!'_ Final Exam Review

Announcements

m Quiz 9

= Check your Rainbow grades
= Exams 1-2, Quiz 1-8, HW 1-5 are in

« We'll have HW 6 and Quiz 9 by tomorrow and
we’ll have HW 7 as soon as possible, likely by
Wednesday

= Let me know if you see any problems

Programming Languages CSCI 4430, A. Milanova

Announcements

= Final exam
= Thursday December 15t 6:30pm to 9:30pm
= Darrin 308 and 318. Assigned seating zones.
= 0 pages crib sheet

= Instructors and TAs office hours Monday through
Thursday. No Mentor office hours.

= | will post an announcement on Submitty

Final Exam is Cumulative

Programming Language Syntax (Ch. 2.1-2.3.3)
Logic Programming and Prolog (Ch. 12)

Scoping (Ch. 3.1-3.3)

Programming Language Semantics (Sc. Ch. 4.1-4.3)
Functional programming (Ch. 11)

= Scheme and Haskell, map/fold questions
Lambda calculus (Ch. 11 Companion)

Data abstraction: Types (Ch. 7, 8)

Control abstraction: Parameter Passing (Ch. 9.1-9.3)
Object-oriented languages (10.1-10.2)

Concurrency (13.1). “What can go wrong?” questions

= Comparative Programming Languages

Programming Languages CSCI 4430, A. Milanova

Exam 1 Topics

= Formal languages (Lecture 2 plus chapters)
= Regular languages

. Regular exgressions
= DFAs

= Use of regular languages in programming languages

=« Context-free languages
=« Context-free grammars

= Derivation, Earse; am@ﬁl y

= Use of CFGs in programming languages

« EXpression grammars, precedence, and associativity
m

Programming Languages CSCI 4430, A. Milanova

Exam 1 Topics

= Parsing (Lecture 3 plus chapters)

= LL Parsing (Lectures 3 and 4 plus chapters)

= Recursive-descent parsing, recursive-descent
routines

« LL(1) grammars

=« LL(1) parsing tables

« FIRST, FOLLOW, PREDICT
= LL(1) conflicts

Programming Languages CSCI 4430, A. Milanova

Exam 1 Topics

= Logic programming concepts (Lecture 5 plus
chapters
= Declarative programming
= Horn clause, resolution principle

= Prolog (Lectures 5, 6, and 7 plus chapters)

= Prolog concepts: search tree, rule ordering,
unification, backtracking, backward chaining

= Prolog programming: lists and recursion,
arithmetic, backtracking cut, negation-by-failure,

generate-and-test

Programming Languages CSCI 4430, A. Milanova

Exam 1 Topics

= Binding and scoping (Lecture 8 plus reading)
= Object lifetime
= Combined view of memory
= Stack management
-

= Scoping (in languages where functions are third-
class values)

« Static and dynamic links

ﬁ

» Static (lexical) scoging

=« Dynamic scopin
Prograsmmimg EamgUares Cot ! aao0,; moniemeve

Exam 1 Topics

= Attribute grammars
= Attributes

= Attribute rules
= Bottom-up (i.e., S-attributed) grammars

Programming Languages CSCI 4430, A. Milanova

Exam 2 Topics

= Scheme (Lectures 12 and 13, plus chapters)
= S-expression syntax
» Lists and recursion
= Shallow and deep recursion
= Equality
« Higher-order functions

= map, foldl, and foldr
~= Programming with map, foldl, and foldr
= Tall recursion

@

Programming Languages CSCI 4430, A. Milanova

10

Exam 2 Topics

= Scheme (Lecture 14, plus chapters)

= Binding with let, let*, letrec

= Scoping in Scheme

= Closures and closure bindings
’-——_'—_§

Programming Languages CSCI 4430, A. Milanova

11

Exam 2 Topics

= Scoping, revisited (Lecture 15, plus chapters)

« Static scoping
= Reference environment
= Functions as third-class values vs.
= Functions as first-class values
= Dynamic scoping
« With shallow binding
« With deep binding

