
1

Logic Programming and Prolog

Keep reading: Scott, Chapter 12

Programming Languages CSCI 4430, A. Milanova 2

Lecture Outline

n Prolog
n Lists
n Programming with lists
n Arithmetic

3

Lists

list head tail
[a,b,c] a [b,c]

[X,[cat],Y] X [[cat],Y]
[a,[b,c],d] a [[b,c],d]

[X | Y] X Y

a

b

c
[]

a

b
c

[]
d

[]

Programming Languages CSCI 4430, A. Milanova

4

Lists: Unification

Programming Languages CSCI 4430, A. Milanova

n [H1 | T1] = [H2 | T2]
n Head H1 unifies with H2, possibly recursively
n Tail T1 unifies with T2, possibly recursively

n E.g., [a | [b, c]] = [X | Y]
n X = a
n Y = [b, c]

n NOTE: In Prolog, = denotes unification, not
assignment!

5

Question

n [X,Y,Z] = [john, likes, fish]
n X = john, Y = likes, Z = fish

n [cat] = [X | Y]
n X = cat, Y = []

n [[the, Y]|Z] = [[X, hare]|[is,here]]
n X = the, Y = hare, Z = [is, here]

Programming Languages CSCI 4430, A. Milanova

6

Lists: Unification
n Sequence of comma separated terms, or
n [first term | rest_of_list]

[[the | Y] | Z] = [[X, hare] | [is, here]]

the Y
Z

X

hare []

is
here []

Programming Languages CSCI 4430, A. Milanova

7

Lists Unification

n Look at the trees to see how this works!

[a, b, c] = [X | Y]
X = a, Y = [b,c].

[a | Z] =? [X | Y]
X = a, Y = Z.

Programming Languages CSCI 4430, A. Milanova

8

Improper and Proper Lists
[1 | 2] versus [1, 2]

1 2
1
2 []

Programming Languages CSCI 4430, A. Milanova

9

Question. Can we unify these lists?
[abc, Y] =? [abc | Y]

abc

Y []
abc Y

Answer: No. There is no value binding
for Y that makes these two trees
isomorphic

Unification and the Occurs check

Programming Languages CSCI 4430, A. Milanova 10

Programming Languages CSCI 4430, A. Milanova 11

Lecture Outline

n Prolog
n Lists
n Programming with lists
n Arithmetic

12

Member_of

?- member(a,[a,b]).

true.
?- member(a,[b,c]).
false.

?- member(X,[a,b,c]).
X = a ;
X = b ;
X = c ;
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member(A, C).

Programming Languages CSCI 4430, A. Milanova

13

?- member(a,[a,b]).

true.
?- member(a,[b,c]).
false.

?- member(X,[a,b,c]).
X = a ;
X = b ;
X = c.

?- member(a,[b,c,X]).
X = a ;
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

Programming Languages CSCI 4430, A. Milanova

Member_of

14

Prolog Search Tree (OR levels only)
member(X,[a,b,c])

member(X,[b,c])

A=X,B=a,C=[b,c]

member(X,[c])

A’=X,B’=b,C’=[c]

fail fail

member(X,[])

A”=X
B”=c, C”=[]

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

X=a
success

A=X=a,B=[b,c]

X=b
success

A’=X=b,B’=[c]

X=c
success

A”=X=c,B”=[]

15

Member_of

member(A, [A|B]).
member(A, [B|C]) :- member(A,C).

logical semantics: For every A,B and C
member(A,[B|C]) if member(A,C)

procedural semantics: Head of clause is
procedure entry. Tail of clause is procedure
body; subgoals correspond to calls.

Programming Languages CSCI 4430, A. Milanova

16

“Procedural” Interpretation
member(A, [A|B]).
member(A, [B|C]) :- member(A,C).

member is a recursive “procedure”
member(A, [A|B]). is the base case.
“Procedure” exits with true if the element we are
looking for, A, is the first element in the list. It exits
with false if we have reached the end of the list
member(A, [B|C]) :- member(A,C). is the
recursive case. If element A is not the first element
in the list, call member recursively with arguments A
and tail C

Programming Languages CSCI 4430, A. Milanova

17

Question

Give all answers to the following query:
?- member(a,[b, a, X]).

Answer:
true ;
X = a ;
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member(A, C).

Programming Languages CSCI 4430, A. Milanova

18

Question

Give all answers to the following query:
?- member(a, [b | a]).

