
1

Intro to Concurrency and
Concurrency in Java

Read: Scott, Chapter 13.1-13.2

Announcements

n Check your Rainbow grades
n Exam 1-2, Quiz 1-7, HW 1-5

n Let me know if you see anything amiss

Programming Languages CSCI 4430, A Milanova 2

3

Lecture Outline

n Intro to Concurrency

n Our focus: concurrency in Java
n Threads
n Synchronized blocks
n The Executor framework
n What can go wrong with threads?

Programming Languages CSCI 4430, A. Milanova

4

Concurrency

n Concurrent program
n Any program is concurrent if it may have more

than one active execution context --- more than
one “thread of control”

n Concurrency is everywhere
n A multithreaded web browser
n An IDE which compiles while we edit

n Significant interest in concurrency in
programming languages

Programming Languages CSCI 4430, A. Milanova

Concurrency and Parallelism

n Concurrent characterizes a system in which
two or more tasks may be underway (at any
point of their execution) at the same time

n A concurrent system is parallel if more than
one task can be physically active at once
n This requires more than one processor

5Programming Languages CSCI 4430, A. Milanova

Multiprocessor Machines

n Two broad categories of parallel
architectures

n Shared-memory machines
n Those in which processors share common

memory

n Non-shared-memory machines
n Those in which processors must communicate

with messages
6

Aside: What Exactly is a Processor?

n For 30+ years, it used to be the single chip
with a CPU, cache and other components

n Now, it can mean a single “device” with
multiple chips; each chip can have multiple
cores; each core can have multiple hardware
threads. Also, subsets of the cores can share
different levels of cache

7Programming Languages CSCI 4430, A. Milanova

Aside: What Exactly is a Processor?

n OS and programming languages abstract
away hardware complexity

n For us, programmers, ”processor” means a
task/thread of computation
n Or the hardware that runs thread of computation

n But as we saw many times in this class,
abstraction (i.e., improved programmability)
comes at a cost

8Programming Languages CSCI 4430, A. Milanova

9

Fundamentals of Concurrent Programming

n Two programming models for concurrency

n Shared memory

n Message passing

Programming Languages CSCI 4430, A. Milanova

10

Fundamentals of Concurrent Programming

n Shared memory
n Some program variables are accessible to

multiple threads --- threads access shared state
n Threads communicate (interact) through shared

state
n E.g., producer and consumer threads

n Share buffer in memory
n “Win” from concurrency

n Consumer thread operates on data at the same time
n Producer thread produces next data item

Programming Languages CSCI 4430, A. Milanova

11

Fundamentals of Concurrent Programming

n Message passing
n Threads have no shared state
n One thread performs explicit send to transmit

data to another
n Similarly, producer and consumer thread

n Producer sends data as a message
n “Win” from concurrency

Programming Languages CSCI 4430, A. Milanova

12

n Communication
n Refers to mechanism that allows one thread to obtain

information produced by another thread
n Explicit in message passing models
n Implicit in shared memory models

n Synchronization
n Refers to mechanism that allows the programmer to

control the relative order of operations that occur
n Implicit in message passing models
n Explicit in shared memory models

Fundamentals of Concurrent Programming

Programming Languages CSCI 4430, A. Milanova

13

Shared Memory Model

n Programming language support for the
shared memory model
n Explicit support for concurrency

n E.g., Java, C#, Rust: explicit threads, locks,
synchronization, etc.

n Libraries
n C/C++: The POSIX #include <pthreads.h>
n Many types, macros and routines for threads, locks,

other synchronization mechanisms

n We will take a closer look at Java
Programming Languages CSCI 4430, A. Milanova

14

Lecture Outline

n Intro to Concurrency

n Our focus: concurrency in Java
n Threads
n Synchronized blocks
n The Executor framework
n What can go wrong with threads?

