Interprocedural Analysis and Context Sensitivity
Announcements

- Quiz 3 on Friday
- HW2 graded
So Far

- Flow-insensitive, context-insensitive analyses for Java
 - RTA
 - XTA
 - 0-CFA
 - PTA

- Context-sensitive analysis
Outline of Today’s Class

- Interprocedural control-flow graph (ICFG)
- Classical ideas in interprocedural analysis
- Context-sensitive analysis in practice
 - Notion of calling context
 - Call-string-based context sensitivity
 - Cloning-based context sensitivity
 - Summary-based context sensitivity

- Reading
 - Chapter 12.1-3 Dragon book
Interprocedural Control Flow Graph (ICFG)

- Add procedure **entry** node and **exit** node
- At each procedure call add
 - A **call** node and a **call-entry** edge

```
2.call --> 7.entry
```

- A **return** node and an **exit-return** edge

```
3.return <-- 9.exit
```
int* id(int* p) {
 return p;
}

a = &x;

c1: b = id(a);
z = *b + *b;
c = &y;
c2: d = id(c);

1. a = &x
2. call id
3. return id
4. z = *b + *b
 c = &y
5. call id
6. return id
7. entry id
8. ret = p
9. exit id
Context-Insensitive Analysis

- Add explicit assignments at call and return
 - E.g., \(x = \text{id}(y) \)
 - \(p = y \) models flow from actual argument \(y \) to formal parameter \(p \)
 - \(x = \text{ret} \) models flow from return to left-hand-side

- Treat ICFG as one big CFG
 - Can be flow-sensitive or
 - Flow-insensitive
 - E.g., Andersen’s points-to analysis for C
Andersen’s Analysis for C

```c
int* id(int* p) {
    return p;
}
```

c1: b = id(a);
```
z = *b + *b;
```
c2: d = id(c);
```
a = &x;
```
```
1. a = &x
```
```
2. p = a
    call id
```
```
3. return id
    b = ret
```

4. z = *b + *b
 c = &y
```
```
5. p = c
 call id
```

6. return id
    d = ret
```
```
7. entry id
```
```
8. ret = p
```
```
9. exit id
```
int* id(int* p) {
 return p;
}

a = &x;

1. a = &x
2. p = a
3. return id
4. z = *b + *b
5. p = c
6. return id
7. entry id
8. ret = p
9. exit id

c1: b = id(a);
 z = *b + *b;
 c = &y;

c2: d = id(c);
Context-Insensitive Analysis

- Problem: merges data from different contexts

- Goal of context-sensitive analysis: track “realizable paths”
int* id(int* p) {
 return p;
}

a = &x;
c1: b = id(a);
z = *b + *b;
c = &y;
c2: d = id(c);
Another Example

```c
int fib(int z, int u) {
    if (z<3) {
        return u+1; /* ret = u+1; */
    } else {
        auxiliary variable ret
        holds the return values */
        c2: v = fib(z-1,u);
        c3: return fib(z-2,v)
    }
}
...

c1: y = fib(x,0);
...
```

What does `fib` compute? Here `z` and `u` are formal parameters; `ret` is the special variable holding the return value.
Another Example

main:
1)

fib:
4.entry
5.z<3
6. ret=u+1
7.exit
8.call
9.return
10.call
11.return

z=x
u=0
y=ret
z=z-1
u=u
v=ret
z=z-2
u=v
ret=ret
c1
c2
c3

Spring 21 CSCI 4450/6450, A Milanova
Realizable Paths (RP)

- Context-free grammar!
- Same-level (balanced) path (SLP):
 \[M ::= e \quad e \text{ denotes intra-procedural edge} \]
 \[\mid (c_i M)_{c_i} \text{ captures path from call to return} \]
 \[\mid M M \]
 - An intra-procedural edge is annotated with \(e \)
 - Call-entry edge that originates at call site \(c_i \) is \((c_i \)
 - Corresponding exit-return edge is \()_{c_i} \)
- A path \(p \), from \(m \) to \(n \), is in \(SLP_{m,n} \) iff string along \(p \) is in language described by \(M \)
Realizable Paths (RP)

- Paths from 1 to any node \(n \) in program
- Another grammar, describes paths with outstanding calls (i.e., calls not yet returned):
 \[
 C ::= (c_1 | M (c_1 | C M)
 \]
- A path from entry node 1 to node \(n \) is in \(\text{RP}_{1,n} \) iff the string from 1 to \(n \) is in the language generated by either \(M \) or \(C \)
 - E.g., in Points-to example, 1,2,7,8,9,3 is in \(\text{RP}_{1,3} \) but 1,2,7,8,9,3,4,5,7,8,9,3 is NOT in \(\text{RP}_{1,3} \)
Is $p_1 = 1, 2, 4, 5, 6, 7$ in $RP_{1,7}$?

