
1

Object-Oriented Programming 
Languages

Read: Scott, Chapter 10.1-
10.4 



2

Lecture Outline
n Object-oriented programming
n Encapsulation and inheritance
n Initialization and finalization
n Subtyping and dynamic method binding

n Polymorphism

Programming Languages CSCI 4430, A. Milanova



3

Benefits of Object Orientation
n Abstraction

n Classes bridge the gap between concepts in the problem domain and 
software

n E.g., domain concept of Customer maps to 
class Customer

n Encapsulation
n Classes provide interface but hide data representation 
n Easier to understand and use
n Can be changed internally with minimal impact

n Reuse
n Inheritance and composition provide mechanisms for reuse

n Extensibility

Programming Languages CSCI 4430, A. Milanova



4

Encapsulation and Inheritance 
n Access control modifiers – public, private, and 

others
n What portion of the class is visible to users?
n Public, protected or private visibility
n Java: Has package as default; protected is slightly different 

from C++
n C++: Has friend classes and functions
n Smalltalk and Python: all members are public

n With inheritance 
n What control does the superclass have over its fields and 

methods? There are different choices
n C++: a subclass can restrict visibility of superclass members
n C#, Java: a subclass can neither increase nor restrict visibility 

of superclass members



Initialization and Finalization
n Reference model for variables used in Java, 

Smalltalk, Python 
n Every variable is a reference to an object
n Explicit object creation: foo b = new foo();

n Value model for variables used in C++, 
Modula-3, Ada-95
n A variable can have a value that is an object 
n Object creation may be implicit: e.g. foo b; 

n How are objects destroyed?

5Programming Languages CSCI 4430, A. Milanova



Question
n Consider the following code:

A a; // a is a local variable of type A
a.m(); // We call method m on a

What happens in C++?
What happens in Java?

Programming Languages CSCI 4430, A. Milanova 6



More on Implicit Creation in C++
n C++ requires that an appropriate constructor 

is called for every object implicitly created on 
the stack, e.g., A a;

n What happens here: foo a;
n Compiler calls zero-argument constructor 
foo::foo()

n What happens here: foo a(10, ‘x’);
n Calls foo::foo(int, char)

Programming Languages CSCI 4430, A. Milanova 7



More on Implicit Creation in C++
n What happens here: 

foo a;
foo c = a;

n Calls foo::foo() at foo a; calls copy 
constructor foo::foo(foo&) at foo c = a;

n = operator here stands for initialization, not 
assignment!

Programming Languages CSCI 4430, A. Milanova 8



More on Implicit Creation in C++
n What happens here: 

foo a, c;  // declaration
c = a; // assignment

n Calls foo::foo() twice at foo a, c;
calls assignment operator 
foo::operator=(foo&) at  c = a;

n = operator here stands for assignment!

Programming Languages CSCI 4430, A. Milanova 9



10

Lecture Outline
n Object Oriented programming
n Encapsulation and inheritance
n Initialization and finalization
n Subtyping and dynamic method binding
n Polymorphism

Programming Languages CSCI 4430, A. Milanova



11

Subtyping and Dynamic Method 
Binding
n Subtyping and subtype polymorphism - the 

ability to use a subclass where a superclass 
is expected

n Thus, dynamic method binding (also known 
as dynamic dispatch) - the ability to invoke a 
new refined method in a context where an 
earlier version is expected
n E.g., class B is a Java subclass of A
n A a; … a.m();

Programming Languages CSCI 4430, A. Milanova



12

Subtyping and Dynamic Method 
Binding
n Advantages?
n Disadvantages?

n C++: static binding is default, dynamic 
binding is specified with keyword virtual

n Java: dynamic binding is default, static 
binding is specified with final

Programming Languages CSCI 4430, A. Milanova



Benefits of Subtype Polymorphism 
n Covered extensively in Principles of Software 
n Enables extensibility and reuse

n E.g., we can extend a type hierarchy with no 
modification to the client of hierarchy

n Reuse through inheritance or composition
n Subtype polymorphism enables the 

Open/closed principle (credited to Bertrand 
Meyer) 
n Software entities (classes, modules) should be 

open for extension but closed for modification
13Programming Languages CSCI 4430, A. Milanova