Answer:
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member(A, C).

Programming Languages CSCI 4430, A. Milanova

19

Append
append([], A, A).
append([A|B], C, [A|D]) :- append(B,C,D).

n Build a list:
?- append([a,b,c],[d,e],Y).

Y = [a,b,c,d,e]

n Break a list into constituent parts:
?- append(X,Y,[a,b]).
X = [], Y = [a,b]; X = [a], Y = [b];
X = [a,b], Y = []; false.

Programming Languages CSCI 4430, A. Milanova

20

More Append
append([], A, A).
append([A|B], C, [A|D]) :- append(B,C,D).

n Break a list into constituent parts
?- append(X,[b],[a,b]).
X = [a]
?- append([a],Y,[a,b]).
Y = [b]

Programming Languages CSCI 4430, A. Milanova

21

More Append

? - append(X,Y,[a,b]).
X = [],

Y = [a,b] ;
X = [a],
Y = [b] ;
X = [a,b],

Y = [] ;
false.

Programming Languages CSCI 4430, A. Milanova

22

Unbounded Arguments

n Generating an unbounded number of lists
?- append(X,[b],Y).

X = []
Y = [b] ;
X = [_G604]
Y = [_G604, b] ;
X = [_G604, _G610]

Y = [_G604, _G610, b] ;
Etc.

n Be careful when using append with 2
unbounded arguments!

An underscore, “don’t care” variable.
Unifies with anything.
E.g., bad(Dog) :- bites(Dog,_).

Question

n What does this “procedure” do:
p([],[]).
p([A|B],[[A]|Rest]) :- p(B,Rest).

?- p([a,b,c],Y).
Y = [[a],[b],[c]]

Programming Languages CSCI 4430, A. Milanova 23

Common Structure

n “Processing” a list:
p([],[]).
p([H|T],[H1|T1]) :- f(H,H1),p(T,T1).

n Base case: we have reached the end of list.
In our case, the result for [] is [].

n Recursive case: result is [H1|T1]. H1 was
obtained by calling f(H,H1) --- processes
element H into result H1. T1 is the result of
recursive call of p on T.

Programming Languages CSCI 4430, A. Milanova 24

Programming Languages CSCI 4430, A. Milanova 25

Lecture Outline

n Prolog
n Lists
n Programming with lists
n Arithmetic

Arithmetic

n Prolog has all arithmetic operators
n Built-in predicate is

n is(X, 1+3) or more commonly we write
n X is 1+3
is forces evaluation of 1+3:
?- X is 1+3
X = 4

n = is unification not assignment!
?- X = 4-1.
X = 4-1 % unifies X with 4-1!!!

26Programming Languages CSCI 4430, A. Milanova

Arithmetic: Pitfalls

n is is not invertible! That is, arguments on
the right cannot be unbound!
n 3 is 3 – X.
ERROR: is/2: Arguments are not
sufficiently instantiated

n This doesn’t work either:
?- X is 4, X = X+1.
false.
Why? What’s going on here?

27Programming Languages CSCI 4430, A. Milanova

Exercise

n Write sum, which takes a list of integers and
computes the sum of the integers. E.g.,
sum([1,2,3],R).
?- R = 6.

n How about if the integers are arbitrarily
nested? E.g.,
sum([[1],[[[2]],3]],R).
?- R = 6.

Programming Languages CSCI 4430, A. Milanova 28

Exercise

Programming Languages CSCI 4430, A Milanova 29

Exercise

n Write plus10, which takes a list of integers
and computes another list, where all integers
are shifted +10. E.g.,
plus10([1,2,3],R).
?- R = [11,12,13].

n Write len, which takes a list and computes
the length of the list. E.g.,
len([1,[2],3],R).
?- R = 3.

Programming Languages CSCI 4430, A. Milanova 30

Exercise

n Write atoms, which takes a list and
computes the number of atoms in the list.
E.g.,
atoms([a,[b,[[c]]]],R).
?- R = 3.

n Hint: built-in predicate atom(X) yields true if X is an
atom (i.e., symbolic constant such as x, abc,
tom).

Programming Languages CSCI 4430, A. Milanova 31

Negation

not(member(a,[a,b])).

not(member(c,[a,b])).

n sister_of(X,Y) :-
female(X),parents(X,M,F),
parents(Y,M,F).

Programming Languages CSCI 4430, A Milanova 32

The End

Programming Languages CSCI 4430, A. Milanova 33

