Dataflow Analysis: Classical Analysis for Object-oriented Programs, cont.
Announcements

- HW1, Quiz 1 and 2 graded

- HW2 out
 - We’ve added some posts covering some common setup issues
 - Post question on
 - Setup, please do set this up as soon as possible!
 - Starter code, class analysis framework and worklist algorithm
 - Soot
Outline of Today’s Class

- Will go over HW1 Problems 2 and 3
- Class analysis framework questions?
- Rapid Type Analysis (RTA)
- The XTA analysis family
- 0-CFA
- Points-to analysis (PTA)
Your Homework

- A bunch of flow-insensitive, context-insensitive analyses for Java
 - RTA, XTA, and optionally other
 - Simple property space
 - Simple transfer functions
 - E.g., in fact, RTA gets rid of most CFG nodes, processes just 2 kinds of nodes

- Millions of lines of code in seconds
Problem statement: What are the classes of objects that a (Java) reference variable may refer to?

Applications
- Call graph construction
 - Nodes are method
 - Edges represent calling relationships
 - Notion of methods reachable from main
- Virtual call resolution
In Java, if a reference variable \(r \) has type \(A \), \(r \) can refer only to objects that are concrete subclasses of \(A \). Denoted by \textbf{SubTypes}(A).

- Note: refers to Java subtype, not true subtype
- Note: \textbf{SubTypes}(A) notation due to Tip and Palsberg (OOPSLA’00)

At virtual call site \(r.m() \), we can find what methods may be called based on the hierarchy information.
Rapid Type Analysis (RTA)

- Due to Bacon and Sweeney
 - David Bacon and Peter Sweeney, “Fast Static Analysis of C++ Virtual Function Calls”, OOPSLA ’96

- Improves on CHA

- Expands calls only if it has seen an instantiated object of the appropriate type!
public class A {
 public static void main() {
 A a;
 D d = new D();
 E e = new E();
 if (…) a = d; else a = e;
 a.m();
 }
}

public class B extends A {
 public void foo() {
 G g = new G();
 }
}

Example

RTA starts at main. Records that D and E are instantiated. At call a.m() looks at all CHA targets. Expands only into target C.m()! Never reaches B.foo(), never records G as being instantiated.
RTA

R is the set of reachable methods

I is the set of instantiated types

1. $\{ \text{main} \} \subseteq R$ // Algo: initialize R with main

2. for each method $m \in R$ and each new site $\text{new } C$ in m

 $\{ C \} \subseteq I$ // Algo: add C to I; schedule
 // “successor” constraints
3. for each method $m \in R$, each virtual call $y.n(z)$ in m, each class C in $\text{SubTypes}(\text{StaticType}(y)) \cap I$, and n', where $n' = \text{resolve}(C, n)$

\[
\{ n' \} \subseteq R \quad // \text{Algo: add target } n' \text{ to } R, \text{ if not already there. Schedule “successors”}
\]
XTA Analysis Family

- Due to Tip and Palsberg
 - Frank Tip and Jens Palsberg, “Scalable Propagation-Based Call Graph Construction Algorithms”, OOPSLA ’00

- Generalizes RTA

- Improves on RTA by storing more precise information about flow of class types
R is the set of reachable methods

S_m is the set of types that flow to method m

S_f is the set of types that flow to field f

1. $\{ \text{main} \} \subseteq R$

2. for each method $m \in R$ and each new site new C in m

 $\{ C \} \subseteq S_m$
3. for each method \(m \in R \), each virtual call \(y.n(z) \) in \(m \), each class \(C \) in \(\text{SubTypes}(\text{StaticType}(y)) \cap S_m \) and \(n' \), where \(n' = \text{resolve}(C,n) \)

\[
\begin{align*}
\{ n' \} & \subseteq R \quad \text{\(\text{//} \) add \(n' \) to \(R \) if not already there} \\
\{ C \} & \subseteq S_{n'} \quad \text{\(\text{//} \) add \(C \) to \(S_{n'} \) if not already there} \\
S_m \cap \text{SubTypes}(\text{StaticType}(p)) & \subseteq S_{n'} \\
S_{n'} \cap \text{SubTypes}(\text{StaticType}(ret)) & \subseteq S_m
\end{align*}
\]

(\(p \) denotes the parameter of \(n' \), and \(\text{ret} \) denotes the return of \(n' \))
4. for each method $m \in R$, each field read $x = y.f$ in m
\[
S_f \subseteq S_m
\]

5. for each method $m \in R$, each field write $x.f = y$ in m
\[
S_m \cap \text{SubTypes}($\text{StaticType}(f)) \subseteq S_f
\]
Practical Concerns