14

Example
n Application draws shapes on screen
n Possible solution in C

enum ShapeType { circle, square };
struct Shape { ShapeType t };
struct Circle 
{ ShapeType t; double radius; Point center; };

struct Square 
{ ShapeType t; double side; Point topleft; };

Programming Languages CSCI 4430, A. Milanova



15

Example
void DrawAll(struct Shape *list[], int n) {
int i;
for (i = 0; i < n; i++) {

struct Shape *s = list[i];
switch (s->t) {

case square: DrawSquare(s); break;
case circle: DrawCircle(s); break;
}

}
}

What problems do you see here?

Programming Languages CSCI 4430, A. Milanova



16

Example
n OO Solution in Java
abstract class Shape { public void draw(); }
class Circle extends Shape { … }
class Square extends Shape { … }

void DrawAll(Shape[] list) {
for (int i=0; i < list.length; i++) {

Shape s = list[i];
s.draw();

} 
}
Programming Languages CSCI 4430, A. Milanova



17

Benefits of Subtype Polymorphism
abstract class Shape { public void draw(); }
class Circle extends Shape { … }
class Square extends Shape { … }
class Triangle extends Shape { … } 

Extending the Java code requires no changes in DrawAll! 
Thus, it is closed for modification.

Extending the C code triggers modifications in DrawAll
(and likely many other DrawAll-like functions). 

Programming Languages CSCI 4430, A. Milanova



Benefits of Subtype Polymorphism 
n “Science” of software design teaches Design 

Patterns

n Design patterns promote design for 
extensibility and reuse

n Nearly all design patterns make use of 
subtype polymorphism! 

Programming Languages CSCI 4430, A. Milanova 18



19

Lecture Outline
n Object-oriented programming
n Encapsulation and inheritance
n Initialization and finalization
n Subtyping and dynamic method binding

n Polymorphism

Programming Languages CSCI 4430, A. Milanova



Polymorphism

n Generally, refers to the mechanisms that a 
programming language provides, to allow for 
the same piece of code to be used with 
objects or values of multiple types

n Poly = many and morph = form
n Examples of polymorphism

n Generic functions in Haskell
n Templates in C++, generics in Java
n Implicitly polymorphic foldl/foldr in Scheme
n Other 20



Varieties of Polymorphism
n Subtype polymorphism

n What we just discussed… Code can use a 
subclass B where a superclass A is expected

n Standard in object-oriented languages
n Parametric polymorphism

n Code has a type as parameter
n Explicit parametric polymorphism 
n Implicit parametric polymorphism
n Standard in functional programming languages

n Ad-hoc polymorphism (overloading)
Programming Languages CSCI 4430, A. Milanova 21



Explicit Parametric Polymorphism
n Occurs in Ada, Clu, C++, Java, Haskell (type 

classes)
n There is an explicit type parameter
n Explicit parametric polymorphism is also 

known as genericity
n E.g. in C++: 
template<class V>
class list_node {
list_node<V>* prev;
…

} 22

template<class V>
class list {
list_node<V> header;
…

}



Explicit Parametric Polymorphism
n Usually (but not always!) implemented by 

creating multiple copies of the generic code, 
one for each concrete type

typedef list_node<int> int_list_node;
typedef list<int> int_list;

n Object-oriented languages usually provide both 
subtype polymorphism and explicit parametric 
polymorphism, which is referred to as generics

23Programming Languages CSCI 4430, A. Milanova



Explicit Parametric Polymorphism
n Generics are tricky…
n Consider this C++ code (uses the STL):

n Compiler produces around 2K of text of error 
messages, referring to code in the STL

n The problem here is that the STL’s sort requires 
a RandomAccessIterator, while the list
container provides only a Bidirectional Iterator

24

list<int> l;
sort(l.begin(), l.end());

Programming Languages CSCI 4430, A. Milanova



On Concepts in C++ and Much More

n Thriving in a Crowded and Changing World: 
C++ 2006–2020

n By Bjarne Stroustroup

n https://dl.acm.org/doi/pdf/10.1145/3386320

Programming Languages CSCI 4430, A Milanova 25



In Java, Bounded Types Restrict 
Instantiations by Client
n Generic code can perform operations 
permitted by the bound
class MyList1<E extends Object> { 
void m(E p) { 
p.intValue();  //compile-time error; Object

