Announcements

- HW3 due? Extension?
- HW4 out today or tomorrow
- 3 larger benchmarks
- Run RTA and XTA including library classes
- Compare RTA vs. XTA call graphs
- Write a 1-2 page summary of your results
- Make HW4 a team assignment?

Abstract Interpretation

- Patrick Cousot and Radhia Cousot, POPL'77
 - A general framework
 - Building static analyses
 - Reasoning about correctness of static analysis
 - Comparing static analyses
 - Combines ideas from dataflow analysis (monotone frameworks and fixpoint iteration) and formal verification (semantics)

Lecture Notes Based On

- "Principles of Program Analysis" by Nielsen, Nielsen and Hankin, Chapter 3
 - Alex Salcianu’s friendlier account of Chapter 3: https://web.eecs.umich.edu/~bchandra/courses/papers/Salcianu_AbstractInterpretation.pdf
- Lecture notes by Xavier Rival, ENS

Overview

Program Execution:

Points-to Analysis (PTA):

x = y.n(z) x = y.n(z)
pts(z) ⊆ pts(p)

Analysis 1 Space: Analysis 2 Space:

Intuitively, Abstract Interpretation is about relating one Analysis to another Analysis
Overview

PTA:

\[x \rightarrow \alpha : A \]

XTA:

\[S_m \rightarrow A \]

\[x = y.n(z) \]

\[\text{pts}(z) \subseteq \text{pts}(p) \]

\[x = y.n(z) \text{ Sm} \text{ SubTypes}(\text{StaticType}(p)) \subseteq S_m \]

Overview

RTA:

\[I \rightarrow A \]

\[x = y.n(z) \]

\[\text{SubTypes(p)} \subseteq S_m \]

\[\text{Sm} \cap S_m \]

Outline

- Abstract interpretation, last class
- Semantics, last class
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections
- Applications of abstract interpretation

Collecting Semantics

- Collects all states a program can have at a given label (i.e., program point)
 - E.g., \(x \) cannot ever be null at \(j \)
 - \(n \) is always greater than 100 at \(j \)
- Given a label, we are interested in a function
 - \(C : \text{Labels} \rightarrow 2^A \)
 - The set of all states a program can have at \(t \)

We’ve Seen This Before...

- Operational semantics
 - Defines “concrete transfer functions”
 - Works on values drawn from \(\mathbb{Z} \) (concrete state)
- A static analysis, e.g., Constant Propagation
 - Defines “transfer functions”
 - Work on values from the flat lattice (abstract state)

Collecting Semantics

\[C[L2] = \{ \sigma[x \rightarrow n] | \sigma \in C[L1] \} \]

\[C[L1] = \{ \sigma | \sigma \in C[L1], \llbracket e \rrbracket \sigma = \text{true} \} \]

\[C[L3] = C[L1] \cup C[L2] \]

RTA is an abstraction of XTA.

Abstracts \(S_m \) into \(I \), the set of instantiated types across _all_ of the program.
Collecting Semantics

- "Ground truth"
 - We base reasoning about correctness (soundness) of our static analysis off of it
- Undecidable
- Relation to MOP solution?
- Define abstraction of state and semantics
- Goal: show that abstraction "properly represents" all values computed by collecting semantics

Abstraction Example 1: signs

Concrete values: sets of integers
Abstract values: signs
Lattice of signs:

- \(\bot \) represents the empty set
- \(+ \) represents any set of positive integers
- \(0 \) represents set \(\{ 0 \} \)
- \(- \) represents any set of negative integers
- \(T \) represents any set of integers

Concrete space: A lattice!
Abstract space: A lattice!

Analysis computes over abstract elements

Correctness conclusion, informally: if analysis (works on abstract elements \(a \)) determines that \(x \) at label \(\ell \) is \(a \), then \(a \) represents the set of concrete values \(c \) collected by the collecting semantics for \(x \) at \(\ell \)
Abstraction Example 1: signs

- We can also use U and ∩
 - if \(x_1 \) is \(\pm \) and \(x_2 \) is \(\pm \) then \(x_1 \cup x_2 \) is \(\pm \)

How about if \(x_1 \) is \(\pm \) and \(x_2 \) is \(0 \)?
- then \(x_1 \cup x_2 \) is \(T \)
 - because only \(\{0,1,2,3,\ldots\} \) \(\cap \) \(T \) holds
 - No other relation holds
- In the abstract, we include negative integers in \(x_1 \cup x_2 \) (we lose precision!)

