Programming Language Syntax: Top-down Parsing

Read: Scott, Chapter 2.3.2 and 2.3.3

Lecture Outline

- Top-down parsing (also called LL parsing)
- LL(1) parsing table
- FIRST, FOLLOW, and PREDICT sets
- LL(1) grammars
- Bottom-up parsing (also called LR parsing)
- A brief overview, no detail

Recursive Descent

start \rightarrow expr \$\$
expr \rightarrow term term_tail
term \rightarrow id factor_tail
term_tail $\rightarrow+$ term term_tail| $\boldsymbol{\varepsilon}$
factor_tail \rightarrow * id factor_tail $\mid \varepsilon$
start()
case lookahead() of
id: expr(); match(\$\$) (\$\$ - end-of-input marker) otherwise PARSE_ERROR
expr()
case lookahead() of id: term(); term_tail() otherwise PARSE_ERROR
term_tail() Predicting production term_tail $\rightarrow+$ term term_tail case lookahead() of +: match(' + '); term(); term_tail()
$\$ \$$ skip \longleftarrow Predicting epsilon production term_tail $\rightarrow \varepsilon$ otherwise: PARSE_ERROR

Recursive Descent

term()

start \rightarrow expr \$\$
expr \rightarrow term term_tail
term \rightarrow id factor_tail
term_tail $\rightarrow+$ term term_tail| ε
factor_tail \rightarrow * id factor_tail | ε
case lookahead() of
id: match('id'); factor_tail()
otherwise: PARSE_ERROR
factor_tail()
case lookahead() of
Predicting production factor_tail \rightarrow *id factor_tail
: match(‘'); match('id'); factor_tail();
+, \$\$: skip
otherwise PARSE_ERROR Predicting production factor_tail $\rightarrow \varepsilon$

Recursive Descent Parsing

- Parse $\sqrt{\text { id }}+\overparen{i d} *$ id $\$$
start ()

$$
\begin{aligned}
& \text { expme () } \\
& \text { bermen() Pactor-tarlc) (Meturn } \\
& \text { term-tail() } \beta \\
& \pm \operatorname{termi}() \\
& \text { id factor-farich } \\
& \text { "id factor-tail() }
\end{aligned}
$$

LL(1) Parsing Table

- But how does the parser "predict"?
- E.g., how does the parser know to expand a factor_tail by factor_tail $\rightarrow \varepsilon$ on + and $\$ \$$?
- It uses the LL(1) parsing table
- One dimension is nonterminal to expand
- Other dimension is lookahead token
- We are interested in one token of lookahead
- Entry "nonterminal on token" contains the production to apply or contains nothing

LL(1) Parsing Table

- One dimension: nonterminal to expand
- Other dimension: lookahead token

	a	
A	α	

- E.g., entry "nonterminal A on terminal a" contains production $A \rightarrow \alpha$
- Meaning: when parser is at nonterminal A and lookahead token is a, then parser expands A by production $A \rightarrow \alpha$

LL(1) Parsing Table		Goal: Algorithm theat constucts thos $\text { m_tail } \rightarrow+\text { term term_tail } \mid \varepsilon_{\varepsilon}$ tor_tail \rightarrow * id factor_tail \| ε		
start \rightarrow expr \$\$ expr \rightarrow term term_tail term \rightarrow id factor_tail				
	id	+	*	\$\$
start	expros $\$ \$$	-	[-
expr	term berm-taol	-	-	-
term_tail	-	+ term term-tarl	-	ε
term	id factor-tail	-	-	-
factor_tail	-	ε	* id factor-tail	ε

expr \rightarrow term term_tail term_tail $\rightarrow+$ term term_tail | $\boldsymbol{\varepsilon}$ term \rightarrow id factor_tail

Top-down parsing

 factor_tail \rightarrow * id factor_tail | ε- Parse tree is built from the top to the leaves
- Always expand the leftmost nonterminal

id factor_tail
$\varepsilon \quad$ What production applies for factor_tail on +?
+ does not belong to an expansion of factor_tail. However, factor_tail has an epsilon production and + belongs to an expansion of term_tail which follows factor_tail. Thus, predict the epsilon production.
expr \rightarrow term term_tail term_tail $\rightarrow+$ term term_tail | $\boldsymbol{\varepsilon}$ term \rightarrow id factor_tail factor_tail \rightarrow * id factor_tail | ε
- Parse tree is built from the top to the leaves
- Always expand the leftmost nonterminal

Thus, predict production term_tail $\rightarrow+$ term term_tail

LL(1) Tables and LL(1) Grammars

- We can construct an $\mathrm{LL}(1)$ parsing table for any context-free grammar
- In general, the table will contain multiply-defined entries.