Programming Languages CSCI 4430, A. Milanova

15

Threads

n Java has explicit support for multiple threads
n Two ways to create new threads:

n Extend java.lang.Thread
n Override “run()” method

n Implement Runnable interface
n Include a “run()” method in your class

n Starting a thread
n new MyThread().start();
n new Thread(runnable).start();

n Abstracted away by Executor framework
Programming Languages CSCI 4430, A. Milanova

16

Terminology

n Concurrent programming with shared memory is
about managing shared mutable state
n Shared state – memory locations that can be accessed

by multiple threads
n Mutable state – the value of a location could change

during its lifetime
n Atomic action – action that executes on the

machine as a single indivisible operation
n E.g., read the value of variable i is atomic
n E.g., write the value of variable i is atomic
n E.g., i++ is not atomic

Programming Languages CSCI 4430, A. Milanova

17

What Can Go Wrong?
class Account {
int balance = 0;
void deposit (int x) {
this.balance = this.balance + x;

}
}

class AccountTask implements Runnable {
public void run() {
Main.act.deposit(10);

}
}

public class Main {
static Account act = new Account();
public static void main(String args[]) {
new Thread(new AccountTask()).start(); // Thread A
new Thread(new AccountTask()).start(); // Thread B

}
}

Account object is shared mutable state.

18

What Can Go Wrong?

Thread A: Thread B:
r1 = act.balance
r1 += 10
act.balance = r1 r2 = act.balance

r2 += 10
act.balance = r2

Programming Languages CSCI 4430, A. Milanova

19

A Common Bug: Race Condition

n New types of bugs occur in concurrent
programs; race conditions are the most
common

n A data race (a type of race condition) occurs
when two threads can access the same
memory location “simultaneously” and at
least one access is a write

x=0 if (x!=0)

Thread A: Thread B:

true-part

Programming Languages CSCI 4430, A. Milanova

20

A common bug: Race Condition
n Check-and-act data race (common data race)

if (instance==null)
instance = new …

public class LazyInitRace {
private ExpensiveObject instance = null;
public ExpensiveObject getInstance() {
if (instance == null)
instance = new ExpensiveObject();

return instance;
}

} Thread A: Thread B:

The two callers (in thread A and thread B) could
receive distinct instances although there should be only one instance

if (instance==null)
instance = new …

21

synchronized Block

n One mechanism to control the relative order
of thread operations and avoid race
conditions, is the synchronized block

n Use of synchronized:

synchronized (lock) {
// Read and write of shared state

}

lock is a reference to an object

Critical sectionProgramming Languages CSCI 4430, A. Milanova

22

synchronized Method
n One can also declare a method as synchronized:

synchronized int m(String x) {
// blah blah blah

}

equivalent to:

int m(String x) {
synchronized (this) {
// blah blah blah
}
}

23

synchronized Blocks

n Every Java object has a built-in intrinsic lock
n A synchronized block has two parts

n A reference to an object that serves as the lock
n Block of code to be guarded by this lock

n The lock serves as a mutex (or mutual
exclusion lock)
n Only one thread can hold the lock
n If thread B attempts to acquire a lock held by

thread A, thread B must wait (or block) until
thread A releases the lock

Programming Languages CSCI 4430, A. Milanova

24

How Do We Make Account “Safe”?
class Account {
int balance = 0;
void deposit (int x) {
this.balance = this.balance + x;

}
}

class AccountTask implements Runnable {
public void run() {
Main.act.deposit(10);

}
}

public class Main {
static Account act = new Account();
public static void main(String args[]) {
new Thread(new AccountTask()).start(); // Thread A
new Thread(new AccountTask()).start(); // Thread B

}
}

Account object is shared mutable state.

