Object-Oriented Programming

!'- Languages PoLviwrrnisi

Read: Scott, Chapter 10.1-
10.4

Lecture Outline

= Object-oriented programming

= Encapsulation and inheritance

= Initialization and finalization

= Subtyping and dynamic method binding

= Polymorphism

Programming Languages CSCI 4430, A. Milanova

Benefits of Object Orientation

s Abstraction

= Classes bridge the gap between concepts in the problem domain and
software

= E.g., domain concept of Customer maps to
class Customer

= Encapsulation
= Classes provide interface but hide data representation
= Easier to understand and use

= Can be changed internally with minimal impact
lief [—P| A

= Inheritance and composition provide mechanisms for reu (

= Extensibility %
B Iy

Programming Languages CSCI 4430, A. Milanova 3

Encapsulation and Inheritance

= Access control modifiers — public, private, and
others
= What portion of the class is visible to users?

= Public, protected or private visibility

= Java: Has package as default; protected is slightly different
from C++

= C++: Has friend classes and functions
= Smalltalk and Python: all members are public

s With inheritance

= What control does the superclass have over its fields and
methods? There are different choices

= C++: a subclass can restrict visibility of superclass members

« C#, Java: a subclass can neither increase nor restrict V|S|b|I|ty
of superclass members

Initialization and Finalization

= Reference model for variables used in Java,
Smalltalk, Python
= Every variable is a reference to an object
= EXxplicit object creation: foo b = new foo();

» Value model for variables used in C++,
Modula-3, Ada-95

= A variable can have a value that is an object
= Object creation may be implicit: e.g. foo b;

= How are objects destroyed?

Programming Languages CSCI 4430, A. Milanova

Question

= Consider the following code:

A a; /[a is a local variable of type A

a.m(); //We call methodmon a
Ctf: Jowe ;

a:t—— G| Nu

What happens in C++? = \We ieed

What happens in Java? = hew A(),
Tuplicit creakon We weed explici
Qud iuibalizetioe. Object Creakia,

Programming Languages CSCI 4430, A. Milanova 6

More on Implicit Creation in C++

= C++ requires that an appropriate constructor

Is called for every object implicitly created on
the stack, e.g., A a;

= What happens here: foo a;

= Compiler calls zero-argument constructor
foo: :foo ()

= \What happens here: foo a (10, ‘x’);
= Calls foo: : foo(int, char)

Programming Languages CSCI 4430, A. Milanova

More on Implicit Creation in C++

= What happens here:
foo a;
foo ¢ = a;

= Calls foo: :foo () at foo a; calls copy
constructor foo: : foo (foo&) at foo ¢ = a;

= = operator here stands for initialization, not
assignment!

Programming Languages CSCI 4430, A. Milanova

More on Implicit Creation in C++

= What happens here:
foo a, ¢; // declaration
c = a; // assignment

= Calls foo: : foo () twice at foo a, c;

calls assignment operator
foo: :operator=(fooé&) at ¢ = a;

= = operator here stands for assignment!

Programming Languages CSCI 4430, A. Milanova

Lecture Outline

= Object Oriented programming

= Encapsulation and inheritance

= Initialization and finalization

s Subtyping and dynamic method binding
= Polymorphism

Programming Languages CSCI 4430, A. Milanova

10

Subtyping and Dynamic Method

Binding

s Subtyping and subtype polymorphism - the
ability to use a subclass where a superclass
IS expected

= Thus, dynamic method binding (also known
as dynamic dispatch) - the abllity to invoke a
new refined method in a context where an
earlier version is expected

=« E.g., class B is a Java subclass of A

= Aa;...a.m(); Aa > A [o)
gu— Cobee () =
- - VA

Programming Languages CSCI 4430, A. Milanova & m(11
—

Subtyping and Dynamic Method
Binding

s Advantages? FAsisrary, exenasury

= Disadvantages? rerrusnce renacty or prspirck Cope

s C++: static binding is default, dynamic
binding is specified with keyword virtual

= Java: dynamic binding is default, static
binding is specified with final

Programming Languages CSCI 4430, A. Milanova 12

Benefits of Subtype Polymorphism

= Covered extensively in Principles of Software

= Enables extensibility and reuse

= E.g., we can extend a type hierarchy with no
modification to the client of hierarchy

= Reuse through inheritance or composition
—————————

= Subtype polymorphism enables the
Open/closed principle (credited to Bertrand

Meyer)
= Software entities (classes, modules) should be
open for extension but closed for modification