That is, for some nonterminal and lookahead token, more than one production applies $\left.\underset{A}{A}\left|\begin{array}{c}A \rightarrow \alpha\end{array}\right|\left|\frac{a}{A}\right| \begin{gathered}A \rightarrow \alpha_{1} \\ A \rightarrow \alpha_{2}\end{gathered} \right\rvert\,$

- A grammar whose $\mathrm{LL}(1)$ parsing table has no multiply-defined entries is said to be $\operatorname{LL}(1)$ grammar
- LL(1) grammars are a very special subclass of contextfree grammars. Why?

FIRST and FOLLOW sets

- Let α be any sequence of nonterminals and terminals
- FIRST(α) is the set of terminals a that begin the strings derived from α. E.g., expr $\$ \$ \Rightarrow^{*}$ id..., thus id in FIRST(expr \$\$)
- If there is a derivation $\alpha \Rightarrow^{*} \varepsilon$, then ε is in $\operatorname{FIRST}(\alpha)$
- Let A be a nonterminal $\alpha \Rightarrow \alpha^{\prime} \Rightarrow \Rightarrow \varepsilon$
- FOLLOW (A) is the set of terminals b (including special end-of-input marker \$\$) that can appear immediately to the right of A in some sentential form:
start $\Rightarrow^{*} \ldots A b \ldots \Rightarrow^{*} \ldots$

Computing FIRST

Notation:
α is an arbitrary sequence of terminals and nonterminals

- Apply these rules until no more terminals or $\boldsymbol{\varepsilon}$ can be added to any FIRST(α) set
(1) If α starts with a terminal a, then $\operatorname{FIRST}(\alpha)=\{a\}$
(2) If α is a nonterminal X, where $X \rightarrow \varepsilon$, then add ε to FIRST(α)
ε b...
(3) If α is a nonterminal $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ then add a to
$\operatorname{FIRST}(X)$ if for some i, a is in $\operatorname{FIRST}\left(Y_{i}\right)$ and ε is in all of $\operatorname{FIRST}\left(Y_{1}\right), \ldots \operatorname{FIRST}\left(Y_{i-1}\right)$. If ε is in all of $\operatorname{FIRST}\left(Y_{1}\right), \ldots$ $\operatorname{FIRST}\left(Y_{k}\right)$, add ε to $\operatorname{FIRST}(X)$.
- Everything in $\operatorname{FIRST}\left(Y_{1}\right)-\{\varepsilon\}$ is surely in $\operatorname{FIRST}(X)$
- If Y_{1} does not derive $\boldsymbol{\varepsilon}$, then we add nothing more; Otherwise, we add $\operatorname{FIRST}\left(Y_{2}\right)-\{\varepsilon\}$, and so on Similarly, if α is $Y_{1} Y_{2} \ldots Y_{k}$, we'll repeat the above

Warm-up Exercise

start \rightarrow expr \$\$
expr \rightarrow term term_tail term \rightarrow id factor_tail
term_tail $\rightarrow+$ term term_tail| ε factor_tail \rightarrow * id factor_tail $\mid \boldsymbol{\varepsilon}$

FIRST(term) $=\{$ id $\}$ FIRST $($ expr $)=\{i d\}$ $\operatorname{FIRST}($ start $)=\{i d\}$ FIRST(term_tail) $=\{+, \varepsilon \bar{\xi} \Rightarrow+$ id FIRST(+ term term_tail $=\{+\}$
FIRST(factor_tail) = ARST (AB)
Programming Leriguages CSCI 4430, A. Milanova