Programming Languages CSCI 4430, A. Milanova 12

Exam 2 Topics

= Lambda calculus (Lectures 15, 16, 17)
= Syntax and semantics
= Free and bound variables
= Substitution
= Rules of the Lambda calculus

== Alpha-conversion o

= Beta-reduction
= Normal forms
— . .
= Reducti Ies

= Fixed-point combinator and recursion

&

13

Topics

= Haskell (Lectures 19, 20, and 21)
= Basic sxntax

= Algebraic data types

e
» Pattern matching

F.
= Lazy evaluation

= Types and type inference

= Basics of type classes

e
= Maybe and List monads

/—__—_—_§

Programming Languages CSCI 4430, A. Milanova

14

Topics

= Data abstraction and types (Lecture 22, 23)
= Types and type systems
= Type equivalence
= TypesinC

F

Programming Languages CSCI 4430, A. Milanova

15

Topics

s Parameter Qassmg mechanisms (Lecture

24 Part1)
= Call by value

= Call by reference

f

= Call by value-result
o = = = =S

= Call by name
p—

« Call by sharing
—

Programming Languages CSCI 4430, A. Milanova 16

Topics

= Object-oriented languages and polymorphism

(Lecture 24 Part2)

= Subtype polymorphism

= Parametric polymorphism
= EXplicit parametric polymorphism
= Implicit parametric polymorphism

Programming Languages CSCI 4430, A. Milanova

17

Topics

= Concurrency in Java (Lecture 25)
= Threads and tasks
= Synchronized blocks

= Concurrency errors
« Data races
« Atomicity violations

Programming Languages CSCI 4430, A. Milanova

18

Practice Problems

Dyn. with shallow binding: 100 (55 Z{lwgﬁ
Dyn. with deep binding: 101 (

® print_routine(i : integer) .
Wan

5 K
buds b y 1o lAa.{L)

X : integer := 1

write_integer (i+x)

P

procedure A(n : integer, P : procedure)
if n < 100
¢ B(nt+1, P)
else

P(n)
el

e f“ -

procedure B(m : integer, P : procedure)
X : integer := 0
eA(m, P)

' (ot
e F e
/* begin of main */ 3&4@0 6&C(ﬂ:? e L_’_
—» A(0, print_routine) A - -
/* end of main */ deef 'én‘d’"ﬁ ' - 19

Practice Problems

Consider the problem of figuring out whether
two trees (lists in Scheme) have the same
fringe, that is, the same leaves, in the same
order, regardless of structure. E.g., ((1 2) 3)
and (1 (2 3)) have the same fringe. What is a
straight-forward way to solve this problem?

Flatten, then compare with equal?

[Q?ucz(7 (/{&/7[% (11) (7@{4/‘/80 ﬂJZ_]/

Programming Languages CSCI 4430, A. Milanova

Practice Problems (Quiz 7)

type Name = String o 57094 7(’&4
data Expr = Var Name (EC] o) =

Val Bool L(OL é)j'—"
And Expr Expr

Or Expr Expr

Not Expr

Let Name Expr Expr

Fill in the type signature of find:

-- Looks up variable n in binding environment env.

-- Returns first binding or throws Exception if no binding of n.

-- Ex: find "x" [("x",True),("x",False),("y",True)] returns True
-find - Name -> [(Name,Bool)] -> Bool

~find n env = head [bool | (var,bool) <- env, var == n] 21

Practice Problems (Quiz 7)

Fill in the Or and Let arms of eval.:
-- Purpose: evaluates expression e in binding environment env
-- Returns the boolean value of e or throws an Exception
-- Ex.: eval (Var "x") [("x",True),("x",False)] returns True
eval :: Expr -> [(Name,Bool)] -> Bool
eval e env =

case e of

Var n -> find n env

Valb->Db

And e1 e2 -> (eval e1 env) && (eval e2 env)
Orel e2 -> (evalelenv)]|(evale2env)