25

Use Synchronized
n To make Account “safe”, make deposit synchronized

n synchronized void deposit(int x) { … }

Thread A:
synchronized (this) {

r1 = balance
r1 += 10
balance = r1 Thread B:

} synchronized (this) {
r2 = balance
r2 += 10
balance = r2

}

this refers to global Account object

Programming Languages CSCI 4430, A. Milanova

26

Using Synchronized Blocks

n Synchronized blocks help avoid data races

n Granularity of synchronized blocks
n Synchronized blocks that are too long (i.e.,

coarse grained locking) sacrifice concurrency
and may lead to slowdown

n Force sequential execution as threads wait for locks
n Synchronized blocks that are too short (i.e., fine

grained locking) may miss data races!
n Synchronization can cause deadlock!

Programming Languages CSCI 4430, A. Milanova

27

Question

n In this code example, does lock guarantee
that no two threads ever execute the critical
section “simultaneously”?

synchronized (lock) {
// Read and write of shared state

}

Programming Languages CSCI 4430, A. Milanova

28

Question

n Sequential code:
List data = new ArrayList();
if (!data.contains(p)) {

data.add(p);
}

n Concurrent code, shared mutable state data:
List data = new ArrayList() created in
main thread
n if (!data.contains(p)) {

data.add(p);
} is executed by multiple threads

29

Implementing data Safely

n One attempt is to use Synchronized Collections
(since Java 1.2)
n Created by Collections.synchronizedXYZ methods

n E.g., List data =
Collections.synchronizedList

(new ArrayList());

n All public methods are synchronized on this

n Even if data is a synchronized List, code still not right.
What can go wrong?

Programming Languages CSCI 4430, A. Milanova

30

n Concurrent Collections (since Java 1.5)
n E.g., ConcurrentHashMap

n Provide additional atomic operations
n E.g., putIfAbsent(key, value)

n Implement different, more efficient (concurrent)
synchronization mechanisms

Implementing data Safely

Programming Languages CSCI 4430, A. Milanova

31

Lecture Outline

n Intro to Concurrency
n Concurrency in Java

n Threads
n Synchronized blocks
n The Executor framework
n What can go wrong with threads?

Programming Languages CSCI 4430, A. Milanova

32

Organizing Concurrent Applications

n One way to organize concurrent programs:
n Organize program into tasks
n Identify tasks and task boundaries

n Tasks should be as independent of other tasks as
possible

n Ideally, tasks do not depend on mutable shared state and do
not write mutable shared state

n If there is mutable shared state, tasks should be
synchronized appropriately!

n Each task should be a relatively small portion of the
total work

Programming Languages CSCI 4430, A. Milanova

33

Sequential Task Execution

n Web server

n What problems do you see here?

public class SingleThreadedWebServer {
public static void main(String[] args)

throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {
Socket connection = socket.accept();
handleRequest(connection);

}
}
}

Programming Languages CSCI 4430, A. Milanova

34

Explicit Threads for Task Execution
public class ThreadPerTaskWebServer {
public static void main(String[] args)

throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {
Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() {
handleRequest(connection);

}
};
new Thread(task).start();

}
}
}

35

The Executor Framework

n Part of java.util.concurrent (Java 1.5)
n Flexible thread pool implementation

n High-level abstraction: Executor, not Thread
n Decouples task submission from task execution

n E.g., Executor e managers a thread pool of 3
threads A B Ce.g., Executor e = …

e.execute(t1);
e.execute(t2);
e.execute(t3);
e.execute(t4);
e.execute(t5);
e.execute(t6);

time

t1 t2
t3

t4 t5

t6

task submission

task execution

36

Using Executor for Task Execution
public class TaskExectorWebServer {
private … Executor e = Excutors.newFixedThreadPool(3);
public static void main(String[] args)

throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {

Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() {
handleRequest(connection);

}
};

e.execute(task); // Task submission,
} // Decoupled from task execution

}
}

Programming Languages CSCI 4430, A. Milanova

37

So… What Can Go Wrong?

n New types of bugs occur in concurrent
programs
n Race conditions
n Atomicity violations
n Deadlocks

n There is nondeterminism in concurrency,
which makes reasoning about program
behavior extremely difficult

