Programming Language Syntax:

!'_ Top-down Parsing

Read: Scott, Chapter 2.3.2 and 2.3.3

Lecture Outline

= Top-down parsing (also called LL parsing)

« LL(1) parsing table
» FIRST, FOLLOW, and PREDICT sets
« LL(1) grammars

= Bottom-up parsing (also called LR parsing)
= A brief overview, no detalil

Programming Languages CSCI 4430, A. Milanova

Recursive Descent

start — expr $$
expr — term term_tail term tail — + term term tail | e
term — id factor tail factor tail - * id factor tail | e
start()
case lookahead() of
id: expr(); match($$) ($$ - end-of-input marker)

otherwise PARSE_ERROR

expr()
case lookahead() of
id: term(); term_tail()
otherwise PARSE_ERROR

term_tail() Predicting production term_tail — + term term_tail
case look
+: match('+’); term(); term_tail()
$$: skip - Predicting epsilon production term_tail — €

otherwise: PARSE_ERROR 3

Recursive Descent

start — expr $$

expr — term term_tail term tail — + term term tail | e
term — id factor tail factor tail - * id factor tail | e
term()

case lookahead() of
id: match(‘id’); factor_tail()
otherwise: PARSE _ERROR

factor_tail()
case lookahead() of
: match(‘"); match(‘id’); factor_tail();
+,8$: skip
otherwise PARSE_ER Predicting production factor _tail — €

Predicting production factor _tail — *id factor _tail

Programming Languages CSCI 4430, A. Milanova 4

Recursive Descent Parsing

g Parseri?+ Ca * id $s

-E:;" Pacfor—fasl ()
¥ Lockn fail()

Programming Languages CSCI 4430, A. Milanova

LL(1) Parsing Table

= But how does the parser “predict™?
=« E.g., how does the parser know to expand a
factor tail by factor tail — € on + and $$7?
= [t uses the LL(1) parsing table
= One dimension is nonterminal to expand

= Other dimension is lookahead token
= We are interested in one token of lookahead

« Entry “nonterminal on token” contains the
production to apply or contains nothing

Programming Languages CSCI 4430, A. Milanova

LL(1) Parsing Table

= One dimension: nonterminal to expand

s Other dimension: lookahead token
a

A a

= E.g., entry "nonterminal A on terminal a”
contains production A — a

= Meaning: when parser is at nonterminal A
and lookahead token is a, then parser
expands A by production A — a

. . Mgoridhs
LL(1) Parsing Table sl F8 s &
Hoot L) }ob N —

start — expr $$ 0- § %W“"
expr — term term_tail term tail — + term term tail | e
term — ‘g factor tail factor tail - * id factor tail | e

EE ¥ * $%
start expr &¢ - - —
expr {qu' berwu—fosl| — - -—
term_tail - 1 decwe dervtail — e
term i d /a or_dozl| — —_ —
factor_tail | — E # o d Packr- fail g

Programming Languages CSCI 4430, A. Milanova

Intuition

expr — term term_tail
term tail - + term term tail |
term — id factor tail

= Top-down parsing factor_tail - * id factor_tail |

= Parse tree is built from the top to the leaves
= Always expand the leftmost nonterminal

expr id [+ |id + id*id
/\ I
term term_tail factor tail » * id ff?or_tail
PN factor_tail —

id | factor tail

€

What production applies for factor tail on +?

+ does not belong to an expansion of factor _tail.
However, factor tail has an epsilon production and +
belongs to an expansion of term _tail which follows
factor_tail. Thus, predict the epsilon production.

expr — term term_tail
Intuition term_tail — + term term_tail | e
term — id factor _tail

= Top-down parsing factor_tail - * id factor_tail |

= Parse tree is built from the top to the leaves
= Always expand the leftmost nonterminal

expr id |+|1d + i1d*id
term term_tail I term_tail — + term term_tail
N /\ term tail - €
id factor tail + term term_tail
£ What production applies for term_tail on +7?

+ is the first symbol in expansions of + term term _tail.

Thus, predict production term_tail — + term term_tail

Programming Languages CSCI 4430, A. Milanova 10

LL(1) Tables and LL(1) Grammars

= We can construct an LL(1) parsing table for any
context-free grammar

= In general, the table will contain multiply-defined entries.
That is, for some nonterminal and lookahead token, more

than one production applles [& X &K
r"—' A_«-)o(,,' /A’ —

! A2 o /A

RS

= A grammar whose LL(1) parsing table has no
multiply-defined entries is said to be LL(1) grammar

= LL(1) grammars are a very special subclass of context-
free grammars. Why?