Not e1 -> not (eval e1 env)
—p Letn el e2-> evale2{(n,(eval e env)):env) 22

Practice Problems

In programming languages types and type
checking

@ Prevent runtime errors

) Abstract data organization and
implementation

) Document variables and subroutines
@ All of the above

Programming Languages CSCI 4430, A. Milanova

23

Practice Problems

Let A denote all syntactically valid programs.
Let S denote all syntactically valid programs
that execute without forbidden errors. Let T
denote all programs accepted by certain type-
safe static type system. Which one best
describes the relation between T, S and A?

a) T CSC

(b) TCSCA

(c) T cS KA

(d) TCS XA 24

a.lbf(a]..t‘ n f X =
Cont. if (c=20) Yo x elre (apply-u (v-2) f (o))
Eq a; Mo o =D @_‘2—9(l‘arb?—-aéf-iém

é /’/’ /] / ' + _'L Trme k
~ A: All programs =

/

X Ty/).e erfor

- All programs that run withou
forbidden errors

T: All programs accepted by a
type-safe static type system

Programming Languages CSCI 4430, A. Milanova 25

Practice Problems

Again, let S denote all syntactically valid
programs that execute without forbidden errors.

Let T’ denote all programs accepted by certain
type-unsafe static type system.

T'Z S is
(a) true

(b) false

Programming Languages CSCI 4430, A. Milanova 26

Cont.

A: All programs

S: All programs that run without
forbidden errors

//r'T All programs accepted by a
type-unsafe static type system

Programming Languages CSCI 4430, A. Milanova

27

Practice Problems

int w[10] () is an invalid declaration in C.

Why? w7 ()
Léj- ' (AR bi;&f(‘cy
L J -
(a) true s ts jz %)
(b) false Y

In C, functions are third-class values. Thus, we cannot
pass a function as argument, return a function as a
result, or assign a function value to a variable, or structure.

Programming Languages CSCI 4430, A. Milanova

Practice Problems

w In declaration int (*w[10]) () IS
@) A function

) An array
) A pointer

Programming Languages CSCI 4430, A. Milanova

29

Practice Problems (Quiz 8)

tEU. = AT N @
pair = Af.As.Ab. b f s
fst = Ap.ptru

= Question1.tru v w ->, v
= Question 2. pair v w ->, Ab. b v w
= Question 3. £st (pair v w) ->, v

Programming Languages CSCI 4430, A. Milanova

30

Practice Problems (Quiz 8)

// Type declarationms:
type A = arrgy [1..5] of int AMQ!}

type B »7aryay [1..5] of int AWONZ
type @ = A
&= -
// Variable declarations:
a : A
b : B
¢ : G

Question 4. (1pts) a,b and c are of equivalent type according to structural equivalw
Question 5. (1pts) a and b are of equivalent type according to loose name equz’valen%@?
Question 6. (1pts) a and c are of equivalent type according to loose name equiva“%

Question 7. (1pts) a and c are of equivalent type according to strict name equ%@
31

Practice Problems (Quiz 9)

W"’ w)awwﬁ

typedef struct{lnt I; char c; } huge_record,;
el

void const_is_shallow(
const huge_record* const r) { /i
int *x = r->1; // or just *(r->1) = 0; |
*x =0;
}

Is this a compile time error?
No.

32

Practice Problems (Quiz 9)

c : array [1..2] of integer
m : integer By nase: By velye-veslt

procedure R(k,j : 1nteger) @)
k 1= k+l wiztaed / .K".@Kf’ 3
1= je2 eCaTes ez R HZ LS
I R (P, euT)

/* begin main */ BU value: 4,1

c[1] := 1 Boref: 2,2

c(2) =73 B vatieres 2,3 ¢
m:= Y% By rawe: 2,4 01

R(Ln’, C_[a]

write m, lc[—m]

/* end main */

33

Practice Problems (Quiz 9)

Question 7. Consider the C++ code:
bar x;

bar y = x;

Aty = x C++ calls

(b) copy constructor bar: :bar (baré&)

Programming Languages CSCI 4430, A. Milanova

34

Practice Problems (Quiz 9)

Question 8. Consider the C++ code:
bar x, vy,

Y = X,

b]