- Multiple parameters
- Direct calls
 - either static invoke calls or
 - special invoke calls
- Array reads and writes!
- Static fields

See Tip and Palsberg for more
Example: RTA vs. XTA

```java
public class A {
    public static void main() {
        n1();
        n2();
    }

    static void n1() {
        A a1 = new B();
        a1.m();
    }

    static void n2() {
        A a2 = new C();
        a2.m();
    }
}
```

![Class Diagram](diagram.png)
public class AndExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public AndExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) && r.evaluate(c);
 }
}
public class OrExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public OrExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) || r.evaluate(c);
 }
}
main() {
 Context theContext = new Context();
 BoolExp x = new VarExp("X");
 BoolExp y = new VarExp("Y");
 BoolExp exp = new AndExp(
 new Constant(true), new OrExp(x, y));
 theContext.assign(x, true);
 theContext.assign(y, false);
 boolean result = exp.evaluate(theContext);
}
Outline of Today’s Class

- Will go over HW1 Problems 2 and 3
- Class analysis framework questions?
- Rapid Type Analysis (RTA)
- The XTA analysis family
- 0-CFA
- Points-to analysis (PTA)
0-CFA

- Described in Tip and Palsbserg’s paper

- 0-CFA stands for 0-level Control Flow Analysis, where “0-level” stands for context-insensitive analysis
 - Will see 1-CFA, 2-CFA, … k-CFA next time

- Improves on XTA by storing even more information about flow of class types
0-CFA

R is the set of reachable methods
S_v is the set of types that flow to variable v
S_f is the set of types that flow to field f

1. \{ \text{main} \} \subseteq R

2. for each method \(m \in R \) and each new site \(x = \text{new} \ C \text{ in } m \)
 \{ \text{C} \} \subseteq S_x
0-CFA

3. for each method \(m \in R \), each virtual call \(x = y.n(z) \) in \(m \), each class \(C \) in \(S_y \) and \(n' \), where \(n' = \text{resolve}(C,n) \)

\[
\{ n' \} \subseteq R
\]

\[
\{ C \} \subseteq S_{\text{this}}
\]

\[
S_z \cap \text{SubTypes}(\text{StaticType}(p)) \subseteq S_p
\]

\[
S_{\text{ret}} \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq S_x
\]

(this is the implicit parameter of \(n' \), \(p \) is the parameter of \(n' \), and \(\text{ret} \) is the return of \(n' \))
4. for each method \(m \in R \), each field read \(x = y.f \) in \(m \)

\[
S_f \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq S_x
\]

5. for each method \(m \in R \), each field write \(x.f = y \) in \(m \)

\[
S_y \cap \text{SubTypes}(\text{StaticType}(f)) \subseteq S_f
\]
6. for each method $m \in R$, each assignment $x = y$ in m

$$S_y \cap \text{SubTypes(StaticType}(x)) \subseteq S_x$$
public class A {
 public static void main() {
 A a1 = new B();
 a1.m();

 A a2 = new C();
 a2.m();
 }
}
public class AndExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public AndExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) && r.evaluate(c);
 }
}
public class OrExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public OrExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) || r.evaluate(c);
 }
}
main() {
 Context theContext = new Context();
 BoolExp x = new VarExp(“X”);
 BoolExp y = new VarExp(“Y”);
 BoolExp exp = new AndExp(
 new Constant(true), new OrExp(x, y));
 theContext.assign(x, true);
 theContext.assign(y, false);
 boolean result = exp.evaluate(theContext);
}

Boolean Expression Hierarchy:
XTA vs. 0-CFA
Outline of Today’s Class

- Will go over HW1 Problems 2 and 3
- Class analysis framework questions?
- Rapid Type Analysis (RTA)
- The XTA analysis family
- 0-CFA
- Points-to analysis (PTA)
Andersen’s Points-to Analysis

- Commonly attributed to Lars Andersen [1994]
 - “Andersen’s points-to analysis for C”
- More approximation than our earlier formulation: don’t ever “kill”; maintain a single points-to graph for all program points
- Flow-insensitive, context-insensitive analysis

- Formulated in terms of subset constraints
- Solvable by the worklist algorithm
Andersen’s Points-to Analysis

\(\text{pts}(p) \) denotes the points-to set of \(p \)

1. \(p = \&a \{ a \} \subseteq \text{pts}(p) \)
2. \(p = q \quad \text{pts}(q) \subseteq \text{pts}(p) \)
3. \(p = *q \quad \text{for each } x \text{ in } \text{pts}(q). \quad \text{pts}(x) \subseteq \text{pts}(p) \)
4. \(*p = q \quad \text{for each } x \text{ in } \text{pts}(p). \quad \text{pts}(q) \subseteq \text{pts}(x) \)