Is $p_2 = 1, 2, 4, 5, 8, 4, 5, 6, 7, 3$ in $RP_{1,3}$?
Meet Over All Realizable Paths (MORP)

- MORP \((n) = \bigvee f_{n_k} \circ f_{n_{k-1}} \circ \cdots \circ f_{n_2} \circ f_1 \text{(init)} \)

 \(p=(1,n_2 \ldots n_k,n) \) is a path in \(\text{RP}_{1,n} \)

(\(\circ \) denotes function composition)

- Also called MVP (meet over all valid paths) or just MRP

- \(\text{MORP}(n) \leq \text{MOP}(n) \). Why?

- May be undecidable even for lattices of finite height

- Goal: encode context and restrict analysis over realizable paths, as much as possible
Outline of Today’s Class

- Interprocedural control-flow graph (ICFG)
- Classical ideas in interprocedural analysis
- Context-sensitive analysis in practice
 - Notion of calling context
 - Call-string-based context sensitivity
 - Cloning-based context sensitivity
 - Summary-based context sensitivity

- Reading
 - Chapter 12.1-3 Dragon book
Classic Ideas and Results

- Sharir and Pnueli’s “Two approaches to Interprocedural dataflow analysis”, 1981
 - Amir Pnueli, Turing Award in 1996 for “For seminal work introducing temporal logic into computing science and for outstanding contributions to program and system verification.”

- A finite lattice of dataflow facts
- Distributive transfer functions
- No local variables, no parameter passing
1. read a, b
 t = a*b

2. call p

3. return p

4. t = a*b
 print t

5. entry p

6. if a == 0 then
 a = a - 1

7. call p

8. return p
 t = a*b

9. exit p
Sharir and Pnueli Example

- Expression $a*b$ is NOT available at 4 if we consider _all_ paths
 - E.g., along 1,2,5,6,7,5,6,9,3,4 $a*b$ gets “killed” due to $a = a - 1$, and it is not recomputed

- Expression $a*b$ is available at 4 if we consider only realizable paths
 - Path 1,2,5,6,7,5,6,9,3,4 is unrealizable because return edge 9,3 does not match the call edge 7,5
 - 1,2,5,6,7,5 ... 9,8,9 ...
 - We know “kill” 6,7 is succeeded by 7,5, which must be balanced with 9,8, which is succeeded by “gen”
Functional Approach

- Operates on unchanged property space
- Computes summary transfer functions Φ_p that summarize the effect of procedure p

- Reduces problem to intraprocedural case:
 - $\text{in}(\text{return } p) = \Phi_p(\text{in}(\text{call } p))$
 - thus, avoids propagation from callee along the exit p --- $\text{return } p$ edge!
Functional Approach

Phase 1:
Compute a **summary transfer function** Φ_p that captures effect of p. In example Φ_p is the **identity function**: nothing gets generated and nothing gets killed (simplifying a bit)

1. read a, b

 $$t = a \times b$$

2. call p

3. return p

4. $t = a \times b$

 print t

5. entry p

6. if $a == 0$ then

 $a = a - 1$

7. call p

8. return p

 $$t = a \times b$$

9. exit p
1. read a, b
 \[t = a * b \]
2. call p
3. return p
4. \[t = a * b \]
 print t
5. entry p
6. if a == 0 then
 a = a - 1
 call p
 return p
 \[t = a * b \]
7. call p
8. return p
9. exit p

Phase 2:
Dataflow analysis:
• At return p
 \[\text{in}(\text{return p}) = \Phi_p(\text{in}(\text{call p})) \]
 \[\text{out}(\text{return p}) = \text{in}(\text{return p}) \]
 AVOIDS PROPAGATION along exit-return edges!

• At entry p
 \[\text{in}(\text{entry p}) = V \text{in}(\text{call p}) \]
 (propagates facts from all callers to callee)
Call String Approach

- A call string records outstanding calls in a path.

