)*E

#locs per row #rows in front # elements in row j in
of row j front of element [§, k]
Programming Languages CSCI 4430, A. Milanova/BG Ryder 33

Array Addressing

Consider y[0:2, 0:5] int matrix.
Assume row-major order and find the address of y[1,3].
address of y[1,3] = addr(y[0,0])+(5-0+1)*4*(1-0)+(3-0)*4
6 elements per row
1 row before row 1
3 elements in row 1 before 3
= addr(y[0,0])+24+12
= addr(y[0,0])+36

= Analogous formula holds for column-major order

= Row-major and Column-maior layouts generalize to

n-dimensional arrays

34

Composite Types: Pointers

= A variable or field whose value is a reference to
some memory location
= INnC: int *p;
= Operations
= Allocation and deallocation of objects on heap
= p = malloc(sizeof(int)); free(p);
= Assignment of one pointer into another
= int *q = p; int *p = &a;
= Dereferencing of pointer
s *q = 1;
= Pointer arithmetic
sp + 2

35

Pointers: Recursive Types

= A recursive type is a type whose objects may
contain objects of the same type
= Necessary to build linked structures such as linked lists

= Pointers are necessary to define recursive types in
languages that use the value model for variables:

struct cell {
int num;
struct cell €next:

} ¢ =

Programming Languages CSCI 4430, A. Milanova/BG Ryder 36

Pointers: Recursive Types

= Recursive types are defined naturally in languages
that use the reference model for variables:

class Cell {
int num;
Cell next;

Cell() { ..}

Programming Languages CSCI 4430, A. Milanova/BG Ryder

37