Programming Languages CSCI 4430, A. Milanova 13

Example

= Application draws shapes on screen
= Possible solution in C

enum ShapeType { circle, square };
struct Shape { ShapeType t };

struct Circle
{ ShapeType t; double radius; Point center;

struct Square
{ ShapeType t; double side; Point topleft;

Programming Languages CSCI 4430, A. Milanova

};

};

14

Example

void DrawAll (struct Shape *list[], int n) {
int 1i;
for (1 = 0; 1 < n; i++) {
struct Shape *s = list[1i];
switch (s->t) {
case square: DrawSquare(s); break;

case circle: DrawCircle(s); break;
} -_

What problems do you see here?

Programming Languages CSCI 4430, A. Milanova

15

Example

= OO Solution in Java
abstract class Shape { public void draw (), }

class Circle extends Shape { .. }
class Square extends Shape { .. }

void DrawAll (Shape[] 1list) {
for (int i=0; i < list.length; i++) {
Shape s = list[1i];
s.draw() ;

}

IJrogramming Languages CSCI 4430, A. Milanova 16

Benefits of Subtype Polymorphism

abstract class Shape { public void draw (), }
class Circle extends Shape { .. }

class Square extends Shape { .. }

class Triangle extends Shape { .. }

Extending the Java code requires no changes in DrawAll!
Thus, it is closed for modification.

Extending the C code triggers modifications in DrawAll
(and likely many other DrawAll-like functions).

Programming Languages CSCI 4430, A. Milanova 17

Benefits of Subtype Polymorphism

= "Science” of software design teaches Design
Patterns

= Design patterns promote design for
extensibility and reuse

= Nearly all design patterns make use of
subtype polymorphism!

Programming Languages CSCI 4430, A. Milanova 18

Lecture Outline

= Object-oriented programming

= Encapsulation and inheritance

= Initialization and finalization

= Subtyping and dynamic method binding

= Polymorphism

Programming Languages CSCI 4430, A. Milanova

19

Polymorphism

= Generally, refers to the mechanisms that a
programming language provides, to allow for
the same piece of code to be used with
objects or values of multiple types

= Poly = many and morph = form

= Examples of polymorphism
= Generic functions in Haskell
= Templates in C++, generics in Java
= Implicitly polymorphic foldl/foldr in Scheme
= Other

20

Varieties of Polymorphism

= Subtype polymorphism

= What we just discussed... Code can use a
subclass B where a superclass A is expected

=« Standard in object-oriented languages
= Parametric polymorphism

= Code has a type as parameter

= Explicit parametric polymorphism

= Implicit parametric polymorphism

= Standard in functional programming languages
= Ad-hoc polymorphism (overloading)

Programming Languages CSCI 4430, A. Milanova 21

Explicit Parametric Polymorphism

= Occurs in Ada, Clu, C++, Java, Haskell (type
classes)

= There is an explicit type parameter

= EXplicit parametric polymorphism is also
kKnown as genericity

N Eg |n C++: Vs e blfl,idl' %’mmwde"-

template<class zg- template<class V>
class list {

class list node {
- list node<V> header;

list node<V>* prev;

22

Explicit Parametric Polymorphism

= Usually (but not always!) implemented by
creating multiple copies of the generic code,
one for each concrete type

iut . Thetaubett Gluuic
Code [/V7 Code tith it” Opflubeect

typedef list node<int> int_list node;
typedef list<int> int list;

= Object-oriented languages usually provide both
subtype polymorphism and explicit parametric
polymorphism, which is referred to as generics

Programming Languages CSCI 4430, A. Milanova 23

Explicit Parametric Polymorphism

= Generics are tricky...
= Consider this C++ code (uses the STL):

list<int> 17

sort(l.begin(), l.end());

= Compiler produces around 2K of text of error
messages, referring to code in the STL

= The problem here is that the STL's sort requires
a RandomAccesslterator, while the 1ist
container provides only a Bidirectional Iterator

Programming Languages CSCI 4430, A. Milanova 24

On Concepts in C++ and Much More

= Thriving in a Crowded and Changing World:
C++ 2006-2020

= By Bjarne Stroustroup

= https://dl.acm.org/doi/pdf/10.1145/3386320

Programming Languages CSCI 4430, A Milanova

25

In Java, Bounded Types Restrict
Instantiations by Client

= Generic code can perform operations
permitted by the bound

class MyListl<E extends Object> {
void m(E p) {
p.intValue(); //compile-time error; Object
//does not have intValue ()

