
1

Logic Programming and Prolog

Finish reading: Scott, Chapter 12



Programming Languages CSCI 4430, A. Milanova 2

Lecture Outline

n Quiz 3
n Prolog 

n Imperative control flow
n Negation by failure
n Generate and test paradigm



3

Imperative Control Flow

n Programmer has explicit control on 
backtracking process

cut (!)

n ! is a subgoal
n As a goal it succeeds, but with a side effect:

n Commits interpreter to all bindings made since 
unifying left-hand side of current rule with parent 
goal



Programming Languages CSCI 4430, A. Milanova 4

Cut (!) Example

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).

?- snowy(C).



Programming Languages CSCI 4430, A. Milanova 5

Cut (!) Example
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails; no
backtracking to 
rainy(X). 

GOAL FAILS.

!



Programming Languages CSCI 4430, A. Milanova 6

Cut (!) Example 2

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).
snowy(troy).

?- snowy(C).



7

Cut (!) Example 2
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).
snowy(troy). snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

2 committed OR 
bindings:

_C = _X
and X = seattle

GOAL FAILS.

!

OR

snowy(troy)

How about query ?- snowy(troy)?
Programming Languages CSCI 4430, A. Milanova



Programming Languages CSCI 4430, A. Milanova 8

Cut (!) Example 3

rainy(seattle) :- !.
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).
snowy(troy).

?- snowy(C).



9

Cut (!) Example 3

rainy(seattle) :- !.
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).
snowy(troy).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

C = troy
SUCCEEDS

Only rainy(X) is 
committed to 
bindings (X = 
seattle).

!

OR

snowy(troy)

C = troy

How about query ? - snowy(rochester)?



Programming Languages CSCI 4430, A. Milanova 10

Cut (!) Example 4

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- !, rainy(X), cold(X).

?- snowy(C).



Programming Languages CSCI 4430, A. Milanova 11

Cut (!) Example 4
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- !, rainy(X), cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle) 
fails; 
backtrack.

X = 
rochester

success

!



Programming Languages CSCI 4430, A. Milanova 12

Cut (!) Example 5

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X), !.

?- snowy(C).



Programming Languages CSCI 4430, A. Milanova 13

Cut (!) Example 5
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X), !.

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle
X = rochester

success

!



14

Negation by Failure: not(X), \+(X) 
n not(C) succeeds when C fails 

n Called negation by failure, defined:
not(X) :- X,!,fail.
not(_).

n Not the same as negation in logic ¬X! 

n In Prolog, we can assert that something is 
true, but we cannot assert that something is 
false

Programming Languages CSCI 4430, A. Milanova



Programming Languages CSCI 4430, A Milanova 15



16

Exercise
takes(jane, his).
takes(jane, cs).
takes(ajit, art).
takes(ajit, cs).
classmates(X,Y) :- takes(X,Z),takes(Y,Z).

?- classmates(jane,Y).
What are the bindings of Y?



Programming Languages CSCI 4430, A. Milanova 17

Exercise 

n p(X) :- q(X), not(r(X)). 
r(X) :- w(X), not(s(X)). 
q(a). q(b). q(c). 
s(a). s(c). 
w(a). w(b). 

n Evaluate:
n ?- p(a).
n ?- p(b).
n ?- p(c).



Programming Languages CSCI 4430, A. Milanova 18

Lecture Outline

n Prolog 
n Imperative control flow
n Negation by failure
n Generate and test paradigm



Programming Languages CSCI 4430, A. Milanova 19

Generate and Test Paradigm

n Search in space

n Prolog rules to generate potential solutions
n Prolog rules to test potential solutions for 

desired properties

n Easy prototyping of search 
solve(P) :- generate(P), test(P).



Programming Languages CSCI 4430, A. Milanova 20

A Classical Example: n Queens

n Given an n by n chessboard, place each of n
queens on the board so that no queen can 
attack another in one move
n Queens can move either vertically, 
n horizontally, or 
n diagonally.

n A classical generate and test problem



21

n Queens
my_not(X):- X, !, fail. %same as not
my_not(_). 
in(H,[H|_]). %same as member
in(H,[_|T]):- in(H,T).

nums(H,H,[H]).
nums(L,H,[L|R]):- L<H, N is L+1, nums(N,H,R).
%%%nums generates a list of integers between two other 

numbers, L,H by putting the first number at the front 
of the list returned by a recursive call with a number 
1 greater than the first.  It works when L and H are 
bound to integers. It stops when it gets to the higher 
number

queen_no(4).
%%%The number of queens/size of board - use 4



22

n Queens (ii)
ranks(L):- queen_no(N), nums(1,N,L).
files(L):- queen_no(N), nums(1,N,L).
%%%ranks and files generate the x and y axes of the 

chess board. Both are lists of numbers up to the 
number of queens; that is, ranks(L) binds L to the 
list [1,2,3,…,#queens].

rank(R):- ranks(L), in(R,L).
%%% R is a rank on the board; selects a particular rank  

R from the list of all ranks L.

file(F):- files(L), in(F,L).
%%% F is a file on the board; selects a particular file 

F from the list of all files L.

