Announcements

- HW3 due on Thursday. Any questions?
- HW4 out today (Optional)
 - 3 larger benchmarks
 - Run RTA and XTA including library classes
 - Compare RTA vs. XTA call graphs
 - Write a 1-2 page summary of your results
- HW4 is a team assignment

Abstract Interpretation

- Patrick Cousot and Radhia Cousot, POPL’77
- A general framework
 - Building static analyses
 - Reasoning about correctness of static analysis
 - Comparing static analyses
- Combines ideas from dataflow analysis (monotone frameworks and fixpoint iteration) and formal verification (axiomatic semantics)

Lecture Notes Based On

- “Principles of Program Analysis” by Nielsen, Nielsen and Hankin, Chapter 3
 - Alex Salcianu’s friendlier account of Chapter 3: https://web.eecs.umich.edu/~bchandra/courses/papers/Salcianu_AbstractInterpretation.pdf
- Lecture notes by Xavier Rival, ENS

AI Overview

Program Execution:

x \to h_i; A

x = y.n(z)
passes value of z to parameter p

Points-to Analysis (PTA):

x \to o_i; A

x = y.n(z)
pts(z) \subseteq pts(p)

Points-to analysis is an abstraction. Abstracts infinitely many heap objects h_i created at site i into a single o_i.
Small-step Operational Semantics

- Also called trace semantics, or concrete semantics, models a trace of execution
- Memory state maps variables (V) to values (Z): \(\sigma : V \rightarrow Z \)
- Control state describes where we are
 - label \(\ell \) (note: we used the term program point)
 - Describes transition \(\langle \ell_1, \sigma_1 \rangle \rightarrow \langle \ell_2, \sigma_2 \rangle \)
 - (read: program executes statement at label \(\ell_1 \) on current state \(\sigma_1 \), transitioning to label \(\ell_2 \) in state \(\sigma_2 \))
- Also called, \(\sigma \) denotes state, also called value semantics
- Describes transition \(\langle \ell, \sigma \rangle \rightarrow \langle \ell', \sigma' \rangle \)
- Models a trace of execution

A Simple Imperative Language: Syntax (We’ve Seen This Before!)

- Simple expression: \(E ::= x | n \)
- Assignment: \(\langle \ell, \sigma \rangle \rightarrow \langle \ell', \sigma' \rangle \)
- Loop: \(\ell : \text{while} \; (b) \; \text{Seq} \)
- Conditional: \(\ell : \text{if} \; (b) \; \{ \ell_1 \} \; \ell_2 \)
- Sequence: \(\ell : \{ \ell_1; \; \ell_2 \} \)
- \(V \) is the set of program variables, \(x \in V \)
- \(Z \) is the set of values variables take, \(n \in Z \)

A Simple Imperative Language: Operational Semantics

- Operational semantics of expressions:
 - \([n](\sigma) = n \) // constant \(n \) evaluates to \(n \)
 - \([x](\sigma) = \sigma(x) \) // variable \(x \) evaluates to the value \(n \) that \(x \) maps to in \(\sigma \)
- Assignment: \(\ell : x = E; \quad \ell : \ldots \)
 - \((\ell, \sigma) \rightarrow (\ell', \sigma[x \leftarrow [E](\sigma)]) \)
- Assignment: \(\ell : x = E_1 \; \text{Op} \; E_2 ; \quad \ell : \ldots \)
 - \((\ell, \sigma) \rightarrow (\ell', \sigma[x \leftarrow [[E_1](\sigma) \; \text{Op} \; [[E_2](\sigma)])] \)

Collecting Semantics

- Collects all states (i.e., \(\sigma \)'s) a program can have at a given label (i.e., program point)
 - E.g., variable \(x \) cannot ever be null at \(\ell \)
 - Variable \(y \) is always greater than \(100 \) at \(\ell \)
- Given a label, \(\ell \), we are interested in a function
 - \(\ell : \text{Labels} \rightarrow 2^Z \)
 - The set of all states a program can have at \(\ell \)
Collecting Semantics