- E.g., call string \((c_1)(c_2)\) denotes that “we got there” on a path with outstanding calls at \(c_1\) and at \(c_2\).

\begin{align*}
1. \text{read } a, b \\
t = a \times b \\
2. \text{call } p \\
3. \text{return } p \\
4. t = a \times b \\
\text{print } t \\
5. \text{entry } p \\
6. \text{if } a == 0 \text{ then } a = a - 1 \\
7. \text{call } p \\
8. \text{return } p \\
9. \text{exit } p
\end{align*}
Call String Approach

- Tags solutions per program point with corresponding call string
- Multiple tagged solutions per program point j in p:
 - Sharir and Pnueli Example:
 - We have $< \{ a*b \}, (c_1), < \{ \}, (c_1(c_2))$ at 6
 - Meaning: $a*b$ is available at 6 on paths with outstanding call string c_1, but it is not available on paths with outstanding call string c_1c_2
Call String Approach

- Apply original transfer functions point-wise

- Apply on elements of the original, i.e., “intraprocedural” dataflow lattice
 - \{ a*b \}, \{ a*b, a+b \}, {}, etc.

- Extend to handle call-entry and exit-return
 - At call-entry, simply append \((c_i \)
 - At exit-return, propagate only if \()_c_i \) matches!
Call String Approach

1. Extend in/out sets to sets of “tagged” lattice elements.
2. Apply orig. transfer funcs. point-wise.
3. Extend to handle call-entry, exit-return edges.

1. read a, b
 t = a*b

2. call p
 <{a*b},_>
 c1:

3. return p
 3. return p
 t = a*b
 print t

5. entry p
 <{a*b},(c1>

6. if a == 0 then
 a = a - 1

7. call p
 <{},(c1>
 c2:

8. return p
 t = a*b
 <{a*b},(c1>

9. exit p
Call String Approach

1. \(a = \&x \)
2. \(p = a \)
call id
3. return id
 \(b = \text{ret} \)
4. \(z = *b + *b \)
 \(c = \&y \)
5. \(p = c \)
call id
6. return id
 \(d = \text{ret} \)
7. entry id
 \(\text{ret} = p \)
8. exit id
Call String Approach

- At exit nodes, propagate only if open and close match!

\[
\langle \text{ret} \rightarrow x \rangle, \ (c_1), \\
\langle \text{ret} \rightarrow y \rangle, \ (c_2) \] at 9

Propagate \(\{\text{ret} \rightarrow y\} \) to 6, thus, \(\{d \rightarrow y\} \), because \(c_2 \) matches call string \((c_2) \)

1. \(a = \& x \)
2. \(p = a \) call id
3. return id \(b = \text{ret} \)
4. \(z = *b + *b \) \(c = \& y \)
5. \(p = c \) call id
6. return id \(d = \text{ret} \)
7. entry id
8. ret = p
9. exit id
Call String Approach

- What is $S_{CS}(8)$?
 Union of $<p \rightarrow x, (c_1)>$ and $<p \rightarrow y, (c_2)>$ so $S_{CS}(8)$ is graph $\{ p \rightarrow x, p \rightarrow y \}$

- What is $S_{CS}(4)$?
- What is $S_{CS}(6)$? (out(6) more precisely)
Sharir and Pnueli, Key Result

- $S_{FA}(j)$ is the solution at j computed by the functional approach
- $S_{CS}(j)$ is the solution at j computed by the call string approach
- For (certain) distributive functions and finite lattices
 \[S_{FA}(j) = S_{CS}(j) = \text{MORP}(j) \]

Caveats?
Sharir and Pnueli, Key Result

- Caveats
 - Summary functions Φ_p difficult to compute
 - With recursion, infinite call strings, S_{CS} is infinite
 - Even for distributive functions and finite lattices, S_{FA} and S_{CS} cannot be computed (efficiently)

- Simple programming model
- Only distributive analysis
Key Points So Far

- ICFG
- Realizable paths
 - Use context-free grammar to describe
 - MORP
 - Goal of context-sensitive analysis is to filter out unrealizable paths, as much as possible
- Classical ideas
 - Functional approach
 - Call-string approach
Outline of Today’s Class

- Interprocedural control-flow graph (ICFG)
- Classical ideas in interprocedural analysis
- Context-sensitive analysis in practice
 - Notion of calling context
 - Call-string-based context sensitivity
 - Cloning-based context sensitivity
 - Summary-based context sensitivity

- Reading
 - Chapter 12.1-3 Dragon book
Transfer functions are not distributive

Local variables, flow of values from actual arguments to formal parameters, and from return to left-hand-side

Procedures have side effects!

Sometimes there is no call graph!

- Function pointers, virtual calls, functions as first-class values

Parameter passing mechanisms
Context-Sensitive Analysis In Practice

- Context-sensitive analysis in practice: ad-hoc adaptation of Sharir and Pnueli’s call string or functional approach

- Call string approach
 - More intuitive than functional approach
 - Virtually universally applicable, widely used

- Functional approach
 - Better approach, whenever applicable
 - More difficult to implement
 - Better precision and better scalability, in general
Notion of Calling Context

- **Calling context** is defined as the content of the entire stack
Call-string-based context-sensitivity uses a _static_ call string as abstraction of the stack.

