Interprocedural Analysis and Context Sensitivity
Announcements

- Quiz 3

- Quiz 1, Quiz 2, HW1, HW2 graded
 - Check Rainbow grades
So Far

- Flow-insensitive, context-insensitive analyses for Java
 - RTA
 - XTA
 - 0-CFA
 - PTA

- Context-sensitive analysis
Outline of Today’s Class

- Interprocedural control-flow graph (ICFG)
 - Realizable paths
 - Meet over all realizable paths (MORP)
- Classical ideas in interprocedural analysis
 - Functional approach
 - Call string approach

Reading
- Chapter 12.1-3 Dragon book
Add procedure entry node and exit node
At each procedure call add
- A call node and a call-entry edge

2.call \longrightarrow 7.entry

- A return node and an exit-return edge

3.return \longleftarrow 9.exit
int* id(int* p) {
 return p;
}

...
 a = &x;
 c1: b = id(a);
 z = *b + *b;
 c = &y;
 c2: d = id(c);
Context-Insensitive Analysis

- Add explicit assignments at call and return
 - E.g., \(x = \text{id}(y) \)
 - \(p = y \) models flow from actual argument \(y \) to formal parameter \(p \)
 - \(x = \text{ret} \) models flow from return to left-hand-side

- Treat ICFG as one big CFG
 - Can be flow-sensitive or
 - Flow-insensitive
 - E.g., Andersen’s points-to analysis for C
Andersen’s Analysis for C

```c
int* id(int* p) {
    return p;
}

a = &x;
c1: b = id(a);
z = *b + *b;
c = &y;
c2: d = id(c);
```

1. `a = &x`
2. `p = a`
call `id`
3. `return id`
b = ret
4. `z = *b + *b`
c = &y
5. `p = c`
call `id`
6. `return id`
d = ret
7. `entry id`
8. `ret = p`
9. `exit id`
Unrealizable Paths

```c
int* id(int* p) {
    return p;
}

a = &x;
c1: b = id(a);
z = *b + *b;
c = &y;
c2: d = id(c);
```

1. `a = &x`
2. `p = a` call `id`
3. `return id`
 - `b = ret`
4. `z = *b + *b`
 - `c = &y`
5. `p = c` call `id`
6. `return id`
 - `d = ret`
7. `entry id`
8. `ret = p`
9. `exit id`
Context-Insensitive Analysis

- Problem with context-insensitive analysis: propagates data along “unrealizable paths”

- Goal of context-sensitive analysis is to propagate data along “realizable paths”
int* id(int* p) {
 return p;
}

a = &x;
c1: b = id(a);
z = *b + *b;
c = &y;
c2: d = id(c);

1. a = &x
2. p = a
 call id
3. return id
 b = ret
4. z = *b + *b
 c = &y
5. p = c
 call id
6. return id
 d = ret
7. entry id
8. ret = p
9. exit id

(c1)
(c2)
int fib(int z, int u) {
 if (z<3) {
 return u+1; /* ret = u+1; */
 } else {
 c2: v = fib(z-1,u);
 c3: return fib(z-2,v)
 }
}
...

c1: y = fib(x,0);
...

What does fib compute? Here z and u are formal parameters; ret is the special variable holding the return value.
Another Example

main:
1. \(z = x \)
2. \(u = 0 \)
3. \(y = \text{ret} \)
4. \(\text{entry} \)
5. \(z < 3 \)
6. \(\text{ret} = u + 1 \)
7. \(\text{exit} \)

fib:
8. \(\text{call} \)
9. \(\text{return} \)
10. \(\text{call} \)
11. \(\text{return} \)

\[
\begin{align*}
\text{fib}(n) &= \begin{cases}
1 & \text{if } n = 0 \\
2 & \text{if } n = 1 \\
\text{fib}(n-1) + \text{fib}(n-2) & \text{if } n > 1
\end{cases}
\end{align*}
\]
Realizable Paths (RP)

- Context-free grammar!
- Grammar describes same-level path (SLP):
 \[M ::= e \quad \text{e denotes intra-procedural edge} \]
 \[| (c_i M)_{c_i} \quad \text{path from call to return} \]
 \[| M M \]
 - An intra-procedural edge is annotated with \(e\)
 - Call-entry edge that originates at call site \(c_i\) is \((c_i\]
 - Corresponding exit-return edge is \()_{c_i}\)
- A path \(p\), from \(m\) to \(n\), is in \(SLP_{m, n}\) iff string along \(p\) is in language described by \(M\)
int* id(int* p) {
 return p;
}

a = &x;
c1: b = id(a);
z = *b + *b;
c = &y;
c2: d = id(c);

