
Programming Language Syntax:
Top-down Parsing

Read: Scott, Chapter 2.3.2 and 2.3.3

Programming Languages CSCI 4430, A. Milanova 2

Lecture Outline

n Top-down parsing (also called LL parsing)
n LL(1) parsing table
n FIRST, FOLLOW, and PREDICT sets
n LL(1) grammars

n Bottom-up parsing (also called LR parsing)
n A brief overview, no detail

3

Recursive Descent

start()
case lookahead() of

id: expr(); match($$) ($$ - end-of-input marker)
otherwise PARSE_ERROR

expr()
case lookahead() of

id: term(); term_tail()
otherwise PARSE_ERROR

term_tail()
case lookahead() of

+: match(‘+’); term(); term_tail()
$$: skip
otherwise: PARSE_ERROR

start ® expr $$
expr ® term term_tail term_tail ® + term term_tail | ε
term ® id factor_tail factor_tail ® * id factor_tail | ε

Predicting production term_tail ® + term term_tail

Predicting epsilon production term_tail ® ε

4

Recursive Descent

term()
case lookahead() of

id: match(‘id’); factor_tail()
otherwise: PARSE_ERROR

factor_tail()
case lookahead() of

: match(‘’); match(‘id’); factor_tail();
+,$$: skip
otherwise PARSE_ERROR

Predicting production factor_tail ® *id factor_tail

Predicting production factor_tail ® ε

start ® expr $$
expr ® term term_tail term_tail ® + term term_tail | ε
term ® id factor_tail factor_tail ® * id factor_tail | ε

Programming Languages CSCI 4430, A. Milanova

Recursive Descent Parsing

n Parse

5Programming Languages CSCI 4430, A. Milanova

id + id * id $$

Programming Languages CSCI 4430, A. Milanova 6

LL(1) Parsing Table

n But how does the parser “predict”?
n E.g., how does the parser know to expand a

factor_tail by factor_tail ® ε on + and $$?
n It uses the LL(1) parsing table

n One dimension is nonterminal to expand
n Other dimension is lookahead token

n We are interested in one token of lookahead
n Entry “nonterminal on token” contains the

production to apply or contains nothing

7

LL(1) Parsing Table

n One dimension: nonterminal to expand
n Other dimension: lookahead token

n E.g., entry “nonterminal A on terminal a”
contains production A ® α

n Meaning: when parser is at nonterminal A
and lookahead token is a, then parser
expands A by production A ® α

A

a

α

8

LL(1) Parsing Table

id + * $$

start

expr

term_tail

term

factor_tail

start ® expr $$
expr ® term term_tail term_tail ® + term term_tail | ε
term ® id factor_tail factor_tail ® * id factor_tail | ε

Programming Languages CSCI 4430, A. Milanova

9

Intuition
n Top-down parsing

n Parse tree is built from the top to the leaves
n Always expand the leftmost nonterminal

expr

term term_tail

id factor_tail

id + id + id*id

factor_tail ® * id factor_tail
factor_tail ® ε

What production applies for factor_tail on +?
+ does not belong to an expansion of factor_tail.
However, factor_tail has an epsilon production and +
belongs to an expansion of term_tail which follows
factor_tail. Thus, predict the epsilon production.

ε

expr ® term term_tail
term_tail ® + term term_tail | ε
term ® id factor_tail
factor_tail ® * id factor_tail | ε

Programming Languages CSCI 4430, A. Milanova 10

Intuition
n Top-down parsing

n Parse tree is built from the top to the leaves
n Always expand the leftmost nonterminal

expr

term term_tail

id factor_tail

id + id + id*id

What production applies for term_tail on +?
+ is the first symbol in expansions of + term term_tail.

Thus, predict production term_tail ® + term term_tail

ε

term_tail ® + term term_tail
term_tail ® ε

expr ® term term_tail
term_tail ® + term term_tail | ε
term ® id factor_tail
factor_tail ® * id factor_tail | ε

+ term term_tail

Programming Languages CSCI 4430, A. Milanova 11

LL(1) Tables and LL(1) Grammars

n We can construct an LL(1) parsing table for any
context-free grammar
n In general, the table will contain multiply-defined entries.

That is, for some nonterminal and lookahead token, more
than one production applies

n A grammar whose LL(1) parsing table has no
multiply-defined entries is said to be LL(1) grammar
n LL(1) grammars are a very special subclass of context-

free grammars. Why?