+ term term-tail $\Rightarrow D$
+ id factor- tail term - tarl \Rightarrow
+ id term-tail \Rightarrow tid $_{14}$

Exercise

start \rightarrow S \$
$S \rightarrow \mathbf{x} S \mid A y$
$A \rightarrow B C D \mid \varepsilon$ CD
Compute FIRST sets:
$\operatorname{FIRST}(x S)=\{x\}$
$\operatorname{FIRST}(A y)=\{x, v, w, y\}$
$\operatorname{FIRST}(S)=\{x, z, v, w, y\}$
$\operatorname{FIRST}(A)=\{z, v, w, \varepsilon\}$
$\operatorname{FIRST}(B C D)=\{z, v, w\}$
$\operatorname{FIRST}(B)=\{\varepsilon, \varepsilon\}$
$\operatorname{FIRST}(C)=\{v, \varepsilon\}$
$\operatorname{FIRST}(\mathrm{v} S)=\{v\}$
$\operatorname{FIRST}(D)=\{w\}$
$\operatorname{FIRST}(w S)=\{w\}$

Computing FOLLOW

Notation:
A, B, S are nonterminals.
α, β are arbitrary sequences of terminals and nonterminals.

- Apply these rules until nothing can be added to any FOLLOW (A) set
(1) If there is a production $A \rightarrow \alpha B \beta$, then everything in FIRST(β) except for $\boldsymbol{\varepsilon}$ should be added to FOLLOW(B)

$$
\text { start } \Rightarrow \Rightarrow^{*} \ldots A \ldots \Rightarrow \alpha \beta_{0.0} \Rightarrow{ }^{*} \ldots \alpha B b_{0} \ldots
$$

(2) If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B \beta$, where $\operatorname{FIRST}(\beta)$ contains ε, then everything in FOLLOW(A) should be added to FOLLOW(B)

Warm-up

$$
\begin{aligned}
& \text { start } \rightarrow \text { expr } \$ \$ \\
& \text { expr } \rightarrow \text { torm term_tail term_tail } \rightarrow+\text { term lerm_tail | } \varepsilon \\
& \text { term } \rightarrow \text { id factor_tail } \downarrow \text { factor_tail } \rightarrow \text { * id factor_tall } \mid \varepsilon \\
& \text { FOLLOW (expr) = \{\$\$ } \\
& \text { FOLLOW(term_tail) }=\{\$ \$\} \\
& \text { FOLLOW }(\text { term })=\{\$ \$ 1+\} \\
& \text { FOLLOW (factor_tail) }=\{88,+\}
\end{aligned}
$$

expros $\$ 8$ term term-tail $\$ S \Rightarrow \ldots$ f term term-tarl $\$ \$$

Exercise

```
\[
\begin{array}{ll}
\text { start } \rightarrow S \$ \$ & B \rightarrow \mathrm{zS} \mid \varepsilon \\
S \rightarrow \mathrm{x} S A \mathrm{y} & C \rightarrow \mathrm{vS} \mid \varepsilon \\
A \rightarrow B C D \mid \varepsilon & D \rightarrow \mathrm{w} S
\end{array}
\]
```

Compute FOLLOW sets:
$\operatorname{FOLLOW}(A)=\{y\}$
$\operatorname{FOLLOW}(B)=\{v, w\}$
$\operatorname{FOLLOW}(C)=\{w\}$
$\operatorname{FOLLOW}(D)=\{y\}$
$\operatorname{FOLLOW}(S)=\{\$ q, v, w, y\}$

PREDICT Sets

$=\left[\begin{array}{l}\text { FIR } G(a) \\ \text { if } a \text { does not derive } \boldsymbol{\varepsilon}\end{array}\right.$
 $\operatorname{PREDICT}(A \rightarrow \alpha)=\{$
 (FIRST(α - - \{ $\}\rangle$ U FOLLOW (A)
 if α derives $\boldsymbol{\varepsilon}$

Constructing LL(1) Parsing Table

- Algorithm uses PREDICT sets:
foreach production $A \rightarrow \alpha$ in grammar G foreach terminal a in $\operatorname{PREDICT}(A \rightarrow \alpha)$ add $A \rightarrow \alpha$ into entry parse_table[A,a]
- If each entry in parse_table contains at most one production, then G is said to be $\operatorname{LL}(1)$