1. a = &x
2. p = a
call id
3. return id
 b = ret
4. z = *b + *b
c = &y
5. p = c
call id
6. return id
d = ret
7. entry id
c1
8. ret = p
c2
9. exit id
Realizable Paths (RP)

- What about paths with outstanding calls (calls that have not yet returned)?
- Another grammar:

\[
C ::= c_i \mid M c_i \mid C c_i \mid C M
\]

- A path from entry node 1 to node \(n \) is in \(\text{RP}_{1,n} \) iff the string from 1 to \(n \) is in the language generated by either \(M \) or \(C \)
 - E.g., in Points-to example, \(1,2,7,8,9,3 \) is in \(\text{RP}_{1,3} \) but \(1,2,7,8,9,3,4,5,7,8,9,3 \) is NOT in \(\text{RP}_{1,3} \)
Is \(p1 = 1,2,4,5,6,7 \) in \(\text{RP}_{1,7} \)?

Is \(p2 = 1,2,4,5,8,4,5,6,7,3 \) in \(\text{RP}_{1,3} \)?
Meet Over All Realizable Paths (MORP)

- MORP (n) = \(\vee f_{n_k} \circ f_{n_{k-1}} \circ \ldots \circ f_{n_2} \circ f_1(\text{init}) \)

 \(p=(1,n_2\ldots n_k,n) \) is a path in RP\(_{1,n} \)

(\(\circ \) denotes function composition)
- Also called MVP (meet over all valid paths) or just MRP

- MORP(n) \(\leq \) MOP(n). Why?
- May be undecidable, even for lattices of finite height
- Goal: encode context and restrict flow over realizable paths, as much as possible
Outline of Today’s Class

- Interprocedural control-flow graph (ICFG)
 - Realizable paths
 - Meet over all realizable paths (MORP)
- Classical ideas in interprocedural analysis
 - Functional approach
 - Call string approach

- Reading
 - Chapter 12.1-3 Dragon book
Classical Ideas and Results

- Sharir and Pnueli’s “Two approaches to Interprocedural dataflow analysis”, 1981
 - Amir Pnueli, Turing Award in 1996 for “For seminal work introducing temporal logic into computing science and for outstanding contributions to program and system verification.”

- A finite lattice of dataflow facts
- Distributive transfer functions
- No local variables, no parameter passing
Sharir and Pnueli Example (Available Expressions)

1. read a, b
 \(t = a \times b \)

2. call p

c1:

3. return p

4. \(t = a \times b \)
 print t

5. entry p

6. if a == 0 then
 a = a - 1

c2:

7. call p

8. return p
 \(t = a \times b \)

9. exit p

\(c1 \) \(c2 \)
Sharir and Pnueli Example

- Expression $a*b$ is NOT available at 4 if we consider _all_ paths
 - E.g., along $1,2,5,6,7,5,6,9,3,4$ $a*b$ gets “killed” due to $a = a - 1$, and it is not recomputed

- Expression $a*b$ is available at 4 if we consider only realizable paths
 - Path $1,2,5,6,7,5,6,9,3,4$ is unrealizable!
 - In a realizable path, a “kill” 6,7 is succeeded by call-entry 7,5, which must be balanced by exit-return 9,8, which is succeeded by “gen”
Functional Approach

- Operates on unchanged property space
- Computes *summary transfer functions* Φ_p that summarize the effect of procedure p

- Reduces problem to intraprocedural case:
 - $\text{in}(\text{return } p) = \Phi_p(\text{in}(\text{call } p))$
 - thus, avoids propagation from callee along the exit $p \rightarrow \text{return } p$ edge!
Phase 1:
Compute a **summary transfer function** Φ_p that captures effect of p. In example Φ_p is the **identity function**: nothing gets generated and nothing gets killed (simplifying a bit)
Functional Approach

Phase 2:
Dataflow analysis:

- At **return p**

 \[\text{in}(\text{return } p) = \Phi_p(\text{in}(\text{call } p)) \]

 \[\text{out}(\text{return } p) = \text{in}(\text{return } p) \]

 AVOIDS PROPAGATION along exit-return edges!