Use \textcolor{blue}{\text{worklist-like algorithm}} to compute least solution of these constraints
Andersen’s Points-to Analysis: Examples

Example 1:

\begin{align*}
p1 &= &a \\
p2 &= p1 \\
*p2 &= 1
\end{align*}
Example 2:

\[
\begin{align*}
p_3 &= \&p_1 \\
p_1 &= \&a \\
\ldots \\
q &= p_3 \\
r &= \ast q \\
p_1 &= \&b
\end{align*}
\]
a = &x;
p = &a

if (...) {
 q = &b;
 *p = q;
}

else {
 q = &c;
 *p = q;
}
PTA

- Widely referred to as Andersen’s points-to analysis for Java

- Improves on 0-CFA by storing information about objects, not classes

 - A a1 = new A(); // o₁
 - A a2 = new A(); // o₂
PTA

R is the set of reachable methods
Pt(v) is the set of objects that v may point to
Pt(o.f) is the set of objects that field f of object o may point to
1. \{ main \} \subseteq R

2. for each method \(m \in R \) and each new site \(i \): \(x = \text{new C in } m \)
 \(\{ o_i \} \subseteq Pt(x) \) // instead of C, we have o_i
3. for each method $m \in R$, each virtual call $x = y.n(z)$ in m, each class o_i in $\text{Pt}(y)$ and n', where $n' = \text{resolve}(\text{class_of}(o_i), n)$

\[
\{ n' \} \subseteq R \\
\{ o_i \} \subseteq \text{Pt}(\text{this}) \\
\text{Pt}(z) \cap \text{SubTypes}(\text{StaticType}(p)) \subseteq \text{Pt}(p) \\
\text{Pt}(\text{ret}) \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq \text{Pt}(x)
\]

(*this is the implicit parameter of n', p is the parameter of n', and ret is the return of n'*)
4. for each method $m \in R$, each field read $x = y.f$ in m
 for each object $o \in Pt(y)$
 $$Pt(o.f) \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq Pt(x)$$

5. for each method $m \in R$, each field write $x.f = y$ in m
 for each object $o \in Pt(x)$
 $$Pt(y) \cap \text{SubTypes}(\text{StaticType}(f)) \subseteq Pt(o.f)$$
6. for each method \(m \in \mathbb{R} \), each assignment stmt \(x = y \) in \(m \)

\[
\text{Pt}(y) \cap \text{SubTypes} (\text{StaticType}(x)) \subseteq \text{Pt}(x)
\]
Example: 0-CFA vs. PTA

```java
class A {
    public static void main() {
        X x1 = new X(); // o1
        A a1 = new B(); // o2
        x1.f = a1; // o1.f points to o2
        A a2 = x1.f; // a2 points to o2
        a2.m();

        X x2 = new X(); // o3
        A a3 = new C(); // o4
        x2.f = a3; // o3.f points to o4
        A a4 = x2.f; // a4 points to o4
        a4.m();
    }
}
```
The Big Picture

- All fit into our monotone dataflow framework!
- Flow-insensitive, context-insensitive
 - Least solution of $S = f_j(S) \lor S$
- Algorithms differ mainly in “size” of S
 - RTA: only 2 kinds of statements; Lattice?
 - XTA: expands to all statements; Lattice?
 - 0-CFA: all statements; Lattice?
 - PTA (Points-to analysis): all statements; Lattice elements are points-to graphs
The Big Picture

- All fit into monotone dataflow framework
- Flow-insensitive, context-insensitive
 - Least solution of $S = f_j(S) \lor S$
- Algorithms differ mainly in “size” of S
 - RTA: only 2 kinds of statements; Lattice?
 - XTA: expands to all statements; Lattice?
 - 0-CFA: all statements; Lattice?
 - PTA (Points-to analysis): all statements; Lattice elements are points-to graphs
The Big Picture

RTA:
\[I \]

Types:
\[A \mathrm{\quad B \quad C \quad D} \]

XTA:
\[S_{m1} \quad S_{m2} \ldots \quad S_{mk} \quad S_{f1} \ldots \quad S_{fk} \]

\[A \quad B \quad C \quad D \ldots \]

0-CFA:
\[v_1, v_2, \ldots \quad v_n \]

\[A \quad B \quad C \quad D \ldots \]

PTA:
\[o_1:A \quad o_2:A \quad o_3:B \quad o_4:B \quad o_5:C \quad o_6:D \ldots \]

\[v_1, v_2, \ldots \quad v_n \]