- “Ground truth”
 - We base reasoning about correctness (soundness) of static analysis off of it
- Undecidable
- Relation to MOP solution?
- Define abstraction of state and semantics
- Goal: show that abstraction “properly represents” all values computed by the collecting semantics

Outline

- Semantics
 - Notion of abstraction
 - Concretization and abstraction functions
 - Galois Connections
 - Applications of abstract interpretation

Abstraction Example 1: signs

- Concrete values: sets of integers
- Abstract values: signs

Lattice of signs:

\[
\begin{align*}
\mathbb{T} & \quad \text{represents the empty set} \\
+ & \quad \text{represents any set of positive integers} \\
0 & \quad \text{represents set \{0\}} \\
- & \quad \text{represents any set of negative integers} \\
\mathbb{T} & \quad \text{represents any set of integers}
\end{align*}
\]

Abstraction relation relates concrete elements to abstract ones: \(c \overset{S}{\rightarrow} a \) (i.e., \(a \) represents \(c \), or conversely \(c \) is represented by \(a \))

\[
\begin{align*}
\{1,2,3\} & \overset{S}{\rightarrow} + \\
\{1,2,3\} & \overset{S}{\rightarrow} \mathbb{T}
\end{align*}
\]
Abstraction Example 1: signs

- We use the abstraction relation to define
 abstract semantics, i.e., the execution of
 program statements over abstract elements

- If \(x \) is a positive integer and \(y \) is a positive integer, then \(x + y \) is a positive integer.
- Therefore, the concrete value of \(x + y \) is a positive integer too, thus represented by +.

Abstraction Example 1: signs

- If \(x \) is + and \(y \) is + then \(x + y \) is +.
- Analysis computes over abstract elements.
- Correctness conclusion, informally: if analysis (works on abstract elements) determines that \(x \) at label \(l \) is a, then a represents the set of concrete values \(c \) collected by the collecting semantics for \(x \) at \(l \).

Abstraction Example 2: constants

- Concrete elements: elements of concrete lattice, \(c \in \mathbb{Z}^2 \)
- Abstract elements: \(\perp, T, n \), where \(n \in \mathbb{Z} \)
 - Flat lattice:
 - Abstraction relation:
 - \(c \vdash n \) if and only if \(c = \{ n \} \)
 - empty set is represented by \(\perp \)
 - any set of integers is represented by T

Abstraction Example 2: constants

- Abstract semantics, works on abstract elements (the elements of the flat lattice)
- If \(x \) is \(n_1 \) and \(y \) is \(n_2 \), then \(x + y \) is \(n_1 + n_2 \)
 - \(n_1 \) represents exactly integer \(n_1 \),
 - \(n_2 \) represents \(n_2 \),
 - then \(x + y \) is \(n_1 + n_2 \), represented by \(n_1 + n_2 \).
- If \(x \) is \(n_1 \) and \(y \) is T, then \(x + y \) is T.
 - Since T represents any set, we cannot do better in the abstract but T.
Abstraction Example 3: intervals

- Concrete elements: elements of $2^\mathbb{Z}$
- Abstract elements: \bot, \top, intervals $[a,b]$ where $a \in \mathbb{Z} \cup \{-\infty\}$ and $b \in \mathbb{Z} \cup \{\infty\}$ and $a \leq b$
 - Is it a lattice?
 - Yes!
- Abstraction relation:
 - $\emptyset \vdash \bot$
 - $S \vdash \top$
 - $S \vdash [a,b]$ iff for every $n \in S$, $a \leq n \leq b$

Abstraction Example 4: heap

- We need to expand our syntax and operational semantics to model the heap
 - Realistic analyses of imperative languages do need to model heap
- “Collection of objects” view (Java):
 - $s \in S : \text{Id} \rightarrow \text{Addr}$ // Stack
 - $h \in H : \text{Addr} \times \text{Id} \rightarrow \text{Addr}$ // Heap

Abstract semantics

- If x_1 is $[a_1,b_1]$ and x_2 is $[a_2,b_2]$ then $x_1 + x_2$ is?
- If x_1 is $[a_1,b_1]$ and x_2 is $[a_2,b_2]$ then $x_1 \cup x_2$ is?
- If x_1 is $[a_1,b_1]$ and x_2 is $[a_2,b_2]$ then $x_1 \cap x_2$ is?

