
1

Read: Scott, Chapters 7.1-7.2 and 8

Types



Announcements

n Check your Rainbow grades
n Exam 1-2, Quiz 1-7, HW 1-5

n Happy Thanksgiving!

Programming Languages CSCI 4430, A Milanova 2



Types and Type Systems

n A key concept in programming languages

n Haskell’s type system 

n Today, a more pragmatic view of types

Programming Languages CSCI 4430, A. Milanova 3



4

Lecture Outline 
n Types
n Type systems

n Type checking
n Type safety

n Type equivalence
n Types in C (next time)

n Primitive types (next time)
n Composite types (next time)
Programming Languages CSCI 4430, A. Milanova



Programming Languages CSCI 4430, A. Milanova/BG Ryder 5

What Is a Type?

n A set of values and the valid operations on 
those values
n Integers: 

+, -, *, /, <, <=, ==, ,>=, >
n Arrays: 

lookUp(<array>,<index>)
assign(<array>,<index>,<value>)  
initialize(<array>), setBounds(<array>)

n User-defined types: 
Java interfaces



Programming Languages CSCI 4430, A. Milanova/BG Ryder 6

What Is the Role of Types?

n What is the role of types in programming 
languages?

n Semantic correctness

n Data abstraction 
n Abstract Data Types (as we saw in Java)

n Documentation (static types only)



Programming Languages CSCI 4430, A. Milanova/BG Ryder 7

3 Views of Types
n Denotational (or set) point of view:   

n A type is simply a set of values. A value has a 
given type if it belongs to the set. E.g.

n int = { …-1,0,1,2,... }
n char = { ‘a’,’b’,... }  
n bool =  { true, false }

n Abstraction-based point of view:
n A type is an interface consisting of a set of 

operations with well-defined meaning



8

3 Views of Types

n Constructive point of view: 
n Primitive/simple types: e.g., int, char, bool
n Composite/constructed types: 

n Constructed by applying type constructors
n pointer   e.g., pointer(int)
n array   e.g., array(char) or array(char,20) or ...
n record/struct   e.g., record(age:int, name:array(char))
n union  e.g., union(int, pointer(char))

CAN BE NESTED! pointer(array(pointer(char)))

n For most of us, types are a mixture of these 
3 views



Programming Languages CSCI 4430, A. Milanova/BG Ryder 9

What Is a Type System?

n A mechanism to define types and associate 
them with programming language constructs
n Deduce types for program constructs
n Deduce if a construct is “type correct” or “type 

incorrect”

n Additional rules for type equivalence, type 
compatibility
n Important from pragmatic point of view



10

What Is a Type System?



11

What Is Type Checking?
n The process of ensuring that the program 

obeys the type rules of the language

n Type checking can be done statically 
n At compile-time, i.e., before execution
n Statically typed (or statically checked) language 

n Type checking can be done dynamically
n At runtime, i.e., during execution
n Dynamically typed (or dynamically checked) 

language
Programming Languages CSCI 4430, A. Milanova/BG Ryder



12

What Is Type Checking?
n Statically typed (better term: statically checked) 

languages
n Typically require type annotations (e.g., A a, List<A> list)
n Typically have a complex type system, and most of type 

checking is performed statically (at compile-time)
n Ada, Pascal, Java, C++, Haskell, ML/OCaml

n A form of early binding
n Dynamically typed (better term: dynamically 

checked) languages. Also known as Duck typed…
n Typically require no type annotations! 
n All type checking is performed dynamically (at runtime)

n Smalltalk, Lisp and Scheme, Python, JavaScript

Programming Languages CSCI 4430, A. Milanova/BG Ryder



13

What Is Type Checking?
n The process of ensuring that the program 

obeys the type rules of the language
n Type safety

n Textbook defines term prohibited application 
(also known as forbidden error): intuitively, a 
prohibited application is an application of an 
operation on values of the wrong type 

n Type safety is the property that no operation ever 
applies to values of the wrong type at runtime. 
I.e., no prohibited application (forbidden error) 
ever occurs

Programming Languages CSCI 4430, A. Milanova/BG Ryder



14

Language Design Choices

n Design choice: what is the set of forbidden errors?
n Obviously, we cannot forbid all possible semantic errors…
n Define a set of forbidden errors

n Design choice: Once we’ve chosen the set of 
forbidden errors, how does the type system prevent 
them?
n Static checks only? Dynamic checks only? A combination 

of both?
n Furthermore, are we going to absolutely disallow 

forbidden errors (be type safe), or are we going to 
allow for programs to circumvent the system and 
exhibit forbidden errors (i.e., be type unsafe)? 



