Logic Programming and Prolog

Finish reading: Scott, Chapter 12

Lecture Outline

- Quiz 3
- Prolog
- Imperative control flow 0
- Negation by failure $\operatorname{vot}(x)$
- Generate and test paradigm

Imperative Control Flow

- Programmer has explicit control on backtracking process
cut (!)
- ! is a subgoal

- As a goal it succeeds, but with a side effect:
- Commits interpreter to all bindings made since unifying left-hand side of current rule with parent goal

Cut (!) Example

rainy (seattle).
rainy (rochester).
cold (rochester) .
snowy (X) : - rainy (X) , ! cold (X) .
?- snowy (C).
? false.

Cut (!) Example

```
rainy(seattle).
rainy(rochester) .
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).
```


Cut (!) Example 2

rainy (seattle).
rainy (rochester) .
cold (rochester) .
snowy (X) : - rainy (X) , ! cold (X) . snowy (troy) .

? - snowy (C).

Cut (!) Example 2

rainy (seattle).
rainy (rochester).
cold (rochester).
snowy (X) :- rainy (X), !, cold(X).
snowy (C)
snowy(troy).

2 committed OR bindings:
and $\begin{aligned} C & =-X \\ X & =\text { seattle }\end{aligned}$

Cut (!) Example 3

rainy (seattle) : - !
rainy (rochester).
cold (rochester).
snowy (X) : - rainy (X) , cold (X).
snowy (troy) .
?- snowy (C).
? $-C=$ troy.

Cut (!) Example 3

Cut (!) Example 4

rainy (seattle).
rainy (rochester).
cold (rochester) .
snowy (X) : - ! , rainy (X) , cold (X) .
?- snowy (C).
?-Crochester.

Cut (!) Example 4

```
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- !, rainy(X), cold(X).
```


Cut (!) Example 5

rainy (seattle).
rainy (rochester).
cold (rochester).
snowy (X) :- rainy (X), cold(X), !.
?- snowy (C).
? $-C=$ rochester.

Cut (!) Example 5

```
rainy(seattle).
rainy(rochester) .
cold(rochester).
snowy(X) :- rainy(X), cold(X), !.
```


Negation by Failure: not (X), \+(X)

- not(C) succeeds when C fails
- Called negation by failure, defined:
not(X) :- X, ! fail.
not(_).
\rightarrow don't care.
- Not the same as negation in logic \neg x!
- In Prolog, we can assert that something is true, but we cannot assert that something, is false lakes(eve, pie). 7 likes (este, pie).

Exercise

takes(jane, his). takes (jane, cs). takes(ajit, art). takes(ajit, cs). classmates (X,Y) :- takes (X,Z) ,takes (Y,Z),

$$
\operatorname{not}(x==y) \text {. }
$$

? - classmates (jane, Y).
What are the bindings of \mathbf{Y} ?

$$
\begin{aligned}
& ?-Y=\text { jane } ; / 1 Y=\text { jane } \\
& ?=Y=\text { jane } \quad 11 Z=\text { es } \\
& ?=Y=\text { ajit } \quad \| Z=c s
\end{aligned}
$$

Exercise

$\begin{array}{rl}q(a)^{v} & r(a)\end{array}$ true for $p(a)$.
 $q(a) . q(b) \cdot q(c)$.
$s(a) . s(c)$.
w(a). w(b).

- Evaluate:

Lecture Outline

- Prolog
- Imperative control flow
- Negation by failure
- Generate and test paradigm

Generate and Test Paradigm

- Search in space
- Prolog rules to generate potential solutions
- Prolog rules to test potential solutions for desired properties
- Easy prototyping of search solve(P) :- generate (P), test(P).

A Classical Example: n Queens

- Given an n by n chessboard, place each of n queens on the board so that no queen can attack another in one move
- Queens can move either vertically,
- horizontally, or
- diagonally.
- A classical generate and test problem

n Queens

my_not(X):- X, !, fail. \%same as not
my_not(_).
$\operatorname{in}\left(H,\left[H \mid _\right]\right)$.
$\operatorname{in}\left(H,\left[_\mid T\right]\right):-\operatorname{in}(H, T)$.
\%same as member

$$
\operatorname{nums}(L, H, R) \overrightarrow{0}
$$

nums ($\mathrm{H}, \mathrm{H},[\mathrm{H}]) . \rightarrow$ result of oplevel call
CtI, H, R
nums ($L, H,[L \mid R]$) : $-L<H, N$ is $L+1, \operatorname{nums}(N, H, R)$.
$\% \% \%$ nums generates a list of integers between two other numbers, L, H by putting the first number at the front of the list returned by a recursive call with a number 1 greater than the first. It works when L and H are bound to integers. It stops when it gets to the higher number
queen_no(4).
$\% \%$ The number of queens/size of bodra [1, $\left.\left.\tilde{H}^{2}\right\}_{4}\right]_{4}$