- At **entry p**

 \[\text{in}(\text{entry } p) = V \text{in}(\text{call } p) \]

 (propagates facts from all callers to callee)

1. read a, b
 \[t = a\times b \]

2. call p

3. return p

4. \[t = a\times b \]
 print t

5. entry p

6. if a == 0 then
 \[a = a - 1 \]

7. call p

8. return p
 \[t = a\times b \]

9. exit p

CSCI 4450/6450, A Milanova
Call String Approach

- A call string records outstanding calls in a path
- E.g., call string \((c_1(c_2)\) denotes that “we got there” on a path with outstanding calls at \(c_1\) and at \(c_2\)
Call String Approach

- Tags solutions per program point with corresponding call string
- Multiple tagged solutions per program point j in p:
 - Sharir and Pnueli Example:
 - We have $< \{ \text{a*b} \}, (c_1 >, \ < \{ \}, (c_1(c_2 >$ at 6
 - Meaning: a*b is available at 6 on paths with outstanding call string c_1, but it is not available on paths with outstanding call string $c_1 c_2$
Call String Approach

- Apply original transfer functions point-wise

- Apply on elements of the original, i.e., “intraprocedural” dataflow lattice
 - \{ a*b \}, \{ a*b, a+b \}, {}, etc.

- Extend to handle call-entry and exit-return
 - At call-entry, simply append \(c_i \)
 - At exit-return, propagate only if \(c_i \) matches!
Call String Approach

1. Extend in/out sets to sets of “tagged” lattice elements.
2. Apply orig. transfer funcs. point-wise.
3. Extend to handle call-entry, exit-return edges.

1. read a, b
 \[t = a \times b \]

2. call p

3. return p

4. \[t = a \times b \]
 \[\text{print } t \]

5. entry p

6. if \(a == 0 \) then
 \[a = a - 1 \]

7. call p

8. return p
 \[t = a \times b \]

9. exit p
Call String Approach

1. \(a = \&x \)

2. \(p = a \) call id

3. return id
 \(b = \text{ret} \)

4. \(z = *b + *b \)
 \(c = \&y \)

5. \(p = c \) call id

6. return id
 \(d = \text{ret} \)

7. entry id

8. \(\text{ret} = p \)

9. exit id

\(<\{a \rightarrow x\}, _{c1} >\)

\(<\{b \rightarrow x\}, _{c1} >\)

\(<\{c \rightarrow y\}, _{c2} >\)

\(<\{d \rightarrow y\}, _{c2} >\)

\(<\{p \rightarrow x\}, (c_1) >\)

\(<\{p \rightarrow y\}, (c_2) >\)

\(<\{\text{ret} \rightarrow x\}, (c_1) >\)

\(<\{\text{ret} \rightarrow y\}, (c_2) >\)
Call String Approach

- At exit nodes, propagate only if open and close match!
Call String Approach

- What is $S_{\text{CS}}(8)$?
Union of
$\langle p \rightarrow x, (c_1) \rangle$ and
$\langle p \rightarrow y, (c_2) \rangle$
graph \{ $p \rightarrow x$, $p \rightarrow y$ \}

- What is $S_{\text{CS}}(4)$?
- What is $S_{\text{CS}}(6)$?
 (out(6) more precisely)
Sharir and Pnueli, Key Result

- $S_{FA}(j)$ is the solution at j computed by the functional approach.
- $S_{CS}(j)$ is the solution at j computed by the call string approach.
- For (certain) distributive functions and finite lattices:
 \[S_{FA}(j) = S_{CS}(j) = \text{MORP}(j) \]

- Caveats?
Sharir and Pnueli, Key Result

- Caveats
 - Summary functions Φ_p difficult to compute
 - With recursion, infinite call strings, S_{CS} is infinite
 - Even for distributive functions and finite lattices, S_{FA} and S_{CS} cannot be computed (efficiently)

- Simple programming model
- Only distributive analysis
Key Points So Far

- ICFG
- Realizable paths
 - Context-free grammar describes realizable paths
 - MORP
 - Goal of context-sensitive analysis is to filter out unrealizable paths, as much as possible
- Classical ideas
 - Functional approach
 - Call-string approach