Programming Languages CSCI 4430, A. Milanova

So… What Can Go Wrong?

n Therac 25
n 2003 Northeast blackout:

38Programming Languages CSCI 4430, A. Milanova

So… What Can Go Wrong?

n 2003 Northeast blackout:

39Programming Languages CSCI 4430, A. Milanova

So… What Can Go Wrong?

n 2003 Northeast blackout:

40Programming Languages CSCI 4430, A. Milanova

41

What Can Go Wrong?
Class Vector (Java 1.1’s ArrayList)
class Vector {

private Object elementData[];
private int elementCount;

synchronized void trimToSize() { … }
synchronized void removeAllElements() {

elementCount = 0; trimToSize(); }
synchronized int lastIndexOf(Object elem, int n) {
for (int i = n; --i > 0;)

if (elem.equals(elementData[i])) return i;
return -1;

}
int lastIndexOf(Object elem) {
int n = elementCount;
return lastIndexOf(elem, n);

}
…
}

42

What Can Go Wrong?
Class Vector (Java 1.1)

Thread A: Thread B:

removeAllElements lastIndexOf(elem)
elementCount=0 n=elementCount
trimToSize
…elementData=…

lastIndexOf(elem,n)
…elementData[i]…

There is a data race on elementCount:

Will raise an exception because elementData
has been reset by thread A.Programming Languages CSCI 4430, A. Milanova

43

What Can Go Wrong?
ArrayList seen = new ArrayList(); // seen is shared state

…
void search(Node node) {

…
Runnable task = new Runnable() {

public void run() {
…
synchronized (this) { // synchronize access to seen

if (!seen.contains(node.pos))
seen.add(node.pos);

else return;
}
// check if current node is a solution
…
// compute legal moves, call search(child)
…

}
};
e.execute(task);

}

44

What Can Go Wrong?
java.lang.StringBuffer (Java 1.4)
public final class StringBuffer {
private int count;
private char[] value;

. .
public synchronized StringBuffer append(StringBuffer sb)
{

if (sb == null) sb = NULL;
int len = sb.length();
int newcount = count + len;
if (newcount > value.length) expandCapacity(newcount);
sb.getChars(0, len, value, count);
count = newcount;
return this;

}

public synchronized int length() { return count; }

public synchronized void getChars(. . .) { . . . }
}

n Method append is not “atomic”:

45

Thread A: Thread B:

sb.length()

sb.delete(…)

sb.getChars()

What Can Go Wrong?
java.lang.StringBuffer (Java 1.4)

Will raise an exception because sb’s value
array has been updated by thread B.

Programming Languages CSCI 4430, A. Milanova

46

Atomicity Violation

n Method StringBuffer.append is not ”atomic”
n Informally, a method is said to be atomic if its
“sequential behavior” (i.e., behavior when method
is executed in one step), is the same as its
“concurrent behavior” (i.e., behavior when method
is interrupted by other threads)
n A method is atomic if it appears to execute in “one step”

even in the presence of multiple threads
n Atomicity is a stronger correctness property than

race freedom

Programming Languages CSCI 4430, A. Milanova

47

Using Synchronization

n Lock-based synchronization helps avoid race
conditions and atomicity violations
n But synchronization can cause deadlocks!

n Lock granularity
n Synchronized blocks that are too long (i.e.,

coarse grained locking) sacrifice concurrency
and may lead to slow down

n Force sequential execution as threads wait for locks
n Synchronized blocks that are too short (i.e., fine

grained locking) may miss race conditions!
Programming Languages CSCI 4430, A. Milanova

Concurrent Programming is Difficult

n Concurrent programming is about managing
shared mutable state
n Exponential number of interleavings of thread

operations

n OO concurrency: complex shared mutable state
n Defense: design principles to reduce complexity
n Defense: immutable classes, objects, or references
n Defense: avoid representation exposure

48Programming Languages CSCI 4430, A. Milanova

The End

49