Exercise

$$
\begin{array}{ll}
\text { start } \rightarrow S \$ \$ & B \rightarrow \mathrm{z} S \mid \varepsilon \\
S \rightarrow \mathrm{x} S \mid A_{\mathrm{y}} & C \rightarrow \mathrm{v} S \mid \varepsilon \\
A \rightarrow B C D \mid \varepsilon & D \rightarrow \mathrm{w} S
\end{array}
$$

Compute PREDICT sets:

$\operatorname{PREDICT}(S \rightarrow \mathbf{x} S)=$
$\operatorname{PREDICT}(S \rightarrow A$ y $)=$
$\operatorname{PREDICT}(A \rightarrow B C D)=\{z, v, w\}$
$\operatorname{PREDICT}(A \rightarrow \varepsilon)=\{y\} \quad \operatorname{PrEDICT}(A \rightarrow B C D) \cap$
... etc...

$$
\operatorname{PREDICT}(A \rightarrow \varepsilon)=\varnothing
$$

Writing an LL(1) Grammar

- Most context-free grammars are not LL(1) grammars
- Obstacles to LL(1)-ness

- Left recursion is an obstacle. Why?

```
expr }->\mathrm{ expr + term | term
term }->\mathrm{ term * id|id
```

- Common prefixes are an obstacle.

Why?
stmt \rightarrow if b then stmt el se stmt if b then $s t m t$ | a

Removal of Left Recursion

- Left recursion can be removed from a grammar mechanically
- Started from this left-recursive expression grammar:

$$
\begin{aligned}
& \text { expr } \rightarrow \text { expr + term | term } \\
& \text { term } \rightarrow \text { term * id } \mid \text { id }
\end{aligned}
$$

- After removal of left recursion, we obtain this equivalent grammar, which is $\operatorname{LL}(1)$:
expr \rightarrow term term_tail
term_tail $\rightarrow+$ term term_tail | $\boldsymbol{\varepsilon}$
term \rightarrow id factor_tail
factor_tail \rightarrow * id factor_tail $\mid \varepsilon$

Removal of Common Prefixes

- Common prefixes can be removed mechanically as well by using left-factoring
- Original if-then-else grammar:

```
stmt }->\mathrm{ if b then stmt else stmt
    if b then stmtII
    a
```

- After left-factoring:

```
stmt }->\mathrm{ if b then stmt e/se_part,l a
else_part ->else stmt | \varepsilon
```


Exercise

start \rightarrow stmt \$\$

stmt \rightarrow if b then stmt else_part | a else_part \rightarrow else stmt | $\boldsymbol{\varepsilon}$

- Compute FIRSTs:

FIRST(stmt \$\$), FIRST(if b then stmt else_part), FIRST(a), FIRST(else stmt)

- Compute FOLLOW:

FOLLOW(else_part)

- Compute PREDICT sets for all 5 productions
- Construct the LL(1) parsing table. Is this grammar an LL(1) grammar?

Exercise

start \rightarrow stmt \$\$

stmt \rightarrow if b then stmt else_part | a else_part \rightarrow else stmt | $\boldsymbol{\varepsilon}$

- Compute FIRSTs:
$\operatorname{FIRST}(s t m t \$ \$)=\{$ if, $a\}$
FIRST(if b then stmt else_part) $=\left\{y^{\prime}\right\}$
$\operatorname{FIRST}(a)=\{a\}$
FIRST(else stmt) $=$ \{ekse \}

- Compute FOLLOW:

$$
\text { FOLLOW(else_part) }=\{\$ \$, \text { else }\} \text { Pouow(else-port) }
$$

Exercise

start \rightarrow stmt \$\$
stmt \rightarrow if b then stmt else_part | a else_part \rightarrow else stmt | ε

- Construct the $\mathrm{LL}(1)$ parsing table
- Is this grammar an $\operatorname{LL}(1)$ grammar?

No!

