Logic Programming and Prolog

Keep reading: Scott, Chapter 12

Lecture Outline

- Prolog
- Lists
- Programming with lists
- Arithmetic

Lists: Unification

- [H1 | T1] = [H2 | T2]
- Head H1 unifies with H2, possibly recursively
- Tail $T 1$ unifies with $T 2$, possibly recursively
- E.g., [a l [b, c]] = [X | Y]
- $x=a$
- Y = [b, c]
- NOTE: In Prolog, = denotes unification, not assignment!

Question

$$
\begin{aligned}
\cdot(a, b(b,[J)) & \equiv[a, b] \\
& \equiv[a \mid[b]]
\end{aligned}
$$

- [$\mathrm{X}, \mathrm{y}, \mathrm{Z}]=$ [john, likes, fish]
- $\mathrm{X}=\mathrm{john}, \mathrm{Y}=$ likes, $\mathrm{z}=\mathrm{fish}$
- [cat] $=[\mathrm{X} \mid \mathrm{Y}]$
- $\mathrm{x}=\mathrm{cat}, \mathrm{y}=[\mathrm{l}$

- [[the, Y$] \mid \mathrm{Z}]=[$ [$\mathrm{x}, \mathrm{hare}] \mid[$ is, here $]$]
- $x=$ the, $y=$ hare, $z=[i s$, here $]$

$$
[1,2] \quad[1 / 2]
$$

Programming Languages CSCI 4430, A. Milanova $[1 \mid[2]]$

Lists: Unification

- Sequence of comma separated terms, or
- [first term | rest_of_list]

aka

[[the | y$] \mid \mathrm{z} \mathrm{]} \mathrm{=} \mathrm{[} \mathrm{[x}, \mathrm{hare]} \mathrm{\mid} \mathrm{[is}, \mathrm{here]} \mathrm{]}$ X the $\quad Y=$ [hare $] \quad V=[i s$, here $]$

Lists Unification

- Look at the trees to see how this works!

Improper and Proper Lists

[1 | 2]
 versus
 [1, 2]

IMPROPER LIST

PROPER LIST

Question. Can we unify these lists?

$$
[\mathrm{abc}, \mathrm{Y}] \quad=? \quad[\text { abc|l|l|}
$$

Answer: No. There is no value binding for y that makes these two trees isomorphic

$$
\begin{aligned}
& \text { se }-[a b c, Y]=[a b c / Y] \\
& ?-Y=[i] \text {. }
\end{aligned}
$$

Unification and the Occurs check
unify $\left(\left(T_{1}, T_{2}\right)\right)$
I/ succeeds, with bindings of vars, if T_{7} and T_{2} can be made equal
11 fails otherwise occurs check flay default is FALSE

- case $\left(V, T_{2}\right) \rightarrow$ if occurs $\left(V T_{2}\right)$ fail ; ow. $V=T_{2} V$
- case $\left(T_{1}, V\right) \rightarrow$ if occurs $\left(V, T_{1}\right)$ fail ; ow $V=T_{1} v$
- case (cost c con st $_{2}$) \rightarrow if count \neq constr $_{2}$ fail; ow. skip
- case $\left(\mathbb{P}\left(T_{11}, T_{12}\right), p\left(T_{21}, T_{22}\right)\right) \rightarrow$ unify $\left(T_{11}, T_{22}\right) ;$
unify $\left(T_{12}, T_{22}\right)$
- \rightarrow fol Turn occurs check flag ON!

Lecture Outline

- Prolog
- Lists
- Programming with lists
- Arithmetic

Member_of

? - member (a, [a,b]).
true.
?- member (a, $[b, c]$).
false.
?- member ($\mathrm{X},[\mathrm{a}, \mathrm{b}, \mathrm{c}]$).
$\mathrm{X}=\mathrm{a}$;
$\mathrm{x}=\mathrm{b}$;
$\mathrm{X}=\mathrm{C}$;

1. member (A, $[\mathrm{A} \mid \mathrm{B}])$.
2. member (A, $[B \mid C]$) :- member (A, C).
false.