Outline

- Semantics
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections
- Applications of abstract interpretation
Towards Concretization and Abstraction Functions

- Abstraction relation is consistent with order!

- Concrete order:
 - If $c_0 \leq c_1$ and c_1 is represented by a, then c_0 is represented by a

- Abstract order:
 - If $a_0 \leq a_1$ and c is represented by a_0, then c is represented by a_1

Abstraction Relation is Consistent with Partial Orders!

Concrete lattice:

Abstract lattice:

Towards Concretization and Abstraction Functions

- Previous slides, more formally
- Concrete lattice C, and abstract lattice A, \leq
- Abstraction relation is consistent with ordering:
 - For every $c_0, c_1 \in C$ and every $a \in A$,
 - $c_0 \subseteq c_1$ and $c_1 \leftarrow a \Rightarrow c_0 \leftarrow a$
 - For every $a_0, a_1 \in A$ and every $c \in C$,
 - $a_0 \leq a_1$ and $c \leftarrow a_0 \Rightarrow c \leftarrow a_1$
- The abstraction relation makes sense but is inconvenient. We need functions!
 - Concretization function: $A \rightarrow C$
 - Abstraction function: $C \rightarrow A$

Concretization Function

- Definition:
 - Concretization function $\gamma : A \rightarrow C$ (if it exists) maps $a \in A$ to the largest (most general) element $c \in C$ such that $c \leftarrow a$
 - (Note: $\gamma(a)$ “covers” all concrete elements that are represented by a.)
- $\gamma(a)$ returns the most general element c such that c is represented by a. This is called concretization

Gamma Examples
Concretization Function
Examples

- Concretization of lattice of signs
 - $\gamma_S(T) \rightarrow \mathbb{Z}$
 - $\gamma_S(\pm) \rightarrow \{1,2,3,\ldots\}$
 - $\gamma_S(\pm) \rightarrow \{-\ldots,-3,-2,-1\}$
 - $\gamma_S(0) \rightarrow \{0\}$
 - $\gamma_S(\perp) \rightarrow \{\}$

- Concretization of lattice of intervals
 - $\gamma_I([a,b]) \rightarrow \{a,a+1,\ldots,b-1,b\}$
 - $\gamma_I(T)$ etc.

Abstraction Function

- Definition:
 Abstraction function $\alpha : C \rightarrow A$ (if it exists) maps $c \subseteq C$ to the smallest (most precise) element $a \subseteq A$ such that $c \models a$

- α maps c to the most precise a such that a represents c. This is called best abstraction.

Alpha Examples

Concrete lattice:

Abstract lattice:

Abstraction Function Examples

- Signs abstraction
 - $a_2(c) \rightarrow \perp$ if $c = \{\}$
 - $a_2(c) \rightarrow 0$ if $c = \{0\}$
 - $a_2(c) \rightarrow +$ if for every $n \subseteq c$, $n > 0$
 - $a_2(c) \rightarrow -$ if for every $n \subseteq c$, $n < 0$
 - $a_2(c) \rightarrow T$ otherwise

- Constants abstraction
 - $a_C(c) \rightarrow \perp$ if $c = \{\}$
 - $a_C(c) \rightarrow n$ if $c = \{n\}$
 - $a_C(c) \rightarrow T$ otherwise

Outline

- Abstract interpretation
- Semantics
 - Notion of abstraction
 - Concretization and abstraction functions
 - Galois Connections
- Applications of abstract interpretation