
1

Logic Programming and Prolog

Read: Scott, Chapter 12

Programming Languages CSCI 4430, A. Milanova 2

Lecture Outline

n Quiz 2
n Logic programming
n Prolog

n Language constructs: facts, rules, queries

n Search tree, unification, backtracking, backward
chaining

Programming Languages CSCI 4430, A. Milanova 3

Prolog

n Download and install SWI Prolog on laptop
n Write your Prolog program and save in .pl file,

e.g., snowy.pl
n Run swipl (Prolog interpreter) on command line
n Load your file: ?– [snowy].
n Issue query at prompt: ?– snowy(C).

n J.R.Fisher’s Prolog Tutorial:
http://www.cpp.edu/~jrfisher/www/prolog_tutorial/contents.html

Why Study Prolog?

n Declarative programming and logic
programming

n Prolog is useful in a variety of applications
n Rule-based reasoning
n Natural-language processing
n Database systems

n Prolog and SQL have a lot in common

n Practice of important concepts such as first-
order logic

Programming Languages CSCI 4430, A. Milanova 4

Programming Languages CSCI 4430, A. Milanova 5

Logic Programming
n Logic programming is declarative programming
n Logic program states what (logic), not how (control)

n Programmer declares axioms
n In Prolog, facts and rules

n Programmer states a theorem, or a goal (the what)
n In Prolog, a query

n Language implementation determines how to use
the axioms to prove the goal

6

Logic Programming

n Logic programming style is characterized by

n Database of facts and rules that represent
logical relations. Computation is modeled as
search (queries) over this database

n Use of lists and use of recursion, which turns
out very similar to the functional programming
style

Programming Languages CSCI 4430, A. Milanova

7

Logic Programming Concepts
n A Horn Clause is: H ¬ B1,B2,…,Bn

n Antecedents (B’s): conjunction of zero or more terms in
predicate calculus; this is the body of the horn clause

n Consequent (H): a term in predicate calculus
n Resolution principle: if two Horn clauses

are such that A matches D1,
then we can replace D1 with B1,B2,B3 ,…, Bm

A ¬ B1,B2,B3 ,…, Bm
C¬ D1,D2,D3 ,…, Dn

C ¬ B1,B2,B3 ,…, Bm,D2,D3 ,…, Dn

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 8

Lecture Outline

n Logic programming
n Prolog

n Language constructs: facts, rules, queries

n Search tree, unification, backtracking, backward
chaining

Programming Languages CSCI 4430, A. Milanova 9

Horn Clauses in Prolog
n In Prolog, a Horn clause is written
h :- b1,...,bn.

n Horn Clause is called clause
n Consequent is called goal or head
n Antecedents are called subgoals or tail

n Horn Clause with no tail is a fact
n E.g., rainy(seattle). Depends on no other conditions

n Horn Clause with a tail is a rule
snowy(X) :- rainy(X),cold(X).

Horn Clauses in Prolog
n Clause is composed of terms

n Constants
n Number, e.g., 123, etc.
n Atoms e.g., seattle, rochester, rainy, foo
In Prolog, atoms begin with a lower-case letter!

n Variables
n X, Foo, My_var, etc.

In Prolog, variables begin with upper-case letter!
n Structures

n E.g., rainy(seattle), snowy(X)
n Consists of an atom, called a functor and a list of

arguments 10

11

Horn Clauses in Prolog
n Variables may appear in the tail and head of

a rule:
n c(X) :- h(X,Y).

For all values of X, c(X) is true if there exist a
value of Y such that h(X,Y) is true

n Call Y an auxiliary variable. Its value will be
bound to make consequent true, but not reported
by Prolog, because it does not appear in the
head

Programming Languages CSCI 4430, A. Milanova

12

Prolog
n Program has a database of clauses i.e., facts and

rules; the rules help derive more facts
n We add simple queries with constants, variables,

conjunctions or disjunctions

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X),cold(X).

? - rainy(C).
? – snowy(C).

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 13

Facts
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

The combination of the functor and its arity (i.e.,
its number of arguments) is called a predicate.

functors constants

14

Queries
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(al,eve). ?-likes(al,Who).
true. Who=eve.

?-likes(al,pie). ?-likes(eve,W).
false. W=pie ;
?-likes(eve,al). W=tom ;
false. W=eve .

query

answer

variable

answer with
variable binding

force search for
more answersProgramming Languages CSCI 4430, A. Milanova

15

Question
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(eve,W).
W = pie ;
W = tom ;
W = eve .

Prolog gives us the answer precisely in this order:
first W=pie then W=tom and finally W=eve.
Can you guess why?

16

Harder Queries
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(al,V) , likes(eve,V).
V=eve.
?-likes(eve,W) , person(W).
W=tom
?-likes(A,B).
A=eve,B=pie ; A=al,B=eve ; A=eve,B=tom ;
A=eve,B=eve.
?-likes(D,D).
D=eve.

and

17

Harder Queries
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

?-likes(eve,W),likes(W,V).
W=eve,V=pie ; W=eve,V=tom ; W=eve,V=eve.

?-likes(eve,W),person(W),food(V).
W=tom,V=pie ; W=tom,V=apple

?-likes(eve,V),(person(V);food(V)).
V=pie ; V=tom

or

same binding

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 18

Rules
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

Add a rule to the database:

rule1:-likes(eve,V),person(V).

?-rule1.
true

Programming Languages CSCI 4430, A. Milanova 19

Rules
likes(eve, pie). food(pie).
likes(al, eve). food(apple).
likes(eve, tom). person(tom).
likes(eve, eve).

rule2(V) :- likes(eve,V),person(V).