- \(k \)-CFA: distinguishes context by \(k \) most recent call sites that lead to \(p \)
 - make a “copy” of procedure \(p \) for each _static_ call string of length \(k \)
- \(1 \)-CFA: “inline” \(p \) at each call site of \(p \)
Example: 1-CFA

1. \(a = \&x \)

2. \(p_{c1} = a \)
 call id_c1

3. return id_c1
 \(b = \text{ret}_c1 \)

4. \(z = *b + *b \)
 \(c = \&y \)

5. \(p_{c2} = c \)
 call id_c2

6. return id_c2
 \(d = \text{ret}_c2 \)

7. entry id_c1

8. \(\text{ret}_c1 = p_{c1} \)

9. exit id_c1

10. entry id_c2

11. \(\text{ret}_c2 = p_{c2} \)

12. exit p_{c2}
Problems?

main:

...

a = &x;

c1: b = id(a);

z = *b + *b;

c = &y;

c2: d = id(c);

...

id:

int* id(int* p) {
 c3: return id_impl(p);
}

int* id_impl(int* p) {
 return p;
}

...
Problems with 1-CFA?
Problems with k-CFA?

- Program size grows exponentially

- In practice, 2-CFA and 3-CFA are popular approaches
Recall: Points-to Analysis for Java (PTA)

- Saw in context of class analysis framework
- Context-insensitive, flow-insensitive analysis
- Syntax

 Object allocation: \(a_i : x = \text{new } A \) // \(o_i \)

 Assignment: \(x = y \)

 Field Write: \(x.f = y \)

 Field Read: \(x = y.f \)

 Virtual call: \(c_i : x = y.m(z) \)
Recall: PTA

- Next, define the analysis semantics
- Constraints over syntax
 - E.g., Allocation $x = \text{new } A // o_i$
 for each reachable method m
 for each Allocation site i: $x = \text{new } A // o_i$ in m
 $\{ o_i \} \subseteq \text{Pt}(x)$
 - Note: $\text{Pt}(x)$ denotes the points-to set of x
- Natural progression: RTA \Rightarrow XTA \Rightarrow 0-CFA \Rightarrow PTA
Recall: PTA Constraints

\[a_i : x = \text{new } A // o_i \quad \{ o_i \} \subseteq \text{Pt}(x) \]
\[x = y \quad \text{Pt}(y) \nsubseteq \text{Pt}(x) \]
\[x.f = y \quad \text{for each } o \text{ in } \text{Pt}(x). \text{Pt}(y) \subseteq \text{Pt}(o.f) \]
\[x = y.f \quad \text{for each } o \text{ in } \text{Pt}(y). \text{Pt}(o.f) \subseteq \text{Pt}(x) \]

\[c_i : x = y.m(z) \]
\[\text{for each } o \text{ in } \text{Pt}(y) \]
\[\text{let } m'(this,p,ret) = \text{resolve}(o,m) \text{ in} \]
\[\{ o \} \subseteq \text{Pt}(this) \]
\[\text{Pt}(z) \subseteq \text{Pt}(p) \quad \text{Pt}(ret) \subseteq \text{Pt}(x) \]
public class A {
 public static void main() {
 X x1 = new X(); // o
 A a1 = new B(); // o
 x1.f = a1; // o.f points to o
 A a2 = x1.f; // a2 points to o
 a2.m();
 }
}
public class A {
 public static void main() {
 X x1 = new X(); // o_1
 A a1 = new B(); // o_2
 x1.f = a1; // o_1.f points to o_2
 A a2 = x1.f; // a2 points to o_2
 a2.m();

 X x2 = new X(); // o_3
 A a3 = new C(); // o_4
 x2.f = a3; // o_3.f points to o_4
 A a4 = x2.f; // a4 points to o_4
 a4.m();
 }
}
Another PTA Example

A a = new A(); // o₁
X x = new X(); // o₂

C1: a.set(x);
A a2 = new B(); // o₃
X x2 = new Y(); // o₄

C2: a2.set(x2);

// set(X p) { this.f = p; }
A a = new A(); // o₁
X x = new X(); // o₂

c1: a.set(x);

A a2 = new B(); // o₃
X x2 = new Y(); // o₄

c2: a2.set(x2);

// set(X p) { this.f = p; }
Will Continue Next Time?
main() {
 Context theContext = new Context();