Member of

?- member (a, [a,b]).
true.
?- member (a, $[b, c]$).
false.
?- member ($\mathrm{X},[\mathrm{a}, \mathrm{b}, \mathrm{c}]$).
$\mathrm{X}=\mathbf{a}$;
$\mathbf{x}=\mathbf{b}$;

1. member $(A,[A \mid B])$.
2. member (A, $[B \mid C]$) :- member (A, C).
$\mathrm{X}=\mathbf{c}$.
?- member (a, $[b, c, X])$.
$\mathbf{x}=\mathbf{a}$;
false.

Prolog Search Tree (OR levels only)

member ($\mathrm{X},[\mathrm{c}]$)
$\mathrm{X}=\mathrm{b}$
success

$$
\begin{array}{cc}
A "=X=C, B^{\prime \prime}=[] & A "=X \\
X=C & B "=C, C "=[] \\
\text { success } & \text { member }(X,[])
\end{array}
$$

fail
fail

Member_of

member (A, $[A \mid B])$.
member $(A,[B \mid C]):-$ member (A, C).
logical semantics: For every \mathbf{A}, \mathbf{B} and \mathbf{C} member ($A,[B \mid C]$) if member (A, C)
procedural semantics: Head of clause is procedure entry. Tail of clause is procedure body; subgoals correspond to calls.

"Procedural" Interpretation

 $\operatorname{member}(A, \quad[A \mid B])$. member $(A, \quad[B \mid C]):-\operatorname{member}(A, C)$. member is a recursive "procedure" member ($A,[A \mid B]$). is the base case. "Procedure" exits with true if the element we are looking for, A , is the first element in the list. It exits with false if we have reached the end of the list member ($A, \quad[B \mid C]$) :- member (A, C). is the recursive case. If element A is not the first element in the list, call member recursively with arguments A and tail C
Question

```
1. member (A, [A | B]).
2. member (A, [B | C]) :- member (A, C).
```

Give all answers to the following query: ?- member (a, [b, $a, X]$).

Answer:

false.

Question

```
1. member (A, [A | B]).
2. member (A, [B | C]) :- member (A, C).
```

Give all answers to the following query: ?- member (a, [bia]).

Answer:
false.

nember(a,@)
member $(A, C A \mid B]$) member $\left(A, \frac{[B / C])}{C B A}\right)$

- Break a list into constituent parts:
?- append (X,Y,[a,b]).

$$
\begin{aligned}
& x=[], y=[a, b] ; x=[a], y=[b] ; \\
& x=[a, b], y=[] ; f a l s e .
\end{aligned}
$$

More Append

append ([], A, A).
append $([A \mid B], C,[A \mid D]):-\operatorname{append}(B, C, D)$.

- Break a list int σ constituent parts
? - append ($x,[b],[a, b]$).
$\mathrm{X}=[\mathrm{a}]$
? - append ([a], Y, [a,b]).
$\mathbf{Y}=\left[\begin{array}{l}\mathrm{b}\end{array}\right]$

More Append

$$
\begin{aligned}
& ?-\operatorname{append}(X, Y,[a, b]) . \\
& \mathbf{x}=[], \\
& \mathbf{Y}=[a, b] ; \\
& \mathbf{X}=[a], \\
& \mathbf{Y}=[b] ; \\
& \mathbf{X}=[a, b], \\
& \mathbf{Y}=[] ; \\
& \text { false. }
\end{aligned}
$$

Unbounded Arguments

- Generating an unbounded number of lists ?- append ($\mathrm{X},[\mathrm{b}], \mathrm{y}$)
$\mathrm{X}=$ []
Y $=$ [b]
An underscore, "don't care" variable. Unifies with anything.
E.g., bad (Dog) :- bites (Dog,).
$\mathbf{X}=[$ _G604]
$\mathbf{Y}=[$ _G604, b]
;
$\mathbf{X}=$ [_G604, _G610]
$\mathbf{Y}=[$ _G604, _G610, b] i
Etc.
- Be careful when using append with 2 unbounded arguments!