}

}
class MyList2<E extends Number> ({

void m(E p) {
p.intValue() ;//OK. Number has intValue ()

}

IJrogramming Languages CSCI 4430, A/ Milanova (modified from example by Michael Ernst) 26

In Java, Bounded Types Restrict
Instantiations by Client

= Instantiations respect the bound

class MyList2<E extends Number> ({

void m(E arg) {
arg.intValue () ;//OK. Number has intValue ()

}

}
MyList2<String> 1ls = new MyList2<String>() ;

//compile-time error; String is not within
//bounds of E

MyList2<Integer> 1li = ..

//OK. Integer is subtype of Number

Programming Languages CSCI 4430, A/ Milanova (modified from example by Michael Ernst) 27

In Haskell, Type Predicates Restrict
Instantiation of Generic Functions

sum :: (Num a) => a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs
aull®
+ reciu:m et X is au
Detfoute % Nusee .

= a IS an explicit type parameter
= (Num a) is a predicate in type definition

= (Num a) constrains the types we can
instantiate the generic function with

Programming Languages CSCI 4430, A. Milanova

28

Implicit Parametric Polymorphism

= Occurs in Scheme, Python and others

= There is no explicit type parameter, yet the
code works on many different types

= Usually, there is a single copy of the code,
and all type checking is delayed until runtime
= If the arguments are of type as expected by the
code, code works
= If not, code issues a type error at runtime

Programming Languages CSCI 4430, A. Milanova 29

Implicit Parametric Polymorphism

twice in Scheme: (define (twice T x) (f (f x)))
lu\l*)jul- Lot

Q.
(twice (lambda (x) (+ 1 x)) 1) yields ?
L(W—-?Im‘)' «—9& — Tu

e f Gped ¢ P remlt

--> (lambda (x) (+ 1 x)) ((lambda (x) (+ 1 x)) 1)
--> (lambda (x) (+ 1 x)) 2
--> yields 3

30

Implicit Parametric Polymorphism

twice in Scheme: (define (twice T x) (f (f x)))

ice (lambda (x) (cons ‘a x)) ‘(b ¢)) yields ?
f %“7 "”597“? —;’ZSM — [T

yields (aa b c)

31

Implicit Parametric Polymorphism

twice in Scheme: (define (twice T x) (f (f x)))
(twice 2 3) yields ?

> 2 (Q)
--> bombs, 2 is not a function value

map, foldl, length are all implicitly parametric

>

32

Implicit Parametric Polymorphism

def intersect(seql, seqg2?):
res = []
for x in seql.:
if x in seqg2:
res . append (x)
return res

= As long as arguments for seq1 and seq2 are
of iterable type, intersect works

Programming Languages CSCI 4430, A. Milanova

33

Let Polymorphism

= A form of explicit parametric polymorphism

= Occurs in Haskell and in ML
= Also known as ML-style polymorphism

B

letf=\x->xinif (f True) then (f 1) else 0
--- fIs a polymorphic function

--- At (f True) instantiates to bool->bool function
--- At (f 1) instantiates to int->int function

Programming Languages CSCI 4430, A. Milanova 34

Let Polymorphism

letf=\x->xinif (f True) then (f 1) else 0

= Informally, let polymorphism restricts
polymorphism to functions defined at let
bindings

= Disallows functions that take polymorphic
functions as arguments

= Formally defined by Hindley Milner system
= Allows for type inference

Programming Languages CSCI 4430, A. Milanova

35

Let Polymorphism

letf=\x->xinif (f True) then (f 1) else 0

= Allows for a natural form of type inference

= Inference “sees” the function definition at let
binding before the call (use) of the function

= Inference “generalizes” the type of the function

= At each call in let expression body, inference
replaces explicit type parameter with fresh var

= Cannot be done with a function argument

Programming Languages CSCI 4430, A. Milanova 36

Let Polymorphism

s Contrast

(1) let f = \x -> x in if (f True) then (f 1) else 0 (1)
VS.

(2) (\f -> if (f True) then (f 1) else 0) (\x -> x@

= Let-bound vs. Lambda-bound polymorphism

Programming Languages CSCI 4430, A. Milanova 37

The Enad

Programming Languages CSCI 4430, A. Milanova

38