?-rule2(H).
H=tom
?-rule2(pie).
false.
rule1 and rule2 are just like any other predicate!

rule1 :- likes(eve,V),person(V).

Programming Languages CSCI 4430, A. Milanova 20

Queen Victoria Example
male(albert).
male(edward). Put all clauses in file
female(alice). family.pl
female(victoria).
parents(edward,victoria,albert).
parents(alice,victoria,albert).

?- [family]. Loads file family.pl
true.
?- male(albert). A query
true.
?- male(alice).
false.
?- parents(edward,victoria,albert).
true.
?- parents(bullwinkle,victoria,albert).
false.

cf Clocksin
and Mellish

Programming Languages CSCI 4430, A. Milanova 21

Queen Victoria Example

?-female(X). a query
X = alice ; ; asks for more answers
X = victoria.
n Variable X has been unified to all possible values

that make female(X) true.
n Variables are upper-case, constants are lower-

case!

Programming Languages CSCI 4430, A. Milanova 22

Queen Victoria Example
n Facts alone do not make interesting programs. We

need variables and deductive rules.

sister_of(X,Y) :- female(X),parents(X,M,F),
parents(Y,M,F).

?- sister_of(alice, Y).
Y = edward <enter>: not asking for more answers
?- sister_of(alice, victoria).
false.

23

Another Prolog Program

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X),cold(X).

?- [snowy].
?- rainy(C).
?- snowy(C).

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 24

Lecture Outline

n Logic programming
n Prolog

n Language constructs: facts, rules, queries

n Search tree, unification, rule ordering,
backtracking, backward chaining

Programming Languages CSCI 4430, A. Milanova 25

Logical Semantics
n Prolog program consists of facts and rules

Rules like snowy(X):- rainy(X),cold(X).

correspond to logical formulas:

"X[snowy(X) ¬ rainly(X) ^ cold(X)]
/* For every X, X is snowy, if X is rainy and X is cold */

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).

26

Logical Semantics

n A query such as ?- rainy(C).

triggers resolution. Logical semantics does
not impose restriction in the order of application
of resolution rules

C = seattle C = rochester
C = rochester C = seattle

Programming Languages CSCI 4430, A. Milanova

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).

27

Procedural Semantics
?- snowy(C).

Find the first clause in the database whose head matches the
query. In our case this is clause

snowy(X) :- rainy(X),cold(X)
Then, find a binding for X that makes rainy(X) true; then,

check if cold(X) is true with that binding
n If yes, report binding as successful
n Otherwise, backtrack to the binding of X, unbind and consider

the next binding
n Prolog’s computation is well-defined procedurally by search

tree, rule ordering, unification, backtracking, and backward
chaining

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).

28

Question

What does this query yield?
?- snowy(C).

Answer:
C = rochester ;
C = troy.

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).
snowy(troy).

Programming Languages CSCI 4430, A. Milanova

29

Procedural Semantics
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X),cold(X).

snowy(C)

snowy(X)
AND

OR
rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails; backtrack.

X = rochester

success

Programming Languages CSCI 4430, A. Milanova

30

Prolog Concepts: Search Tree

snowy(C)

snowy(X)
AND

OR
rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).

?- snowy(C).

OR levels:
parent: goal (e.g., rainy(X))
children: heads-of-clauses (rainy(…))

ORDER: from left to right
AND levels:

parent: goal (e.g., snowy(X))
children: subgoals (rainy(X), cold(X))

ORDER: from left to right

Prolog Concepts: Unification

n At OR levels Prolog performs unification
n Unifies parent (goal), with child (head-of-clause)

n E.g.,
n snowy(C) = snowy(X)

n success, _C = _X
n rainy(X) = rainy(seattle)

n success, X = seattle
n parents(alice,M,F) = parents(edward,victoria,albert)

n fail
n parents(alice,M,F) = parents(alice,victoria,albert)

n success, M = victoria, F = albert

In Prolog, = denotes unification, not assignment! 31

32

Prolog Concepts: Unification

n A constant unifies only with itself
n E.g., alice=alice, but alice=edward fails

n Two structures unify if and only if (i) they have the
same functor, (ii) they have the same number of
arguments, and (iii) their arguments unify recursively
n E.g., rainy(X) = rainy(seattle)

n A variable unifies with anything. If the other thing has
a value, then variable is bound to that value. If the
other thing is an unbound variable, then the two
variables are associated and if either one gets a
value, both do

33

Prolog Concepts: Backtracking
If at some point, a goal fails, Prolog backtracks
to the last goal (i.e., last unification point)
where there is an untried binding, undoes
current binding and tries new binding (an
alternative OR branch), etc.

snowy(C)

snowy(X)
AND

OR
rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails; backtrack.

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).

?- snowy(C).

Programming Languages CSCI 4430, A. Milanova

34

Prolog Concepts: Backward Chaining
n Backward chaining: starts

from goal, towards facts
? – snowy(rochester).

snowy(rochester):-
rainy(rochester),
cold(rochester)

rainy(rochester)

snowy(rochester):-

cold(rochester)
cold(rochester)

snowy(rochester).

n Forward chaining: starts from
facts towards goal

? – snowy(rochester).

rainy(rochester)
snowy(rochester):-

rainy(rochester),
cold(rochester)

cold(rochester)
snowy(rochester):-

cold(rochester)

snowy(rochester).

Programming Languages CSCI 4430, A. Milanova

Exercise

Draw search tree for query.

What are the bindings for C?

Programming Languages CSCI 4430, A. Milanova 35

takes(jane, his).
takes(jane, cs).
takes(ajit, art).
takes(ajit, cs).
classmates(X,Y):-takes(X,Z),takes(Y,Z).

?- classmates(jane,C).

The End

Programming Languages CSCI 4430, A. Milanova 36

