
1

Semantic Analysis

Read: Scott, Chapter 4.1-4.3

Announcements

n HW 1 grades are up
n Quiz 1,2,3 grades up

n We will release answers next week

n Rainbow grades
n Please check if your grade shows up correctly

Programming Languages CSCI 4430, A. Milanova 2

Programming Languages CSCI 4430, A. Milanova 3

Lecture Outline

n Syntax vs. static semantics
n Static semantics vs. dynamic semantics

n Attribute Grammars
n Attributes and rules
n Synthesized and inherited attributes (next time)
n S-attributed grammars (next time)
n L-attributed grammars (next time)

Programming Languages CSCI 4430, A. Milanova 4

Static Semantics

n Earlier we considered syntax analysis
n Informally, syntax deals with the form of

programming language constructs
n We now look at static semantic analysis

n Semantics deals with the meaning of
programming language constructs

n The distinction between the two is fuzzy
n In practice, anything that is not expressed in

terms of certain CFG (LALR(1), in particular) is
considered semantics

Static Semantics

5Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova 6

Static Semantics vs. Dynamic Semantics

n Static semantic analysis (compile-time)
n Informally, reasons about program properties

statically, before program execution
n E.g., determine static types of expressions, detect

certain errors

n Dynamic semantic analysis (run-time)
n Reasons about program properties dynamically,

during program execution
n E.g., could expression a[i] index out of array

bounds, etc.?

7

The Role of Semantic Analysis

n Detect errors in programs!
n Static semantic analysis

n Detect as many errors as possible early, before execution
n Type inference and type checking

n Dynamic semantic analysis
n Detect errors by performing checks during execution

n Again, detect errors as early as possible. E.g., flagging an array-
out-of-bounds at assignment a[i] = … is useful

n Tradeoff: dynamic checks slow program execution

n Languages differ greatly in the amount of static
semantic analysis and dynamic semantic analysis
they perform

Programming Languages CSCI 4430, A. Milanova

8

Examples of Static Semantic Errors

n Type mismatch:
n x = y+z+w: type of left-hand-side does not

“match” type of right-hand-side
n A a; … ; a.m(): m() cannot be invoked on

a variable of type A

n Definite assignment check in Java: a local
variable must be assigned before it is used

Programming Languages CSCI 4430, A. Milanova 9

Examples of Dynamic Semantic
Errors
n Null pointer dereference:

n a.m() in Java, and a is null (i.e., uninitialized reference)
n What happens?

n Array-index-out-of-bounds:
n a[i], i goes beyond the bounds of a
n What happens in C++? What happens in Java?

n Casting an object to a type of which it is not an
instance
n C++? Java?

n And more…

Programming Languages CSCI 4430, A. Milanova 10

Static Semantics vs. Dynamic Semantics

n Again, distinction between the two is fuzzy
n For some programs, the compiler can predict

run-time behavior by using static analysis
n E.g., there is no need for a nullness check:

x = new X();
x.m(); // x is non-null

n In general, the compiler cannot predict run-
time behavior
n Static analysis is limited by the halting problem

Programming Languages CSCI 4430, A. Milanova 11

Semantic Analyzer

scanner

parser

semantic analyzer
and intermediate
code generator

optimizer

code generator

compiler
character stream

token stream

parse trees

intermediate
form

modified
intermediate
form

assembly code

Semantic analyzer performs static semantic analysis on parse trees and ASTs.
Optimizer performs static semantic analysis on intermediate 3-address code.

Programming Languages CSCI 4430, A. Milanova 12

Lecture Outline

n Syntax vs. static semantics
n Static semantics vs. dynamic semantics

n Attribute Grammars
n Attributes and rules
n Synthesized and inherited attributes (next time)
n S-attributed grammars (next time)
n L-attributed grammars (next time)

Programming Languages CSCI 4430, A. Milanova 13

Attribute Grammars:
Foundation for Static Semantic Analysis

n Attribute Grammars: generalization of
Context-Free Grammars
n Associate meaning with parse trees
n Attributes

n Each grammar symbol has one or more values called
attributes associated with it. Each parse tree node has
its own instances of those attributes; attribute value
carries the “meaning” of the parse tree rooted at node

n Semantic rules
n Each grammar production has associated rule, which

may refer to and compute the values of attributes

Programming Languages CSCI 4430, A. Milanova 14

Example: Attribute Grammar to Compute Value
of Expression (denote grammar by AG1)