Exercise
if b then if b then a else a

Lecture Outline

- Top-down parsing (also called LL parsing)
- LL(1) parsing table
- FIRST, FOLLOW, and PREDICT sets
- LL(1) grammars
- Bottom-up parsing (also called LR parsing)
- A brief overview, no detail

Bottom-up Parsing

- Terminals are seen in the order of appearance in the token stream

- Parse tree is constructed

- From the leaves to the top
- A rightmost derivation in reverse

$$
\begin{aligned}
& \text { list } \rightarrow \text { id list_tail } \\
& \text { list_tail } \rightarrow \text {, id list_tail }\left.\right|_{31} ^{;}
\end{aligned}
$$

Bottom-up Parsing

list \rightarrow id list_tail list_tail \rightarrow, id list_tail | ;

Stack

	id,id,id;	shift
id	id,id;	shift
id,	id,id;	shift
id,id	,id;	shift
id,id,	id;	shift
id,id,id	$;$	shift
id,id,idi		reduce by
Progamming Languages cscl 14330, A. Mianova	list_tail \rightarrow; 32	

reduce by
list_tail \rightarrow; 32

Bottom-up Parsing

list \rightarrow id list_tail list_tail \rightarrow, id list_tail |;

id,id,id list tail

id」id list tail

id list tail

list
reduce by
list_tail \rightarrow,id list_tail reduce by
list_tail \rightarrow,id list_tail
reduce by
list \rightarrow id list_tail
ACCEPT

Bottom-up Parsing

- Also called LR parsing
- LR parsers work with LR(k) grammars
- L stands for "left-to-right" scan of input
- R stands for "rightmost" derivation
- k stands for "need k tokens of lookahead"
- We are interested in $\operatorname{LR}(0)$ and $\operatorname{LR}(1)$ and variants in between
- LR parsing is better than LL parsing!
- Accepts larger class of languages
- Just as efficient!

LR Parsing

- The parsing method used in practice
- LR parsers recognize virtually all PL constructs
- LR parsers recognize a much larger set of grammars than predictive parsers
- LR parsing is efficient
- LR parsing variants
- SLR (or Simple LR)
- LALR (or Lookahead LR) - yacc/bison generate LALR parsers
- LR (Canonical LR)
- SLR < LALR < LR

Main Idea

- Stack \leqslant Input
- Stack: holds the part of the input seen so far
- A string of both terminals and nonterminals
- Input: holds the remaining part of the input
- A string of terminals
- Parser performs two actions
- Reduce: parser pops a "suitable" production right-handside off top of stack, and pushes production's left-handside on the stack
- Shift: parser pushes next terminal from the input on top of the stack

Example

- Recall the grammar

$$
\begin{aligned}
& \text { expr } \rightarrow \text { expr }+ \text { term } \mid \text { term } \\
& \text { term } \rightarrow \text { term * id } \mid \text { id }
\end{aligned}
$$

- This is not LL(1) because it is left recursive
- LR parsers can handle left recursion!
- Consider string
id + id * id

id + id*id

Stack

Input
id+id*id shiftid
+id*id
+id*id
+id*id
id*id
*id

Programming Languages CSCI 4430, A. Milanova

Action

reduce by term \rightarrow id
reduce by expr \rightarrow term
shift +
shift id
reduce by term \rightarrow id

$$
\text { expr } \rightarrow \text { expr + term | term }
$$

term \rightarrow term *id|id

id + id*id

Stack

Input Action

expr+term	*id	shift *
expr+term*	id	shift id

expr+term*id expr+term expr
reduce by term \rightarrow term *id reduce by expr \rightarrow expr+term ACCEPT, SUCCESS
expr \rightarrow expr + term \mid term
term \rightarrow term * id \mid id

id + id*id

Sequence of reductions performed by parser
† id+id*id term+id*id
expr+id*id expr+term*id expr+term expr

- A rightmost derivation in reverse
- The stack (e.g., expr) concatenated with remaining input (e.g., +id*id) gives a sentential form (expr+id*id) in the rightmost derivation

$$
\begin{aligned}
& \text { expr } \rightarrow \text { expr }+ \text { term } \mid \text { term } \\
& \text { term } \rightarrow \text { term * id } \mid \text { id }
\end{aligned}
$$

The End

