IFDS and CFL-Reachability (optional slides)

IFDS Context Sensitivity
- Interprocedural, Finite, Distributive, Subset (IFDS) problems
 - Allows for efficient computation of summary transfer functions. Converts problem into Context-Free-Language (CFL)-Reachability
 - Can reduce monotone problem into the IFDS problem, but with loss of precisions
- Reading: Thomas Reps, Susan Horwitz and Mooly Sagiv, "Precise, Interprocedural Dataflow Analysis via Graph Reachability, POPL'95

Efficient Encoding of Transfer Functions
- Finite set of dataflow facts D
 - E.g., all variables $\{x, y, z\}$
 - Transfer functions $f: 2^D \rightarrow 2^D$
- Edge $\Lambda \rightarrow d$ means $d \in f(\emptyset)$
 - i.e., d is generated
- Edge $d_1 \rightarrow d_2$ means $d_2 \notin f(\emptyset)$ and $d_2 \in f(S)$ if $d_1 \in S$
 - i.e., d_1 in S leads to d_2 in $f(S)$
- Edge $\Lambda \rightarrow \Lambda$ always there

What Can Be Encoded.
Taint Analysis
1. $z = 5$
2. $y = "tainted"$ value
3. $x = y + z$

The paths from top Λ to x and to y entail that x and y are tainted at exit from 3.

Efficient Computation of Function Composition!

What Can Be Encoded.
All Bit-Vector Problems!
1. $x = a*b$
2. $a = a - 1$
- Add edges from Λ to facts being generated (e.g., $a*b$)
- Add in-out edges to facts being preserved (e.g., $a-1$)
What Cannot Be Encoded

- Monotone functions cannot be encoded
 - E.g., constant propagation, points-to analysis
- Points-to analysis, distributive subset?
 - \(f_{p=q} : p \rightarrow x \) in \(f_{p=q}(S) \) if \(q \rightarrow y \) in \(S \) AND \(y \rightarrow x \) in \(S \)
- Can encode disjunctions but not conjunctions

Can encode disjunctions but not conjunctions

Large class of problems falls under IFDS
- Monotone problems can be reduced into IFDS with loss of precision

Big Picture, Why Does It Matter

- We can compose transfer functions within a procedure \(p \) and compute the summary transfer function \(\Phi_p \)
- Precisely: Computes the MORP solution!
- Efficiently: \(O(ED^2) \)
 - \(E \) is the number of intraprocedural edges across all procedures in ICFG

Exploded Supergraph \(G^* \)

- Let \(G^* \) be the ICFG, which Reps et al. call the supergraph
- First, define the nodes of \(G^* \)
 - For each node \(j \in G^* \) there is node \(<j,A> \in G^# \)
 - For each node \(j \in G^* \) and \(d \in D \) there is node \(<j,d> \in G^# \)
- Represents the \(\text{in}(j) \)

Next, add edges to \(G^# \)

- For each \(k \) in successors of \(j \)
 - Add edge \(<j,A> \rightarrow <k,A> \) to \(G^# \)
 - Add edge \(<j,A> \rightarrow <k,d> \) if \(d \in f_j(\emptyset) \)
 - Add edge \(<d_1,p> \rightarrow <d_2,k> \) if \(d_2 \notin f_j(\emptyset) \) and \(d_2 \in f_j(\text{in}(j)) \) if \(d_1 \in \text{in}(j) \)

Represent (encode) transfer function \(f_j \)

Exploded Supergraph

1. read a, b
2. call p
3. return p
4. print t
5. entry p
6. if a == 0 then
7. a = a - 1
8. t = tainted
9. exit p

Example: Read a, b

5. entry p
6. if a == 0 then
7. a = a - 1
8. t = tainted
9. exit p
Exploded Supergraph G#

- One can think about IFDS in terms of Sharir and Pnueli’s functional approach
- … or in terms of graph reachability: IFDS reduces the standard dataflow problem to a reachability problem in G#
 - Path from \(<1,\Lambda> \) to \(<j,d> \) means that \(d \) reaches \(j \)
 - More precisely, it is a CFL-reachability (Context-Free-Language reachability) problem: “Is there a path from \(<1,\Lambda> \) to \(<j,d> \) whose edges form a string in the language of realizable paths?”
- Gives rise to on-demand approaches

IFDS Conclusion

- Key idea is encoding of transfer functions \(f_j \)
 - Allows for efficient computation of summary transfer functions \(\Phi_p \)
 - Reduces to CFL-reachability problem on G#
- IFDS is defined for forward \textit{may} problems. Forward \textbf{must} problems can be expressed as complement
- Real-world analysis problems
 - Soot has a built-in IFDS framework
 - Some taint analyses for Android use IFDS