Aty = x C++ calls

(a) assignment operator
bar: :operator=(baré&)

Programming Languages CSCI 4430, A. Milanova

35

Practice Problems (Quiz 9)

Question 9. Now suppose this was Java code:
bar x, vy,

y = X;

Aty = x Java calls

(b) neither

Programming Languages CSCI 4430, A. Milanova

36

Practice Problems (Exam 1)

Question 2. (Grammars, ambiguity, and precedence. 20pts) Consider the following expression grammar
over terminal symbols a, b, |, *, (and). Note: | is a terminal symbol in the language and appears in

quotes as ’ | ?, so that not to be confused with the rule separator |.

S — R
R - R’I’R | RR | R* | a | b | (R)

(iv) (8pts) Let’s call the language generated by the grammar £. Construct an equivalent unambiguous
grammar such that all operations are processed according to the standard conventions of £. Hints: In
this question, you do need to add nonterminals and productions as we did in class and in homework,
assuming bottom-up interpretation of the tree. Recall that according to standard convention of E#
has lowest precedence, * has highest precedence, and all binary operations are left-associative.

§— R

R~ B 1% [2

Ea"’ R-QK),/KL

Re=> & [a [6] (R)

Programming Languages CSCI 4430, A. Milanova

37

Practice Problems (Exam 2)

Question 3. (Attribute grammars over the Lambda calculus, 25 pts). Recall the context-free grammar
that defines the syntax of the Lambda calculus:

E - =z Variable
E — (Ax.E) Abstraction
E — (EE) Application

(i) (10 pts) Write an attribute grammar that associates an integer attribute r with each E, such that
r holds the number of reducible expressions in F.

E X E.r-0 CE.abs= fale
E- (M E,) E.roE,.r €E.abs = True

E'_’(El EL) &’AP‘J E,.l‘+£,_.f‘
E.r- {‘uq,oM tj E..cbs ==Tre ehe fl«p
E.abs- Falic

Programming Languages CSCI 4430, A. Milanova 38

Practice Problems (Exam 2)

Question 3. (Attribute grammars over the Lambda calculus, 25 pts). Recall the context-free grammar
that defines the syntax of the Lambda calculus:

E - =z Variable
E — (Ax.E) Abstraction
E — (EE) Application

(ii) (15 pts) Write an attribute grammar that removes redundant parentheses. Assume the syntactic
convention we used in class: (i) application is left associative and (ii) application has higher precedence
than abstraction. As an example, (Az. (z (z y))) will turn into A\z. = (z y).

E — X £ .vel= X.vel [A‘Cauu&r) E./,r;._.z
E'ﬁ (X)(g\) E.Va,(,c)‘)(.Vk{@ E,-V&L E,/bf‘zz:o

L &, Ey) 0pd = ""® E,.vel® ") '17[Eﬂ.,wki else £ el
bpL ‘("D EAD) if Eyprigs el L, .vd

E.val = op1 @ 1;02 6.,w£—=.£

Programming Languages CSCI 4430, A. Milanova 39

Practice Problems (Exam 2)

Question 4. (Scheme programming, 15 pts). Consider the following Scheme function.

;; requires: (= (length 1lis) n)
(define (fun 1lis n)
(if (zero? n) 'Q
(let ((arg (append (cdr lis) (list (car 1lis)))))
(cons 1lis (fun arg (- n 1))))))

(,/ua I(a be) 3) = ((aéc,) (6ca) (caé))

(defive (fuu_ toil bs acc)
Ca,j (2e00? W) tuec
(b o (apposct (e) (o (e 1))
(,fuu--ﬁa)«l/ arg (—hi) [af/md ace (lLst &S))))

)
/

Programming Languages CSCI 4430, A. Milanova

Thanks!

Kaipés e, Lanbds Calbulin
W
(YF)=(F (YF))

(YF)=(F(YF)

YB=F{F)

M

Modified from: https://en.wikipedia.org/w/index.php?curid=12675230

@ Nx

Source: https://users.cs.northwestern.edu/~robby/logos/ Source: https://www.numi.tech/software-logos/haskell

41