 BoolExp or1 = new OrExp(new VarExp("X"), // or₁
 new VarExp("Y"));
 BoolExp or2 = new OrExp(new Constant(true), // or₂
 new Constant(false));

 boolean result1 = or1.evaluate(theContext);
 boolean result2 = or2.evaluate(theContext);
}

Boolean Expression Hierarchy:

PTA
public class OrExp extends BoolExp {
 private BoolExp left; private BoolExp right;

 public OrExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left; private BoolExp r = this.right;
 return l.evaluate(c) || r.evaluate(c);
 }
}

Spring 21 CSCI 4450/6450, A Milanova
main() {
 Context theContext = new Context();

 c1: BoolExp or1 = new OrExp(new VarExp("X"), // or₁
 new VarExp("Y"));
 c2: BoolExp or2 = new OrExp(new Constant(true), // or₂
 new Constant(false));

 c3: boolean result1 = or1.evaluate(theContext);
 c4: boolean result2 = or2.evaluate(theContext);
}

Boolean Expression Hierarchy:
How About 1-CFA?
public abstract class BinaryExp extends BoolExp {
private BoolExp left; private BoolExp right;

public BinaryExp(BoolExp left, BoolExp right) {
 this.left = left; this.right = right;
}

...}

public class OrExp extends BinaryExp {
public OrExp(BoolExp left, BoolExp right) {
 c5: super(left, right); // call to constructor BinaryExp.<init>
}

...}
main() {
 Context theContext = new Context();

 // c1: Boolean expression 1
 BoolExp or1 = new OrExp(new VarExp("X"),
 new VarExp("Y"));

 // c2: Boolean expression 2
 BoolExp or2 = new OrExp(new Constant(true),
 new Constant(false));

 // c3: Evaluate expression 1
 boolean result1 = or1.evaluate(theContext);

 // c4: Evaluate expression 2
 boolean result2 = or2.evaluate(theContext);
}
What If We Changed Boolean Expression Hierarchy: 1-CFA?
Cloning-based Context Sensitivity

- Remember, *calling context* is the content of the entire call stack.
- Cloning-based context sensitivity uses *program state of interest* as abstraction of the stack.
- Clone (i.e., copy) a procedure for each program state of interest, i.e., “calling context”.
- A hybrid of functional and call-string.
Cloning-Based Context Sensitivity

A a = new A(); // o₁

c1: a.set(new X()); // o₂

c2: a.set(new X()); // o₃

A a2 = new B(); // o₄

c3: a2.set(new Y()); // o₅

// set(X p) { this.f = p; }
Cloning-Based Context Sensitivity

- It is more effective if we “cloned” method `set` per receiver object rather than per call site.

```java
A a = new A();  // o₁

// o₂
A a₁ = new A();
c₁: a₁.set_o₁(new X());

// o₃
A a₂ = new A();
c₂: a₂.set_o₁(new X());

// o₄
A a₃ = new A();
c₃: a₃.set_o₄(new Y());
```

- Again, flow-insensitive and context-sensitive, reaches our “ground truth”
Cloning-Based Context Sensitivity

class A { <init>(X p) { this.f = p; } … }
class B extends A { <init>(X p) { c1: super(p); } }
 Note: super calls A.<init>(p)
class C extends B { <init>(X p) { c2: super(p); } }

c = new C; // o₁
c3: c.<init>(new X()); // o₂
c2 = new C; // o₃
c4: c2.<init>(new X()); // o₄

1-CFA?
2-CFA?
3-CFA?
Summary-based Context Sensitivity

- Compute summary transfer functions
 - \(x = \text{id}(y) \) applies “add \(x \rightarrow a \) for each \(y \rightarrow a \)” (points-to for C example)
 - \(p() \) applies the “identity function” (Sharir and Pnueli’s Available expressions example)
 - \(a.set(x) \) “sets field \(f \) of all objects \(a \) points to to point to the objects \(x \) points to” (PTA example)

- Phase 1: compute summary transfer functions
 - Collapse into SCC on call graph, then compute summaries bottom up

- Phase 2: propagate values into callees
Strongly-Connected Components

- \(p \) forms a SCC.
- Compute summary of \(p \) treating SCC as single procedure
- Summary of \(p \) says \(a \times b \) is NOT available 😞

```
1. read a, b
   t = a*b
2. call p
3. return p
4. t = a*b
   print t
5. entry p
6. if a == 0 then
   a = a - 1
7. call p
8. return p
   t = a*b
9. exit p
```

\(c_1 \)
Key Points

- Context-sensitive analysis is difficult
- Different approaches
 - Call-string-based, also known as k-CFA
 - 2-CFA and 3-CFA
 - Cloning-based
 - Summary-based