n Queens (ii) generation rules

ranks (L):- queen no (N), $\operatorname{rauks}(L)$. ranks (L):- queen_no(N), mums (1,N,L)• $L=[1,2,3,4]$ files (L):- queen_no(N), nums(1,N,L).
$\% \% \% r a n k s$ and files generate the x and y axes of the chess board. Both are lists of numbers up to the number of queens; that is, ranks (L) binds L to the list [1,2,3,..,\#queens].
rank (R):- ranks (L), in (R,L).
\%\%\% R is a rank on the board; selectosmparticular rank R from the list of all ranks L.
file (F):- files (L), in (F,L).
응\% F is a file on the board; selects a particular file F from the list of all files L.
n Queens (iii) test rules $\operatorname{aftacks}((R 1, F 1),(R 2, F 2))$ \%\%\% Squares on the board are (rank,file) coordinates. attacks decides if a queen on the square at rank $R 1$, file $F 1$ attacks the square at rank R2, file $F 2$ or vice versa. A queen attacks every square on the same rank, the same file, or the same diagonal.
attacks (($\left.\left.R_{r},\right)_{\text {, }}\left(R_{r}\right)\right)$)
attacks ((_r), (_, F)) . \%a Prolong tuple attacks ((R1, F1) , (R2,F2)):-
diagonal ((R1, F1) , (R2,F2)).
\%\%\%can decompose a Prolog tuple by unification $(X, Y)=(1,2)$ results in $X=1, Y=2$; tuples have fixed size and there is not head-tail type construct for tuples

same rank (x coordinate)
same file (Y coordinate)

> What is safe placement for next queen on board?

n Queens (iv)

$\% \%$ Two squares are on the same diagonal if the slope of the line between them is 1 or -1. Since / is used, real number values for 1 and -1 are needed.
diagonal ($(\mathbf{X}, \mathbf{Y}),(\mathbf{X}, \mathbf{Y}))$. ஃdegenerate case
diagonal ($(\mathrm{X} 1, \mathrm{Y} 1),(\mathrm{X} 2, \mathrm{Y} 2)):-\mathrm{N}$ is $\mathrm{Y} 2-\mathrm{Y} 1, \mathrm{D}$ is $\mathrm{X} 2-\mathrm{X} 1$, Q is N/D, Q is 1 . \%diagonal needs bound arguments!
diagonal ($(\mathrm{X} 1, \mathrm{Y} 1)$, (X2,Y2)):-N is Y2-Y1,D is X2-X1, Q is N/D, Q is -1.
\%\%\%because of use of "is", diagonal is NOT invertible.

n Queens (v)

응ㅇ This solution works by generating every list of squares, such that the length of the list is the same as the number of queens, and then checks every list generated to see if it represents a valid placement of $\begin{aligned} & \text { queens to solve the } N \text { queens problem; } \\ & \text { assume list length function }\end{aligned},[-\times 1,-\times 2,-\times 3,-\times 4]$ queens(P):- queen_no(N), length(P,N), placement(P), ok_place(P).
"generate" code given first
"test" code follows

n Queens (vi)

\%\%\%placement can be used as a generator. If placement is called with a free variable, it will construct every possible list of squares on a chess board. The first predicate will allow it to establish the empty list as a list of squares on the board. The second predicate will allow it to add any (R, F) pair onto the front of a list of squares if R is a rank of the board and F is a file of the board.
placement first generates all 1 element lists, then all 2 element lists, etc. Switching the order of predicates in the second clause will cause it to try varying the length of the list before it varies the squares added to the list
placement([]).
placement ([(R,F)|P]):- placement (P), rank (R), file (F). $-\times 1-\times 2, \times 3,-\times 4$

n Queens (vii)

$\% \%$ these two routines check the placement of the next queen
$\% \%$ Checks a list of squares to see that no queen on any of them would attack any other. does by checking that position j doesn't conflict with positions (j+1),(j+2) etc.
ok_place([]).
ok_place ([(R,F)|P]):- no_attacks ((R, F) , P) , ok_place (P).
$\% \%$ Checks that a queen at square (R, F) doesn't attack any square (rank,file pair) in list L; uses attacks predicate defined previously
no_attacks(_,[]).
no_attacks ($(\mathrm{R}, \mathrm{F}),[(\mathrm{R} 2, \mathrm{~F} 2) \mid \mathrm{P}]):-$
my_not(attacks((R,F), (R2,F2))), no_attacks((R,F), P).

Homework Solution Structure

- Typical Prolog homework: search in space (e.g., paths in a maze, paths in graph, parsing sequences, various puzzles)
- Typical solution: \%bare case
- search (F,Partial,Total) :-
final (F), ... \% get Total from Partial
osearch (C, Partial,Total) :-
generate (C, N), \% generate next position
valid(N),... \% test if N is a valid position augment(Partial,New_partial),
\% augment Partial solution with N, typically we would need not(member(N,Partial)) too.
- search (N,New_partial,Totäl). Aresurse

A Harder Exercise

- Remember grammar from one of the quizzes...

1. $S \rightarrow a S b S$
2. $S \rightarrow \mathrm{bSaS}$
3. $S \rightarrow \varepsilon$

Write a top-down depth-first parser in Prolog:
?- parse([a,b,a,b],R).
$R=[1,2,3,3,3]$; // seq. of productions
$\mathbf{R}=[1,3,1,3,3]$; // different seq false. // no more seqs

Hint: break list into constituent parts

The End
search (P, Final) g- queens. no (N), length (P, N), Final $=P$ 。
$\%$ search $(P, P):-$ queen sous (N), length (P, N)
Search (P, Final):-
$\operatorname{rank}(R)$, file (F), no_altacks $((R, F), P)$, search ($[(R, F) \mid P]$, Rival $)$.

$$
\text { solve }(P):-\operatorname{search}([J, P) \text {. }
$$