//does not have intValue()
}

}
class MyList2<E extends Number> {
void m(E p) { 
p.intValue();//OK. Number has intValue()

}
}
Programming Languages CSCI 4430, A/ Milanova (modified from example by Michael Ernst) 26



In Java, Bounded Types Restrict 
Instantiations by Client
n Instantiations respect the bound

class MyList2<E extends Number> {
void m(E arg) { 
arg.intValue();//OK. Number has intValue()

}
}
MyList2<String> ls = new MyList2<String>();
//compile-time error; String is not within 
//bounds of E
MyList2<Integer> li = … 
//OK. Integer is subtype of Number

Programming Languages CSCI 4430, A/ Milanova (modified from example by Michael Ernst) 27



In Haskell, Type Predicates Restrict 
Instantiation of Generic Functions
sum :: (Num a) => a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

n a is an explicit type parameter
n (Num a) is a predicate in type definition
n (Num a) constrains the types we can 

instantiate the generic function with

28Programming Languages CSCI 4430, A. Milanova



Implicit Parametric Polymorphism
n Occurs in Scheme, Python and others
n There is no explicit type parameter, yet the 

code works on many different types

n Usually, there is a single copy of the code, 
and all type checking is delayed until runtime
n If the arguments are of type as expected by the 

code, code works
n If not, code issues a type error at runtime 

Programming Languages CSCI 4430, A. Milanova 29



Implicit Parametric Polymorphism
twice in Scheme: (define (twice f x) (f (f x)))

(twice (lambda (x) (+ 1 x)) 1) yields ?

30

--> (lambda (x) (+ 1 x)) ((lambda (x) (+ 1 x)) 1)
--> (lambda (x) (+ 1 x)) 2
--> yields 3



Implicit Parametric Polymorphism
twice in Scheme: (define (twice f x) (f (f x)))

(twice (lambda (x) (cons ‘a x)) ‘(b c)) yields ?

31

yields (a a b c)



Implicit Parametric Polymorphism
twice in Scheme: (define (twice f x) (f (f x)))

(twice 2 3) yields ?

map, foldl, length are all implicitly parametric 

32

--> 2 (2 3)
-->    bombs, 2 is not a function value



Implicit Parametric Polymorphism
def intersect(seq1, seq2):
res = [ ]
for x in seq1:
if x in seq2:
res.append(x)

return res

n As long as arguments for seq1 and seq2 are 
of iterable type, intersect works

33Programming Languages CSCI 4430, A. Milanova



Let Polymorphism

n A form of explicit parametric polymorphism
n Occurs in Haskell and in ML

n Also known as ML-style polymorphism 

let f = \x -> x in if (f True) then (f 1) else 0
--- f is a polymorphic function
--- At (f True) instantiates to bool->bool function
--- At (f 1) instantiates to int->int function

Programming Languages CSCI 4430, A. Milanova 34



Let Polymorphism

let f = \x -> x in if (f True) then (f 1) else 0

n Informally, let polymorphism restricts 
polymorphism to functions defined at let
bindings

n Disallows functions that take polymorphic 
functions as arguments

n Formally defined by Hindley Milner system
n Allows for type inference
Programming Languages CSCI 4430, A. Milanova 35



Let Polymorphism

let f = \x -> x in if (f True) then (f 1) else 0

n Allows for a natural form of type inference
n Inference “sees” the function definition at let 

binding before the call (use) of the function
n Inference “generalizes” the type of the function
n At each call in let expression body, inference 

replaces explicit type parameter with fresh var
n Cannot be done with a function argument
Programming Languages CSCI 4430, A. Milanova 36



Let Polymorphism

n Contrast

(1) let f = \x -> x in if (f True) then (f 1) else 0
vs. 
(2) (\f -> if (f True) then (f 1) else 0) (\x -> x)

n Let-bound vs. Lambda-bound polymorphism

Programming Languages CSCI 4430, A. Milanova 37



The End

Programming Languages CSCI 4430, A. Milanova 38