Programming Languages CSCI 4430, A. Milanova 11

FIRST and FOLLOW sets

= Let a be any sequence of nonterminals and

terminals

« FIRST(a) is the set of terminals a that begin the strings

derived from a. E.qg., expr $$:}* id.., thus idin
FIRST(expr $$) -

= If there is a derivation a =* g, then g€ is in FIRST(a)

. — / — .
= Let Abe a nonterminal % =2 «£ = =&

=« FOLLOW(A) is the set of terminals b (including special
end-of-input marker $$) that can appear immediately to
the right of A in some sentential form:

start =* ...Ab... =~...

d
g

Programming Languages CSCI 4430, A. Milanova 12

Notation:

COm pUtl ng FI RST a is an arbitrary sequence

of terminals and nonterminals

= Apply these rules until no more terminals or € can be
added to any FIRST(a) set
(1) If a starts with a terminal a, then FIRST(a) ={a }

(2) If a is a nonterminal X, where X — ¢, then add e to
FIRST(q) € ..

(3) If ais a nonterminal X a@YZ...Yk then add a to
FIRST(X) if for some j, a is in FIRST(Y;) and e is in all of
FIRST(Y;), ... FIRST(Y.,). If e isin all of FIRST(Y;), ...
FIRST(Y,), add & to FIRST(X).

« Everything in FIRST(Y;) - {e} is surely in FIRST(X)
« If Y, does not derive &, then we add nothing more;
Otherwise, we add FIRST(Y,) - {e}, and so on
Similarly, if ais Y,Y5...Y,, we'll repeat the above 13

Warm-up Exercise

Start — expr $$
expr — term term_tail term tail — + term term tail | e
term — id factor tail factor tail —» * id factor tail | 3
FIRST(term) ={ id } Jeru-dai| =>
FIRST(expr) = 3 ey F Certn fecu _tail -
?LJ} + id /C%'J'Dr._ foutl feru ~fail

FIRST(start) = => + (d m- fail
FIRST(term tail)= 2+ £% _

FIRST(# term term_tail) = ?"‘5 o

4 derwn feri_ =D

FIRST(factor tail) = 7 , _

RS (48 t id fochr tail e tarl=>

Programmm ages CSCI 4430, A. Milanova ‘{- LC[ML’ :> +l& 14

Exercise RCp=> D=2
start > S $$ Bale@ =
S—>xS|Ay CevS@
A—>BCD|e D—>wS

CD i
Compute FIRST sets:
FIRST(x S) = %5, . FIRST(S) = 14 % viw.y}
FIRST(A y) = 1%v %] FIRST(A) = 5 VW e]
FIRST(BCD) = 32V %} FIRST(B)= 1%
FIRST(z S) = 1%/ FIRST(C) = 2V &S
FIRST(v S) = V1 FIRST(D) = ¢ ™
FIRST(w S) = $wJ

15

Notation:
i AB,S terminals.
COm pUtI ng FO LLOW a,3 ar::bni’?rzrf/rsr:algijnces

of terminals and nonterminals.

= Apply these rules until nothing can be added to

any FOLLOW(A) set

(1) If there is a production A — aBp, then everything
iIn FIRST(B) except for € should be added to

FOLLOW(B) . -
Stark =3%* . h. =3 el BRoos =20 oL BD...

(2) If there is a production A — aB, or a production
A — aBf3, where FIRST(3) contains e, then

everything in FOLLOW(A) should be added to

FOLLOW(B
Har + =,(->°2' o Ab... = ... oéﬁém..

