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Logic Programming and Prolog

Keep reading: Scott, Chapter 12
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Lecture Outline

n Prolog 
n Lists
n Programming with lists
n Arithmetic
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Lists

list head tail
[a,b,c] a [b,c]

[X,[cat],Y] X [[cat],Y]
[a,[b,c],d] a [[b,c],d]

[X | Y] X Y

a

b

c
[ ]

a

b
c

[ ]
d

[ ]

Programming Languages CSCI 4430, A. Milanova



4

Lists: Unification
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n [ H1 | T1 ] = [ H2 | T2 ]
n Head H1 unifies with H2, possibly recursively
n Tail T1 unifies with T2, possibly recursively

n E.g., [ a | [b, c] ] = [ X | Y ]
n X = a
n Y = [b, c]

n NOTE: In Prolog, = denotes unification, not 
assignment! 
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Question

n [X,Y,Z] = [john, likes, fish]
n X = john, Y = likes, Z = fish

n [cat] = [X | Y]
n X = cat, Y = [ ] 

n [[the, Y]|Z] = [[X, hare]|[is,here]]
n X = the, Y = hare, Z = [is, here]
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Lists: Unification
n Sequence of comma separated terms, or
n [ first term | rest_of_list ]

[ [the | Y] | Z ]   = [ [X, hare] | [is, here] ]

the Y
Z

X

hare [ ]

is
here [ ]
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Lists Unification

n Look at the trees to see how this works!

[ a, b, c ] = [ X | Y ]
X = a, Y = [b,c].

[a | Z ] =? [ X | Y ]
X = a, Y = Z.
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Improper and Proper Lists
[1 | 2] versus [1, 2]

1 2 
1 
2 [ ]
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Question. Can we unify these lists?
[abc, Y]   =?  [ abc | Y ]

abc

Y [ ]
abc Y 

Answer: No. There is no value binding 
for Y that makes these two trees 
isomorphic 



Unification and the Occurs check
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Lecture Outline

n Prolog 
n Lists
n Programming with lists
n Arithmetic
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Member_of

?- member(a,[a,b]).

true.
?- member(a,[b,c]).
false.

?- member(X,[a,b,c]).
X = a ;
X = b ;
X = c ;
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member(A, C).
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?- member(a,[a,b]).

true.
?- member(a,[b,c]).
false.

?- member(X,[a,b,c]).
X = a ;
X = b ;
X = c.

?- member(a,[b,c,X]).
X = a ;
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).
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Prolog Search Tree (OR levels only)
member(X,[a,b,c])

member(X,[b,c])

A=X,B=a,C=[b,c]

member(X,[c])

A’=X,B’=b,C’=[c]

fail fail

member(X,[])

A”=X
B”=c, C”=[]

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

X=a
success

A=X=a,B=[b,c]

X=b
success

A’=X=b,B’=[c]

X=c
success

A”=X=c,B”=[]
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Member_of

member(A, [A|B]).
member(A, [B|C]) :- member(A,C).

logical semantics: For every A,B and C
member(A,[B|C]) if member(A,C)

procedural semantics: Head of clause is 
procedure entry. Tail of clause is procedure 
body; subgoals correspond to calls.
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“Procedural” Interpretation
member(A, [A|B]).
member(A, [B|C]) :- member(A,C).

member is a recursive “procedure”
member(A, [A|B]). is the base case. 
“Procedure” exits with true if the element we are 
looking for, A, is the first element in the list. It exits 
with false if we have reached the end of the list
member(A, [B|C]) :- member(A,C). is the 
recursive case. If element A is not the first element 
in the list, call member recursively with arguments A
and tail C
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Question

Give all answers to the following query:
?- member(a,[b, a, X]).

Answer:
true ;
X = a ;
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member(A, C).
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Question

Give all answers to the following query:
?- member(a, [b | a]).

Answer:
false.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member(A, C).
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Append
append([ ], A, A).
append([A|B], C, [A|D]) :- append(B,C,D).

n Build a list:
?- append([a,b,c],[d,e],Y).

Y = [a,b,c,d,e]

n Break a list into constituent parts:
?- append(X,Y,[a,b]).
X = [], Y = [a,b]; X = [a], Y = [b];
X = [a,b], Y = []; false.
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More Append
append([ ], A, A).
append([A|B], C, [A|D]) :- append(B,C,D).

n Break a list into constituent parts
?- append(X,[b],[a,b]).
X = [ a ]
?- append([a],Y,[a,b]).
Y = [ b ]
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More Append

? - append(X,Y,[a,b]).
X = [ ],

Y = [a,b] ;
X = [a],
Y = [b]   ;
X = [a,b],

Y = [ ]   ;
false.
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Unbounded Arguments

n Generating an unbounded number of lists
?- append(X,[b],Y).

X = [ ]
Y = [b]  ;
X = [ _G604] 
Y = [ _G604, b]   ;
X = [ _G604, _G610]

Y = [ _G604, _G610, b]  ;
Etc.

n Be careful when using append with 2 
unbounded arguments!

An underscore, “don’t care” variable.
Unifies with anything. 
E.g., bad(Dog) :- bites(Dog,_).



Question

n What does this “procedure” do:
p([],[]).
p([A|B],[[A]|Rest]) :- p(B,Rest).

?- p([a,b,c],Y).
Y = [ [a],[b],[c] ]
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Common Structure

n “Processing” a list:
p([],[]).
p([H|T],[H1|T1]) :- f(H,H1),p(T,T1).

n Base case: we have reached the end of list. 
In our case, the result for [ ] is [ ].

n Recursive case: result is [H1|T1]. H1 was 
obtained by calling f(H,H1) --- processes 
element H into result H1. T1 is the result of 
recursive call of p on T.
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Lecture Outline

n Prolog 
n Lists
n Programming with lists
n Arithmetic



Arithmetic

n Prolog has all arithmetic operators 
n Built-in predicate is

n is(X, 1+3) or more commonly we write
n X is 1+3 
is forces evaluation of 1+3:
?- X is 1+3
X = 4

n = is unification not assignment!
?- X = 4-1.
X = 4-1 % unifies X with 4-1!!!
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Arithmetic: Pitfalls

n is is not invertible! That is, arguments on 
the right cannot be unbound!
n 3 is 3 – X.
ERROR: is/2: Arguments are not 
sufficiently instantiated

n This doesn’t work either:
?- X is 4, X = X+1.
false.
Why? What’s going on here? 
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Exercise

n Write sum, which takes a list of integers and 
computes the sum of the integers. E.g., 
sum([1,2,3],R).
?- R = 6.

n How about if the integers are arbitrarily 
nested? E.g., 
sum([[1],[[[2]],3]],R).
?- R = 6.
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Exercise
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Exercise

n Write plus10, which takes a list of integers 
and computes another list, where all integers 
are shifted +10. E.g., 
plus10([1,2,3],R).
?- R = [11,12,13].

n Write len, which takes a list and computes 
the length of the list. E.g., 
len([1,[2],3],R).
?- R = 3.
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Exercise

n Write atoms, which takes a list and 
computes the number of atoms in the list. 
E.g., 
atoms([a,[b,[[c]]]],R).
?- R = 3.

n Hint: built-in predicate atom(X) yields true if X is an 
atom (i.e., symbolic constant such as x, abc, 
tom).
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Negation

not(member(a,[a,b])).

not(member(c,[a,b])).

n sister_of(X,Y) :-
female(X),parents(X,M,F),                      
parents(Y,M,F).
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The End
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