Programming Languages CSCI 4430, A. Milanova



23

n Queens (iii)
%%% Squares on the board are (rank,file) coordinates.  

attacks decides if a queen on the square at rank R1, 
file F1 attacks the square at rank R2, file F2 or 
vice versa. A queen attacks every square on the same 
rank, the same file, or the same diagonal.

attacks((R,_),(R,_)).
attacks((_,F),(_,F)). %a Prolog tuple
attacks((R1,F1),(R2,F2)):-

diagonal((R1,F1),(R2,F2)).
%%%can decompose a Prolog tuple by unification

(X,Y)=(1,2) results in X=1,Y=2; tuples have fixed 
size and there is not head-tail type construct for 
tuples

q same diagonal

same rank
same file

What is safe placement
for next queen on board?



Programming Languages CSCI 4430, A. Milanova 24

n Queens (iv)
%%% Two squares are on the same diagonal if the slope of 

the line between them is 1 or -1.  Since / is used, real 
number values for 1 and -1 are needed.

diagonal((X,Y),(X,Y)). %degenerate case

diagonal((X1,Y1),(X2,Y2)):-N is Y2-Y1,D is X2-X1,
Q is N/D, Q is 1 . %diagonal needs bound 
arguments!

diagonal((X1,Y1),(X2,Y2)):-N is Y2-Y1,D is X2-X1, 
Q is N/D, Q is -1 .

%%%because of use of “is”, diagonal is NOT invertible.



Programming Languages CSCI 4430, A. Milanova 25

n Queens (v)
%%% This solution works by generating every list of 

squares, such that the length of the list is the same 
as the number of queens, and then checks every list 
generated to see if it represents a valid placement of 
queens to solve the N queens problem;
assume list length function

queens(P):- queen_no(N), length(P,N),
placement(P), ok_place(P).

“generate” code given first “test” code follows



Programming Languages CSCI 4430, A. Milanova 26

n Queens (vi)

%%%placement can be used as a generator.  If placement 
is called with a free variable, it will construct 
every possible list of squares on a chess board.
The first predicate will allow it to establish the 
empty list as a list of squares on the board.  The 
second predicate will allow it to add any (R,F) pair 
onto the front of a list of squares if R is a rank 
of the board and F is a file of the board.
placement first generates all 1 element lists, then 
all 2 element lists, etc.  Switching the order of 
predicates in the second clause will cause it to try 
varying the length of the list before it varies the 
squares added to the list

placement([]).
placement([(R,F)|P]):- placement(P), rank(R), file(F).



Programming Languages CSCI 4430, A. Milanova 27

n Queens (vii)
%%%these two routines check the placement of the next  

queen
%%%Checks a list of squares to see that no queen on 

any of them would attack any other. does by checking 
that position j doesn’t conflict with positions 
(j+1),(j+2) etc.

ok_place([]).
ok_place([(R,F)|P]):- no_attacks((R,F),P),ok_place(P).
%%% Checks that a queen at square (R,F) doesn't attack 

any square (rank,file pair) in list L; uses attacks 
predicate defined previously

no_attacks(_,[]).
no_attacks((R,F),[(R2,F2)|P]):-

my_not(attacks((R,F),(R2,F2))), no_attacks((R,F),P).



Homework Solution Structure

n Typical Prolog homework: search in space (e.g., 
paths in a maze, paths in graph, parsing 
sequences, various puzzles)

n Typical solution:
search(F,Partial,Total) :-

final(F), … % get Total from Partial
search(C,Partial,Total) :-

generate(C,N), % generate next position
valid(N),…  % test if N is a valid position 
augment(Partial,New_partial), 
% augment Partial solution with N, typically

we would need not(member(N,Partial)) too.
search(N,New_partial,Total). 28



29

A Harder Exercise
n Remember grammar from one of the quizzes…
1. S® aSbS
2. S® bSaS
3. S® ε
n Write a top-down depth-first parser in Prolog:

?- parse([a,b,a,b],R).
R = [1, 2, 3, 3, 3] ; // seq. of 
productions
R = [1, 3, 1, 3, 3] ; // different seq
false. // no more seqs

n Hint: break list into constituent parts 



The End

Programing Languages CSCI 4430, A. Milanova 30