Programming Languages CSCI 4430, A. Milanova 16

Warm-up

Start — expr $$

expr M term_tail —));@emr'l'em*ail?l g

term — id factor tail / factor tail - * id factor tail | e
= P

FOLLOW(expr) = { $$)
FOLLOW(term tail) = 3 %%%
FOLLOW(term) = 5 ¥#/+]
FOLLOW(factor._tail) = 7 %8, +5

oprss = ferw fem-fa1[8 => ... F fer feanjarl 93
SR SN

Programming Languages CSCI 4430, A. Milanova -9:9

Exercise

start - S $$ Bazgls
S—>xSlAy C>vS]e
A —»BCD | ¢ DwS

Compute FOLLOW sets:
FOLLOW(A) = 3%J
FOLLOW(B) = 7 ViW ¢
FOLLOW(C) = 5w}
FOLLOW(D) = ¥
FOLLOW(S) = ¢ 9%, V. w ¢

Programming Languages CSCI 4430, A. Milanova 18

PREDICT Sets

—FIR
If a does not derive ¢

(FIRST(a) — {e}PU FOLLOW(A)
if a derives e -

PREDICT(A — q)

—

Programming Languages CSCI 4430, A. Milanova 19

Constructing LL(1) Parsing Table

= Algorithm uses PREDICT sets:

foreach production A — a in grammar G
foreach terminal a in PREDICT(A — q)

add A — a into entry parse table[A,a]

= |f each entry in parse table contains at most
one production, then G is said to be LL(1)

Programming Languages CSCI 4430, A. Milanova 20

Exercise

start - S $$ B—>zS|e
S—>xS|Ay C—o>vS|e
A —>BCD| e D—>wS

Compute PREDICT sets:
PREDICT(S - x S) =
PREDICT(S - Avy) =

PREDICT(A - BCD) = 3 %,V W J

PREDICT(A - €) = 337
.. ete...

Programming Languages CSCI 4430, A. Milanova

proper (A BcD))
Pecoicr (A-—>£) = ¢

21

Writing an LL(1) Grammar

= Most context-free grammars are not LL(1)
grammars

f — /
= Obstacles to LL(1)-ness ferte ... “
= Left recursion is an expr ﬁ’exer-} term’| term
obstacle. Why? term — term * id | id
= Common prefixes are
an OEStade' szmt —>if b then simtelse stmt |
Why? if b then stmt |

a

Programming Languages CSCI 4430, A. Milanova

22

Removal of Left Recursion

s Left recursion can be removed from a
grammar mechanically

= Started from this left-recursive expression

grammar. expr — expr + term | term
term — term * id | id

n After removal of left recursion, we obtain this

equivalent grammar, which is LL(1):
expr — term term _tail

term tail - + term term tail |
term — id factor tail

CSCI 4430, A. Milanova factor tail - * id factor tail | €

Removal of Common Prefixes

= Common prefixes can be removed
mechanically as well by using left-factoring

= Original if-then-else grammar:

stmt — if b then stmtlelse stmt £
if b then Stml‘m

a

= After left-factoring:
Tstmt — if b then stmt Else_paﬁ\ | a

else part —» else stmt | €

Programming Languages CSCI 4430, A. Milanova

24

start - stmt $$
EXG rCi se stmt - if b then simtelse part | a
else _part —» else stmt | €

= Compute FIRSTs:

FIRST(stmt $$), FIRST(i£f b then stmt else part),
FIRST(a), FIRST(else stmt)

= Compute FOLLOW:

FOLLOW(else part)
—

= Compute PREDICT sets for all 5 productions
= Construct the LL(1) parsing table. Is this grammar

an LL(1) grammar?) '

Programming Languages CSCI 4430, A. Milanova 25

Start - stmt $$
Exercise stmt - if b then stmtelse_part | a

else part —>elsesimt | e

= Compute FIRSTs:

FIRST(stmt $8) = £ U« a§
FIRST(if b then stmt else_part) = % if g

FIRST(a)= 50§

FIRST(else stmf) = ¢ 2ksef

Programming Languages CSCI 4430, A. Milanova 26

start - s nt$

Exercise stmt™ if)—tbms@[t_e/seﬁm a
else_part’—»elsestmt | ¢ =

= Compute FOLLOW: FoLLow(Shet) =

Fo elye-
FOLLOW(else_part) = ? ¢ (dsej HOW(Hiep of&)

V Qf&e_,

efce—)baré— - &£
Q/se.,yowé - gffgu_

ok Se,farl—

/

Programming Languages CSCI 4430, A. Milanova 27

start — stmt $$
EXG rCi se stmt - if b then simtelse part | a

else _part —» else stmt | €

= Construct the LL(1) parsing table

= Is this grammar an LL(1) grammar?