15

Forbidden Errors

n Example: indexing an array out of bounds
n a[i], a is of size Bound, i<0 or Bound≤i

n In C, C++, this is not a forbidden error
n 0≤i and i<Bound is not checked (bounds are not part of type)
n What are the tradeoffs here?

n In Pascal, this is a forbidden error. Prevented with static 
checks

n 0≤i and i<Bound must be checked at compile time
n What are the tradeoffs here?

n In Java, this is a forbidden error. It is prevented with 
dynamic checks

n 0≤i and i<Bound must be checked at runtime
n What are the tradeoffs here?



16

Type Safety

n Java vs. C++:
n Java: Duck q; …; q.quack()class Duck has quack
n C++: Duck *q; …; q->quack()class Duck has 
quack

Can we write code that passes the type checker, and yet it 
calls quack()on an object that isn’t a Duck at runtime?

n In Java? 
n In C++?

n Java is said to be type safe while C++ is said 
to be type unsafe 



Programming Languages CSCI 4430, A. Milanova 17

C++ Is Type Unsafe
//#1
void* x = (void *) new A;
B* q = (B*) x;  //a safe downcast?
int case1 = q->foo()//what happens?

//#2
void* x = (void *) new A;
B* q = (B*) x;  //a safe downcast?
int case2 = q->foo(66); //what happens?

A

B

virtual foo()

virtual foo()
vritual foo(int)

q->foo(66) is a prohibited application (i.e., application of an
operation on a value of the wrong type, i.e., forbidden error).
Static type B* q “promises” the programmer that q will point to a
B object. However, language does not “honor” this promise…



What Is Type Checking

statically   not statically typed
typed  (i.e., dynamically typed)

type safe

type unsafe              Assembly

Programming Languages CSCI 4430, A. Milanova/BG Ryder 18

ML/Ocaml, 
Haskell, 
Java*

C/C++

Python, Scheme, R, JavaScript



Programming Languages CSCI 4430, A. Milanova/BG Ryder 19

What Is Type Checking?

n Static typing vs. dynamic typing

n What are the advantages of static typing?

n What are the advantages of dynamic typing?



20

Lecture Outline 
n Types
n Type systems

n Type checking
n Type safety

n Type equivalence
n Types in C

n Primitive types
n Composite types
Programming Languages CSCI 4430, A. Milanova



21

Type Equivalence

n We now move in the world of procedural von 
Neumann languages

n E.g., Fortran, Algol, Pascal and C 

n Value model

n Statically typed

Programming Languages CSCI 4430, A. Milanova/BG Ryder



22

Type Equivalence

n Constructive point of view: 

n Primitive/simple types: e.g., int, char, bool

n Composite/constructed types: 
n Constructed by applying type constructors
n pointer   e.g., pointer(int)
n array   e.g.,  array(char) or array(char,20) or ...
n record/struct   e.g.,  record(age:int, name:array(char))
n union  e.g., union(int, pointer(char))

Programming Languages CSCI 4430, A. Milanova/BG Ryder



23

Type Equivalence

n Two ways of defining type equivalence
n Structural equivalence: based on “shape”

n Roughly, two types are the same if they consists of the 
same components, put together in the same way

n Name equivalence: based on lexical occurrence 
of the type definition

n Strict name equivalence
n Loose name equivalence

T1 x; … 
T2 y;
x = y;



24

Structural Equivalence

n A type is structurally equivalent to itself
n Two types are structurally equivalent if they 

are formed by applying the same type 
constructor to structurally equivalent types 
(i.e., arguments are structurally equivalent)

n After type declaration type n = T or 
typedef T n in C, the type name n is 
structurally equivalent to T
n Declaration makes n an alias of T. n and T are 

said to be aliased types
Programming Languages CSCI 4430, A. Milanova



25

Structural Equivalence
n Example, Pascal-like language:

type S = array [0..99] of char
type T = array [0..99] of char

n Example, C:
typedef struct {
int j, int k, int *ptr

} cell;
typedef struct {
int n, int m, int *p

} element;

Programming Languages CSCI 4430, A. Milanova/BG Ryder

This is a type definition:
an application of the 
array type constructor



26

Structural Equivalence

n Shown by isomorphism of corresponding 
type trees 
n Show the type trees of these constructed types
n Are these types structurally equivalent?

struct cell struct element
{  char data; { char c;

int a[3]; int a[5];
struct cell *next;   struct element *ptr;

} }

Equivalent types: are field names part of the struct constructed type?
are array bounds part of the array constructed type?