12

FIRST and FOLLOW sets

n Let α be any sequence of nonterminals and
terminals
n FIRST(α) is the set of terminals a that begin the strings

derived from α. E.g., expr $$Þ* id…, thus id in
FIRST(expr $$)

n If there is a derivation α Þ* ε, then ε is in FIRST(α)
n Let A be a nonterminal

n FOLLOW(A) is the set of terminals b (including special
end-of-input marker $$) that can appear immediately to
the right of A in some sentential form:
start Þ* …Ab… Þ*…

Programming Languages CSCI 4430, A. Milanova

13

Computing FIRST

n Apply these rules until no more terminals or ε can be
added to any FIRST(α) set
(1) If α starts with a terminal a, then FIRST(α) = { a }
(2) If α is a nonterminal X, where X ® ε, then add ε to

FIRST(α)
(3) If α is a nonterminal X ® Y1Y2…Yk then add a to

FIRST(X) if for some i, a is in FIRST(Yi) and ε is in all of
FIRST(Y1), … FIRST(Yi-1). If ε is in all of FIRST(Y1), …
FIRST(Yk), add ε to FIRST(X).

n Everything in FIRST(Y1) - {ε} is surely in FIRST(X)
n If Y1 does not derive ε, then we add nothing more;

Otherwise, we add FIRST(Y2) - {ε}, and so on
Similarly, if α is Y1Y2…Yk , we’ll repeat the above

Notation:
α is an arbitrary sequence
of terminals and nonterminals

Warm-up Exercise

FIRST(term) = { id }
FIRST(expr) =
FIRST(start) =
FIRST(term_tail) =
FIRST(+ term term_tail) =
FIRST(factor_tail) =

14

start ® expr $$
expr ® term term_tail term_tail ® + term term_tail | ε
term ® id factor_tail factor_tail ® * id factor_tail | ε

Programming Languages CSCI 4430, A. Milanova

Exercise

Compute FIRST sets:
FIRST(x S) = FIRST(S) =
FIRST(A y) = FIRST(A) =
FIRST(BCD) = FIRST(B) =
FIRST(z S) = FIRST(C) =
FIRST(v S) = FIRST(D) =
FIRST(w S) =

15

start ® S $$ B ® z S | ε
S ® x S | A y C ® v S | ε
A ® BCD | ε D ® w S

Programming Languages CSCI 4430, A. Milanova 16

Computing FOLLOW

n Apply these rules until nothing can be added to
any FOLLOW(A) set
(1) If there is a production A ® αBβ, then everything

in FIRST(β) except for ε should be added to
FOLLOW(B)

(2) If there is a production A ® αB, or a production
A ® αBβ, where FIRST(β) contains ε, then
everything in FOLLOW(A) should be added to
FOLLOW(B)

Notation:
A,B,S are nonterminals.
α,β are arbitrary sequences
of terminals and nonterminals.

Warm-up

FOLLOW(expr) = { $$ }
FOLLOW(term_tail) =
FOLLOW(term) =
FOLLOW(factor_tail) =

17

start ® expr $$
expr ® term term_tail term_tail ® + term term_tail | ε
term ® id factor_tail factor_tail ® * id factor_tail | ε

Programming Languages CSCI 4430, A. Milanova

Exercise

Compute FOLLOW sets:
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(S) =

18

start ® S $$ B ® z S | ε
S ® x S | A y C ® v S | ε
A ® BCD | ε D ® w S

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 19

PREDICT Sets

if α does not derive ε
PREDICT(A ® α) =

(FIRST(α) – {ε}) U FOLLOW(A)
if α derives ε

Programming Languages CSCI 4430, A. Milanova 20

Constructing LL(1) Parsing Table

n Algorithm uses PREDICT sets:

foreach production A ® α in grammar G
foreach terminal a in PREDICT(A ® α)
add A ® α into entry parse_table[A,a]

n If each entry in parse_table contains at most
one production, then G is said to be LL(1)

Exercise

Compute PREDICT sets:
PREDICT(S ® x S) =
PREDICT(S ® A y) =
PREDICT(A ® BCD) =
PREDICT(A ® ε) =

… etc…

21

start ® S $$ B ® z S | ε
S ® x S | A y C ® v S | ε
A ® BCD | ε D ® w S

Programming Languages CSCI 4430, A. Milanova

Writing an LL(1) Grammar

n Most context-free grammars are not LL(1)
grammars

n Obstacles to LL(1)-ness
n Left recursion is an

obstacle. Why?

n Common prefixes are
an obstacle.
Why?

Programming Languages CSCI 4430, A. Milanova 22

expr ® expr + term | term
term ® term * id | id

stmt ® if b then stmt else stmt |
if b then stmt |
a

Removal of Left Recursion

n Left recursion can be removed from a
grammar mechanically

n Started from this left-recursive expression
grammar:

n After removal of left recursion, we obtain this
equivalent grammar, which is LL(1):

CSCI 4430, A. Milanova 23

expr ® expr + term | term
term ® term * id | id

expr ® term term_tail
term_tail ® + term term_tail | ε
term ® id factor_tail
factor_tail ® * id factor_tail | ε

Removal of Common Prefixes
n Common prefixes can be removed

mechanically as well by using left-factoring
n Original if-then-else grammar:

n After left-factoring:

24

stmt ® if b then stmt else stmt |
if b then stmt |
a

stmt ® if b then stmt else_part | a
else_part ® else stmt | ε

Programming Languages CSCI 4430, A. Milanova

Exercise
n Compute FIRSTs:
FIRST(stmt $$), FIRST(if b then stmt else_part),
FIRST(a), FIRST(else stmt)

n Compute FOLLOW:
FOLLOW(else_part)

n Compute PREDICT sets for all 5 productions
n Construct the LL(1) parsing table. Is this grammar

an LL(1) grammar?