Nor

Programming Languages CSCI 4430, A. Milanova 28

Exercise

(_,ff)M GJEMQQJK&

//‘/

Programming Languages CSCI 4430, A. Milanova

29

Lecture Outline

= Top-down parsing (also called LL parsing)

« LL(1) parsing table
» FIRST, FOLLOW, and PREDICT sets
« LL(1) grammars

= Bottom-up parsing (also called LR parsing)
= A brief overview, no detalil

Programming Languages CSCI 4430, A. Milanova 30

Bottom-up Parsing

= [erminals are seen in the
list

order of appearance in the o~
token stream id list_tail
id , id , id ; —/
ottt , id list tail
ﬂ\

, id list_tail
= Parse tree is constructed '.

= From the leaves to the top

= A rightmost derivation in reverse
list —» id list tail

list tail - , id list tail | ;

o X |
J1

Programming Languages CSCI 4430, A. Milanova

list — id list_tail

Bottom-up Parsing st tail — , iaist tail | ;

Stack Input Action
id,id,id; shift

id ,id, id; shift

id, id, id; shift

id, id ,id; shift

id, id, id; shift

id, id, id ; shift

id,id,id; reduce by

Programming Languages CSCI 4430, A. Milanova IISt tall%; 32

Bottom-up Parsing

Stack Input

id,id, id list tail

id,id Iist tail

id Jist tail

list

Programming Languages CSCI 4430, A. Milanova

list — id list_tail
list_tail — , id list tail | ;

Action

reduce by
list tail — ,id list tail
reduce by
list tail — ,id list tail
reduce by
list — id list_tail

ACCEPT

33

Bottom-up Parsing

= Also called LR parsing

= LR parsers work with LR(k) grammars
= L stands for “left-to-right” scan of input
= R stands for “rightmost” derivation
= k stands for “need k tokens of lookahead”

= We are interested in LR(0) and LR(1) and variants
In between

= LR parsing is better than LL parsing!
= Accepts larger class of languages
« Just as efficient!

Programming Languages CSCI 4430, A. Milanova

34

LR Parsing

= [he parsing method used in practice

= LR parsers recognize virtually all PL constructs

= LR parsers recognize a much larger set of grammars
than predictive parsers

= LR parsing is efficient
= LR parsing variants

= SLR (or Simple LR)
» LALR (or Lookahead LR) — yacc/bison generate LALR
parsers

= LR (Canonical LR)
«» SLR<LALR<LR

Programming Languages CSCI 4430, A. Milanova

35

Main Idea

s Stack < Input

= Stack: holds the part of the input seen so far
= A string of both terminals and nonterminals

= Input: holds the remaining part of the input
= A string of terminals

= Parser performs two actions

= Reduce: parser pops a “suitable” production right-hand-
side off top of stack, and pushes production’s left-hand-
side on the stack

= Shift: parser pushes next terminal from the input on top of

the stack
Programming Languages CSCI 4430, A. Milanova 36

Example

= Recall the grammar

expr — expr + term | term
term —»term * id | id

« Thisis not LL(1) because it is left recursive
= LR parsers can handle left recursion!

= Consider string
id + 1d * id

Programming Languages CSCI 4430, A. Milanova

37

id + i1d*id
Stack Input
id+id*id
id +1d*id
term +id*id
expr +id*id
expr+ id*id
expr+id *id

Programming Languages CSCI 4430, A. Milanova

Action

shift id
reduce by ferm— id

reduce by expr— term
shift +

shift id
reduce by ferm — id

expr — expr + term | term
term — term * id | id 38

id + i1d*id

Stack Input Action

expr+term *id shift *

expr+term* id shift id

expr+term*id reduce by term—term *id
expr+term reduce by expr—expr+term
expr ACCEPT, SUCCESS

expr — expr + term | term
term — term * id | id

Programming Languages CSCI 4430, A. Milanova 39

id + i1d*id

Sequence of reductions performed by parser

' 1d+id*id e A rightmost derivation in
term+id*id reverse
expr+id*id

e The stack (e.g., expr)
expr+term*id concatenated with remaining
expr+term input (e..g., +id*id) gl_ves _a
sentential form (expr+id*id)
expr in the rightmost derivation

expr — expr + term | term
term — term * id | id

Programming Languages CSCI 4430, A. Milanova

40

The Enad

Programming Languages CSCI 4430, A. Milanova

41