Programming Languages CSCI 4430, A. Milanova/BG Ryder



Structural Equivalence

27

cell: struct

next: pointerdata: char a: array

int

element: struct

ptr: pointerc: char a: array

int

Programming Languages CSCI 4430, A. Milanova/BG Ryder

struct cell struct element
{  char data; {  char c;

int a[3]; int a[5];
struct cell *next;         struct element *ptr;

} }



Structural Equivalence

28

cell: struct

next: pointerdata: char a: array

int

element: struct

ptr: pointerc: char a: array

int

Programming Languages CSCI 4430, A. Milanova/BG Ryder

struct cell struct element
{  char data; {  char c;

int a[3]; int a[5];
struct cell *next;         struct element *ptr;

} }



29

Name Equivalence 

Name equivalence
An application of a type constructor is a type definition.
Under name equivalence each type definition is a distinct 
type. E.g., the red array[1..20] of int; is one type 
definition (and one type) and the blue array[1..20] of 
int; is a different type definition (and a different type):

type T = array [1..20] of int;
x,y: array [1..20] of int;
w,z: T;
v: T;

x and y are of same type, w, z,v are of same 
type, but x and w are of different types!



30

Question

Name equivalence

w,z,v: array [1..20] of int;
x,y: array [1..20] of int;

Are x and w of equivalent type according to name 
equivalence?

Answer: x and w are of distinct types.

Programming Languages CSCI 4430, A. Milanova/BG Ryder



Name Equivalence
n A subtlety arises with aliased types (e.g., 
type n = T, typedef int Age in C)

n Strict name equivalence
n A language in which aliased types are 

considered distinct, is said to have strict name 
equivalence (e.g., int and Age are distinct 
types)

n Loose name equivalence
n A language in which aliased types are 

considered equivalent, is said to have loose 
name equivalence (e.g., int and Age are same)

31



Exercise
type cell = … // record type
type alink = pointer to cell
type blink = alink
p,q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink
Group p,q,r,s,t,u into equiv. classes, according to 
structural equiv., strict name equiv. and loose name equiv. 32



Exercise: Structural Equivalence
type cell = … // record type
type alink = pointer to cell
type blink = alink
p,q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink

33

p,q,r,s,t,u



Exercise: Strict Name Equivalence
type cell = … // record type
type alink = pointer to cell
type blink = alink
p,q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink

34

p,q

r,u

s

t



Exercise: Loose Name Equivalence
type cell = … // record type
type alink = pointer to cell
type blink = alink
p,q : pointer to cell
r : alink
s : blink
t : pointer to cell
u : alink

35

p,q

r,s,u

t



Programming Languages CSCI 4430, A. Milanova/BG Ryder 36

Example: Type Equivalence in C
n First, in the Algol family, field names are part of the 

record/struct constructed type. E.g., the record 
types below are NOT even structurally equivalent

type A = record 
x,y : real

end;
type B = record
z,w : real

end;



Programming Languages CSCI 4430, A. Milanova/BG Ryder 37

Type Equivalence in C
n Compiler assigns internal (compiler-

generated) names to anonymous types

struct RecA typedef struct struct
{ char x; { char x; { char x;
int y; int y; int y;

} a; } RecB; } c;

RecB b;

What variables are of equivalent type according to the rules in C?

This struct is of type anon1.



38

Type Equivalence in C
n C uses structural equivalence for everything, except unions 

and structs, for which it uses loose name equivalence
struct A struct B
{ char x; { char x;
int y; int y;

} }
typedef struct A C;
typedef C *P;
typedef struct B *Q;
typedef struct A *R;
typedef int Age;
typedef int (*F) (int);
typedef Age (*G) (Age);



39

Type Equivalence in C
struct B { char x; int y; };
typedef struct B A; 
struct { A a; A *next; } aa;
struct { struct B a; struct B *next; } bb;
struct { struct B a; struct B *next; } cc;

A a; 
struct B b;

a = b;
aa = bb; 
bb = cc;

Which of the above assignments pass the type checker?



Question

n Structural equivalence for record types is 
considered a bad idea. Can you think of a 
reason why?

Programming Languages CSCI 4430, A. Milanova 40



41

Lecture Outline 
n Types
n Type systems

n Type checking
n Type safety

n Type equivalence
n Types in C (next time)

n Primitive types
n Composite types
Programming Languages CSCI 4430, A. Milanova


