Programming Language Syntax:

!'_ Scanning and Parsing

Read: Scott, Chapter 2.2 and 2.3.1

Lecture Outline

x Quiz 1
= Overview of scanning
= Overview of top-down and bottom-up parsing

= [op-down parsing
= Recursive descent
« LL(1) parsing tables

Programming Languages CSCI 4430, A. Milanova

Scanning

= Scanner groups
characters into tokens

= Scanner simplifies the
job of the parser

id

position = initial + rate * 60;

|

Scanner

id + id * num ;

Parser

!

= Scanner is essentially a Finite Automaton
= Regular expressions specify the syntax of tokens
= Scanner recognizes the tokens in the program

Programming Languages CSCI 4430, A. Milanova

Preprocessor

Pu;/ e
) &uaukc ”“0172{,

K

-

—_—
Programming Languages CSCI 4430, A. Milanova

(ﬁm‘rtlu

(4 f\
b

p”/ﬂocauor +oloxer

IbQ(‘ Ser

J Qﬂ«au fie e ((]

/ O oo

Calculator Language

s [okens
times — * /| ¥ is a character fn cofovlahr Lauguege

plus — +
id — letter (letter | digit) * /(* & fle Kewe sor

except for read and write which are
keywords (keywords are tokens as well)

Programming Languages CSCI 4430, A. Milanova

Ad-hoc (By hand) Scanner

skip any initial white space (space, tab, newline)
if current_ charin{+, *}
return corresponding single-character token (plus or times)

iIf current_char is a letter
read any additional letters and digits
check to see if the resulting string is read or write

if so, then return the corresponding token
else return id

else announce an ERROR

Programming Languages CSCI 4430, A. Milanova

The Scanner as a DFA

space, tab, newline
Start @ p

*
letter)

@ letter, digit

Programming Languages CSCI 4430, A. Milanova

Building a Scanner

= Scanners are (usually) automatically
generated from regular expressions:

Step 1: From a Regular Expression to an NFA
Step 2: From an NFA to a DFA
Step 3: Minimizing the DFA

= lex/flex utilities generate scanner code

= Scanner code explicitly captures the states
and transitions of the DFA

Programming Languages CSCI 4430, A. Milanova

Table-Driven Scanning

cur_state := 1
loop
read cur_char
case scan_tab[cur_char, cur_state].action of
moVve:

cur_state = scan_tab[cur_char, cur_state].new_state
recognize: // emits the token

tok = token tab[current_state]

unread cur_char --- push back char

exit loop
error:

Programming Languages CSCI 4430, A. Milanova

Table-Driven Scanning

8y - fab foreu.

space,tab,newline * + digit letter othe tob
S 2 3 - 4 -
- - - - - - times

- - - - - - plus
- - - 4 4 - id

A W N -

S S - - - - - space

Sketch of table: scan _tab and token tab. See
Scott for details.

Programming Languages CSCI 4430, A. Milanova 10

Today's Lecture Outline

= Overview of scanning
s Overview of top-down and bottom-up parsing

= [op-down parsing
= Recursive descent
« LL(1) parsing tables

Programming Languages CSCI 4430, A. Milanova 11

A Simple Calculator Language

asst_stmt — id = expr //asst_stmt is the start symbol
expr — expr + expr | expr * expr| id

Character stream: position = initial + rate * time

l

Scanner

1 Token stream: id = id + id * id

Parser
| Parse tree:

CSCI 4430, A. Milanova

asst _stmt

—1

id = expr

(Parse tree simplified to fit on slide.)

12

A Simple Calculator Language

asst_stmt — id = expr // asst_stmt is the start symbol
expr — expr + expr | expr * expr| id

Character stream: position + initial = rate * time

l

Scanner
1 Token stream: id +

Parser

1 Parse tree: Token stream is ill-formed according to our grammair,
parse tree construction fails, therefore Syntax error!

Most compiler errors occur in the parser.

Programming Languages CSCI 4430, A. Milanova 13

Parsing

= Given an arbitrary CFG, one can build a
parser that parses a string of length n in
(essentially) O(n?)
= Well-known algorithms

= But O(n?®) time is unacceptable for a parser in
a compiler!