Question

- What does this "procedure" do: p([],[]). $p([A \mid B], \underbrace{[[A] \mid \operatorname{Rest}]}_{\operatorname{Rem}(t)}):-\underset{\operatorname{Resu}(t)=[C A] \mid \operatorname{Rest}] .}{p(B, R e s)}$
?- $p([a, b, c], y)$.
$\mathrm{y}=[\mathrm{[a]},[\mathrm{~b}],[\mathrm{c}]$]

Common Structure

$\left[e_{1}, e_{2}, e_{3}\right]$

- "Processing" a list:

$$
\underline{p}([],[]) .
$$

$$
[f(e z), f(e 2), f(e 3)]
$$

$\mathrm{p}([\mathrm{H} \mid \mathrm{T}],[\mathrm{H} 1 \mid \mathrm{T} 1]):-\mathrm{f}(\mathrm{H}, \mathrm{H} 1), \mathrm{P}(\mathrm{T}, \mathrm{T} 1)$.

- Base case: we have reached the end of list. In our case, the result for [] is [].
- Recursive case: result is [H1|T1]. H1 was obtained by calling $f(\mathrm{H}, \mathrm{H} 1)$--- processes element H into result $\mathrm{H} 1 . \mathrm{T} 1$ is the result of recursive call of p on T.

Lecture Outline

- Prolog
- Lists
- Programming with lists
- Arithmetic

Arithmetic

- Prolog has all arithmetic operators
- Built-in predicate is
- is ($\mathrm{X}, 1+3$) or more commonly we write
- X is $1+3$
is forces evaluation of $1+3$:
?- x is $1+3$
$\mathrm{x}=4$
- = is unification not assignment!
?- $\mathrm{x}=4-1$.
$\mathrm{X}=4-1$ \% unifies X with 4-1!!!
Programming Languages CSCI 4430, A. Milanova

Arithmetic: Pitfalls

- is is not invertible! That is, arguments on the right cannot be unbound!
- 3 is 3 - x .

ERROR: is /2: Arguments are not sufficiently instantiated

- This doesn't work either:
x is $4, x_{1}$ is $x+1$
? - X is $4, \mathrm{X}=\mathrm{X}+1$. false.
x No!
Why? What's going on here?

Exercise

- Write sum, which takes a list of integers and computes the sum of the integers. E.g.,

$$
\begin{aligned}
& H=1 T=[2,3] \\
& \operatorname{sum}([1,2,3], R) \cdot\left[\begin{array}{l}
\operatorname{sum}([C], 0) \\
?-R=6 .
\end{array} \quad \operatorname{sum}([H \mid T], R):-\right. \\
& \text { integer }(H) \text {, sum }(T, R T), R \text { is } R T+H_{0}
\end{aligned}
$$

- How about if the integers are arbitrarily nested? E.g.,
sum ([[1],[[[2]],3]],R). ?- $R=6$.

Exercise

$$
\begin{aligned}
& {[[[[1]]], 2]} \\
& \operatorname{sum}([T, 0) . \\
& \operatorname{sum}(H, H):-\operatorname{integer}(H) . \\
& \operatorname{sum}(C H \mid T], R):- \\
& \operatorname{sum}(H, R H), \operatorname{sum}(T, R T), \\
& R \text { is } R H+R T .
\end{aligned}
$$

Exercise

- Write plus10, which takes a list of integers and computes another list, where all integers are shifted +10 . E.g.,
plus10 ([1,2,3],R).
?- $\mathrm{R}=[11,12,13]$.
- Write len, which takes a list and computes the length of the list. E.g., len ([1, [2], 3],R). ? $-R=3$.

Exercise

- Write atoms, which takes a list and computes the number of atoms in the list. E.g.,
atoms ([a, [b,[[c]]]],R).
?- $\mathrm{R}=3$.
- Hint: built-in predicate atom (X) yields true if x is an atom (i.e., symbolic constant such as \mathbf{x}, abc, tom).

Negation

not (member (a, [a,b])).

not (member (c, [a,b])).

- sister_of(X,Y) :female (X) , parents (X,M,F), parents ($\mathbf{Y}, \mathrm{M}, \mathrm{F}$) .

The End