Abstraction Example 2: constants

- Concrete elements: elements of concrete lattice, \(c \in 2^Z \)
- Abstract elements: \(\bot, T, n \), where \(n \in Z \)
 - Flat lattice:

- Abstraction relation:
 - \(c \vdash n \) if and only if \(c = \{ n \} \)
 - \(\bot \) represents the empty set
 - \(T \) represents any set of integers

Abstract semantics, works on abstract elements (the elements of the flat lattice)

- If \(x_1 \) is \(n_1 \) and \(x_2 \) is \(n_2 \) then \(x_1 + x_2 \) is \(n_1 + n_2 \)
 - \(n_1 \) represents exactly integer \(n_1 \)
 - \(n_2 \) represents \(n_2 \)
 - then \(x_1 + x_2 \) is \(n_1 + n_2 \), represented by \(n_1 + n_2 \)
- If \(x_1 \) is \(n_1 \) and \(x_2 \) is \(T \), then \(x_1 + x_2 \) is \(T \)
 - Since \(T \) represents any set, we cannot do better in the abstract but \(T \)

Abstraction Example 3: intervals

- Concrete elements: elements of \(2^Z \)
- Abstract elements: \(\bot, T, n, \) intervals \([a,b]\) where \(a \in Z \cup \{ -\infty \} \) and \(b \in Z \cup \{ \infty \} \) and \(a \leq b \)
 - Is it a lattice?
 - Yes!

- Abstraction relation:
 - \(\emptyset \vdash \bot \)
 - \(S \vdash T \)
 - \(S \vdash [a,b] \) iff for every \(n \in S, a \leq n \leq b \)

Abstract semantics

- If \(x_1 \) is \([a_1,b_1]\) and \(x_2 \) is \([a_2,b_2]\) then \(x_1 + x_2 \) is?
- If \(x_1 \) is \([a_1,b_1]\) and \(x_2 \) is \([a_2,b_2]\) then \(x_1 \cup x_2 \) is?
- If \(x_1 \) is \([a_1,b_1]\) and \(x_2 \) is \([a_2,b_2]\) then \(x_1 \cap x_2 \) is?
Abstraction Example 4: heap

- We need to expand our syntax and operational semantics to model the heap
 - Realistic analyses of imperative languages do need to model heap

- “Collection of objects” view (Java):

 \[s \in S : Id \rightarrow Addr \] // Stack

 \[h \in H : Addr \times Id \rightarrow Addr \] // Heap

Abstraction Example 4: heap

- Concrete elements:
 - Sets of heap objects \(h_j \)

- Abstract elements:
 - Sets of abstract heap objects \(o_i \)
 - Abstraction relation (gist of it):
 - \(o_i \) represents any set of objects \(h_j \) allocated at static allocation site \(i \)
 - Abstract semantics:
 - If \(x \) points to \(o_i \), after \(y = x \), \(y \) points to \(o_i \)

Abstraction Example 4: heap

- | \(x = y.f \) | \(s \cdot h = s \cdot h[(|y|)(s), f]; h \)
 - | \(x.f = y \) | \(s \cdot h = s \cdot h[(|x|)(s), f]; (|y|)(s) \)

(Note: \(|x|\)(s) returns the address of \(x \) in stack \(s \).)

- | \(i: x = \text{cons}(x_1, \ldots, x_k) \) | \(s \cdot h = s[x \leftarrow j \cdot h(j,f_1); (|x_1|)(s), \ldots, h(j,f_k); (|x_k|)(s)] \)

(i is the unique static allocation site identifier; \(j \) is the next available address in \(h \))

(read: allocate new object at address \(j \) on heap \(h \), then initialize values of fields \(f_1 \ldots f_k \) of \(j \) with respective addresses resulting from evaluation of \(x_1 \ldots x_k \) in \(s \))

Outline

- Abstract interpretation
- Semantics
 - Notion of abstraction
 - Concretization and abstraction functions
 - Galois Connections
- Applications of abstract interpretation