Programming Languages CSCI 4430, A. Milanova 14

Parsing

= ODbjective: build a parse tree for an input
string of tokens from a single scan of input
= Only special subclasses of context-free
grammars (LL and LR) can do this
= Two approaches

= [Top-down: builds parse tree from the root to the
leaves

=« Bottom-up: builds parse tree from the leaves to
the top

= Both are easily automated

Programming Languages CSCI 4430, A. Milanova 15

Grammar for Comma-separated Lists

list — id list _tail //list is the start symbol
list tail — , idlist tail | ;

Generates comma-separated lists of id’s.
E.g.,id ; id, id, id ;

Example derivation: P“Zf;w:
list = id list_tail LT Dkt
— id , idlist tail , L ol

/
)

Programming Languages CSCI 4430, A. Milanova 16

—>1id , 1id ;

list — id list_tail

Top-down Parsing | iist_tail —» , idlist tail | ;

: _ £, ou L_fff e d cf_{ e:(/)a,uc/ bé"
= Terminals are seen inthe Y i — id Lut_tail.

order of appearance in //Ist\
the token stream iq st tail
id , id , id ; T
I T T ;. id st tai
= [he parse tree is constructed T

, id list_tail
= From the top to the leaves |

= Corresponds to a leftmost derivation

= Look at leftmost nonterminal in current sentential
form, and lookahead terminal and “predict” which
production to apply

17

list — id list_tail

Bottom-up Parsing st tail -, id/ist_tail | ;

= [erminals are seen in the
list

order of appearance in the
token stream id list_tail
1d / 1d y 1d " ﬂ\
L A T i st
= [he parse tree is constructed ﬂ_ta,-,

= From the leaves to the top |

= A rightmost derivation in reverse

Two laiv poarses ackions:
I Jlgf# foxen o pars free aund advatice ﬂfut /Joit«/-en
2. reduw wodet Db Adermediate wods . E.\?. , id Guattail redu

ﬂ'fﬁ’ U—‘/— fdi[, . 18

Programming Languages CSCI 4430, A. Milanova

Today's Lecture Outline

= Overview of scanning
= Overview of top-down and bottom-up parsing

= [op-down parsing
= Recursive descent
« LL(1) parsing tables

Programming Languages CSCI 4430, A. Milanova 19

Top-down Predictive Parsing

= “Predicts” production to apply based on one
or more lookahead token(s)

= Predictive parsers work with LL(k) grammars

= First L stands for “left-to-right” scan of input

= Second L stands for leftmost derivation
= Parse corresponds to leftmost derivation

= k stands for “need k tokens of lookahead to
predict’

= We are interested in LL(1)

Programming Languages CSCI 4430, A. Milanova 20

_ list — id list tail
Question list tail - , idlist tail | ;

= Can we always predict (i.e., for any input)
what production to applies, based on /ist

one token of lookahead? iq st tail
id , 1d , id ; Py
T T T T 54 list tai
= Yes, there is at most one choice T

(i.e., at most one production applies) /o 1d /’Sf'_fal/

= This grammaris an LL(1) grammar

Programming Languages CSCI 4430, A. Milanova 21

_ list — list _prefix ;
Question list_prefix — list_prefix , id | id

= A new grammar
= What language does it generate?

= Same, comma-separated lists list
= Can we predict based on one list_prefix
token of lookahead”? o
/UO. Seefﬁ f)ql, f:ar&cr hes
id , id , id ; mua\u/%[kwow%ww‘/?ef&
JT ds o Ui} aj i, i, id... o
Juwt id,

Gmwwqr-:s- wi L(1).

Programming Languages CSCI 4430, A. Milanova 22

Top-down Predictive Parsing

= Back to predictive parsing

= “Predicts” production to apply based on one
or more lookahead token(s)

= Parser always gets it right!