start ® stmt $$
stmt ® if b then stmt else_part | a
else_part ® else stmt | ε

Programming Languages CSCI 4430, A. Milanova 25

Exercise
n Compute FIRSTs:

FIRST(stmt $$) =

FIRST(if b then stmt else_part) =

FIRST(a) =

FIRST(else stmt) =

start ® stmt $$
stmt ® if b then stmt else_part | a
else_part ® else stmt | ε

Programming Languages CSCI 4430, A. Milanova 26

Exercise
n Compute FOLLOW:

FOLLOW(else_part) =

start ® stmt $$
stmt ® if b then stmt else_part | a
else_part ® else stmt | ε

Programming Languages CSCI 4430, A. Milanova 27

Exercise
n Construct the LL(1) parsing table

n Is this grammar an LL(1) grammar?

start ® stmt $$
stmt ® if b then stmt else_part | a
else_part ® else stmt | ε

Programming Languages CSCI 4430, A. Milanova 28

Exercise

Programming Languages CSCI 4430, A. Milanova 29

Programming Languages CSCI 4430, A. Milanova 30

Lecture Outline

n Top-down parsing (also called LL parsing)
n LL(1) parsing table
n FIRST, FOLLOW, and PREDICT sets
n LL(1) grammars

n Bottom-up parsing (also called LR parsing)
n A brief overview, no detail

31

Bottom-up Parsing

n Terminals are seen in the
order of appearance in the
token stream
id , id , id ;

n Parse tree is constructed
n From the leaves to the top
n A rightmost derivation in reverse

list ® id list_tail
list_tail ® , id list_tail | ;

list

id list_tail

;

, list_tailid

, list_tailid

Programming Languages CSCI 4430, A. Milanova

Bottom-up Parsing
Stack Input Action

id,id,id; shift
id ,id,id; shift
id, id,id; shift
id,id ,id; shift
id,id, id; shift
id,id,id ; shift
id,id,id; reduce by

list_tail®; 32

list ® id list_tail
list_tail ® , id list_tail | ;

Programming Languages CSCI 4430, A. Milanova

Bottom-up Parsing
Stack Input Action

id,id,id list_tail reduce by
list_tail ® ,id list_tail

id,id list_tail reduce by
list_tail ® ,id list_tail

id list_tail reduce by
list ® id list_tail

list ACCEPT
33

list ® id list_tail
list_tail ® , id list_tail | ;

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 34

Bottom-up Parsing

n Also called LR parsing
n LR parsers work with LR(k) grammars

n L stands for “left-to-right” scan of input
n R stands for “rightmost” derivation
n k stands for “need k tokens of lookahead”

n We are interested in LR(0) and LR(1) and variants
in between

n LR parsing is better than LL parsing!
n Accepts larger class of languages
n Just as efficient!

Programming Languages CSCI 4430, A. Milanova 35

LR Parsing

n The parsing method used in practice
n LR parsers recognize virtually all PL constructs
n LR parsers recognize a much larger set of grammars

than predictive parsers
n LR parsing is efficient

n LR parsing variants
n SLR (or Simple LR)
n LALR (or Lookahead LR) – yacc/bison generate LALR

parsers
n LR (Canonical LR)
n SLR < LALR < LR

Programming Languages CSCI 4430, A. Milanova 36

Main Idea
n Stack ß Input
n Stack: holds the part of the input seen so far

n A string of both terminals and nonterminals

n Input: holds the remaining part of the input
n A string of terminals

n Parser performs two actions
n Reduce: parser pops a “suitable” production right-hand-

side off top of stack, and pushes production’s left-hand-
side on the stack

n Shift: parser pushes next terminal from the input on top of
the stack

Programming Languages CSCI 4430, A. Milanova 37

Example

n Recall the grammar

n This is not LL(1) because it is left recursive
n LR parsers can handle left recursion!

n Consider string
id + id * id

expr ® expr + term | term
term ® term * id | id

Programming Languages CSCI 4430, A. Milanova 38

id + id*id

Stack Input Action

id+id*id shift id
id +id*id reduce by term® id
term +id*id reduce by expr® term
expr +id*id shift +
expr+ id*id shift id
expr+id *id reduce by term ® id

expr ® expr + term | term
term ® term * id | id

Programming Languages CSCI 4430, A. Milanova 39

id + id*id

Stack Input Action

expr+term *id shift *
expr+term* id shift id
expr+term*id reduce by term®term *id

expr+term reduce by expr®expr+term
expr ACCEPT, SUCCESS

expr ® expr + term | term
term ® term * id | id

Programming Languages CSCI 4430, A. Milanova 40

id + id*id

Sequence of reductions performed by parser
id+id*id
term+id*id
expr+id*id
expr+term*id
expr+term
expr

• A rightmost derivation in
reverse

• The stack (e.g., expr)
concatenated with remaining
input (e.g., +id*id) gives a
sentential form (expr+id*id)
in the rightmost derivation

expr ® expr + term | term
term ® term * id | id

The End

Programming Languages CSCI 4430, A. Milanova 41