Production Semantic Rule
S ® E print(E.val)
E ® E1+T E.val := E1.val + T.val
E ® T E.val := T.val
T ® T1*F T.val := T1.val * F.val
T ® F T.val := F.val
F ® num F.val := num.val

S ® E E ® E + T | T T ® T * F | F F ® num

val: Attributes

Programming Languages CSCI 4430, A. Milanova 15

Example: Decorated parse tree for input
3*5 + 2*4

E +

F*
*

S

num

num 3

num 5 num 2

4

F 3

T 3

T 15

5
F 2

T 2

15

F 4

T 8

E 23

S ® E print(E.val)
E ® E1+T E.val := E1.val+T.val
E ® T E.val := T.val
T ® T1*F T.val := T1.val*F.val
T ® F T.val := F.val
F ® num F.val := num.val

Programming Languages CSCI 4430, A. Milanova 16

Example

n val: Attributes associated to symbols
n Intuitively, A.val holds the value of the expression,

represented by the subtree rooted at A
n Separate attributes are associated with separate nodes in

the parse tree
n Indices are used to distinguish between symbols

with same name within same production
n E.g., E ® E1+T E.val := E1.val+T.val

n Attributes of terminals supplied by scanner
n In example, attributes of + and * are never used

Programming Languages CSCI 4430, A. Milanova 17

Building an Abstract Syntax Tree (AST)

n An AST is an abbreviated parse tree
n Operators and keywords do not appear as

leaves, but at the interior node that would have
been their parent

n Chains of single productions are collapsed

n Compilers typically work with ASTs

Programming Languages CSCI 4430, A. Milanova 18

Building ASTs for Expressions

E

E T

T

+

T F

F

num:3

T F

*

*

F

num:2

num:5

num:4

Parse tree for 3*5+2*4 Abstract syntax tree (AST)
+

* *

num:3

num:5

num:2
num:4

How do we construct syntax trees for expressions?

19

Attribute Grammar to build AST for
Expression (denote by AG2)
n An attribute grammar:

Production Semantic Rule
E ® E1+T E.nptr := mknode(+, E1.nptr, T.nptr)
E ® T E.nptr := T.nptr
T ® T1 *F T.nptr := mknode(*, T1.nptr, F.nptr)
T ® F T.nptr := F.nptr
F ® num F.nptr := mkleaf(num, num.val)

mknode(op,left,right) creates an operator node with
label op, and two fields containing pointers left, to left
operand and right, to right operand

mkleaf(num,num.val) creates a leaf node with label num,
and a field containing the value of the number

Attribute “nodepointer”
points to AST

20

Constructing ASTs for Expressions
Input:
3 * 5 + 2 * 4

+

*

S

num,3

F

T F

num,5

E

num,2

F

T

num,4

F

*
T * , ,

T * , ,

E +, ,

E ® E1+T E.nptr := mknode(‘+’, E1.nptr, T.nptr)
E ® T E.nptr := T.nptr
T ® T1 *F T.nptr := mknode(‘*’, T1.nptr, F.nptr)
T ® F T.nptr := F.nptr
F ® num F.nptr := mkleaf(‘num’, num.val)

Exercise

n We know that the language L = anbncn is not
context free. It can be captured however with
an attribute grammar. Give an underlying
CFG and a set of attribute rules that
associate an attribute ok with the root S of
each parse tree, such that S.ok is true if and
only if the string corresponding to the fringe
of the tree is in L.

Programming Languages CSCI 4430, A. Milanova 21

Exercise

Programming Languages CSCI 4430, A. Milanova 22

Exercise

n Consider the expression grammar

Give attribute rules to accumulate into the root
a count of the maximum depth to which
parentheses are nested in the expression. E.g.,
((1 + 2)*3 + 4)*5 + 6 has a count of 2.

Programming Languages CSCI 4430, A. Milanova 23

E ® E + T | T
T ® T * F | F
F ® num | (E)

Exercise

Programming Languages CSCI 4430, A. Milanova 24