= There is no need to backtrack, undo expansion,
then try a different production

= Predictive parsers work with LL(k) grammars

Programming Languages CSCI 4430, A. Milanova 23

Top-down Predictive Parsing

expr — expr + expr: Y417

= Expression grammar: | eXpr * expr: tawe |
ND awé 0wl grawie. |id

= Not LL(1) ™75 d
m Unamblguous version: | expr — expr + term | term

_ term —»term * id | id
= Still not LL(1) Why?Qie‘lj id (L M dkidwid), thee 1
Qe o 7£

I(Lw(ollﬁ wheter b &Wahel b(y

ex(,om-%erm or ferm.

expr — term term _tail
= LL(1) version: term_tail — + term term_tail | e
term — id factor tail

factor tail - * id factor tail |

¢ Liwiiuades (2// reCursion.

Programming Languages CSCI 4430, A. Milanova 24

expr — term term _tail

1 term_tail — + term term tail | €
Exe rciSe term — id factor tail
factor tail — * id factor tail |

= Draw parse tree for expression

id, + id * id + id
s ferus, Ferns

ey
P tesu, 7 ?rw_ tail
od 7{01(!0;0_ tail + /.,Q!m,_ \QNM_ fe |

7 N\
Z' (}J,/fa!#or_'fail/ + ferur, . fail

N\
" /L!L 7aci‘0r_/ul ii 7[Du‘0r- fsl 2
: ;

Programming Languages CSCI 4430, A. Milanova

Recursive Descent

= Each nonterminal has a procedure

= The right-hand-sides (rhs) of productions for
that nonterminal form the body of its
procedure

= lookahead()

= Peeks at current token in input stream

N matCh(t) JZ‘C‘U(S, &/’:r advaces fe D‘/M /boba/ll‘.
= if lookahead() ==t then consume current token,

else PARSE_ERROR

Programming Languages CSCI 4430, A. Milanova 26

Recursive Descent

start — expr $$
expr — term term_tail term tail — + term term tail | e
term — id factor tail factor tail - * id factor tail | e
start()
case lookahead() of
id: expr(); match($$) ($$ - end-of-input marker)

otherwise PARSE_ERROR

expr()
case lookahead() of
id: term(); term_tail()
otherwise PARSE_ERROR

term_tail() Predicting production term_tail — + term term_tail
case look
+: match('+’); term(); term_tail()
$$: skip - Predicting epsilon production term_tail — €

otherwise: PARSE_ERROR 27

Recursive Descent

start — expr $$

expr — term term_tail term tail — + term term tail | e
term — id factor tail factor tail - * id factor tail | e
term()

case lookahead() of
id: match(‘id’); factor_tail()
otherwise: PARSE _ERROR

factor_tail()
case lookahead() of
: match(‘"); match(‘id’); factor_tail();
+,8$: skip
otherwise PARSE_ER Predicting production factor _tail — €

Predicting production factor _tail — *id factor _tail

Programming Languages CSCI 4430, A. Milanova 28

LL(1) Parsing Table

= But how does the parser “predict™?

=« E.g., how does the parser know to expand a
factor tail by factor tail — € on + and $$7?

= It uses the LL(1) parsing tab

= One dimension is nontermina

= Other dimension is lookahead

e
to expand
token

= We are interested in one token of lookahead

« Entry “nonterminal on token” contains the
production to apply or contains nothing

Programming Languages CSCI 4430, A. Milanova

29

LL(1) Parsing Table

= One dimension is nonterminal to expand
= Other dimension is lookahead token
a

A a

= E.g., entry "nonterminal A on terminal a”
contains production A - a

Meaning: when parser is at nonterminal A and

lookahead token is a, then parser expands A

by production A - @ %

LL(1) Parsing Table

start — expr $$
expr — term term_tail
term — id factor tail

term tail — + term term tail | e
factor tail - * id factor tail | e

id + * $9
start expr $$ -)]
expr term term_tail |- - -
term _tail - + term term tail | - £
term id factor tail |- . -

factor tail

* id factor tail

Programming Languages CSCI 4430, A. Milanova

31

Question

* Fill inthe LL(1) parsing table for the comma-
separated list grammar

start - list $$
list —» id list tail
list tail - , id list tail | ;

id , ; $S
start list §$ - _ -
list id list tail - - _
list tail - , id list tail ; -

Programming Languages CSCI 4430, A. Milanova 32

The Enad

Programming Languages CSCI 4430, A. Milanova

33

