Announcements

- Grades in Rainbow Grades
- Quizzes 1-3
- Homework 1-2
- HW5, due Thursday after the break
- We’ll have Quiz 4 next time

Last Week

- Reviewed Lambda calculus
- Reviewed Haskell
 - Lazy evaluation, type inference, ADTs, monads
 - “A monad is just a monoid in the category of endofunctors, what’s the problem?”

- HW5
 - You can start working; I’ll set up Submitty today
 - You can catch up on HW3

Outline

- Applied lambda calculus
- Introduction to types and type systems
 - The simply typed lambda calculus (System F₁)
 - Syntax
 - Dynamic semantics
 - Static semantics
 - Type safety

Reading

- “Types and Programming Languages” by Benjamin Pierce, Chapters 8 and 9
- Lecture notes based on Pierce and notes by Dan Grossman, UW

Applied Lambda Calculus (from Sethi)

- \[E ::= c \mid x \mid (\lambda x. E_1) \mid (E_1 E_2) \]

 Augments the pure lambda calculus with constants. An applied lambda calculus defines its set of constants and reduction rules. For example:

<table>
<thead>
<tr>
<th>Constants</th>
<th>Reduction rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>if, true, false</td>
<td>if true M N \rightarrow M</td>
</tr>
<tr>
<td>(all these are \lambda terms, e.g., true=\lambda x. \lambda y. x)</td>
<td>if false M N \rightarrow N</td>
</tr>
<tr>
<td>iszero 0 \rightarrow true</td>
<td>iszero (succ 0) \rightarrow false, k>0</td>
</tr>
<tr>
<td>iszero (pred 0) \rightarrow false, k>0</td>
<td>succ (pred M) \rightarrow M</td>
</tr>
<tr>
<td>succ (pred 0) \rightarrow false, k>0</td>
<td>pred (succ M) \rightarrow M</td>
</tr>
</tbody>
</table>
From an Applied Lambda Calculus to a Functional Language

<table>
<thead>
<tr>
<th>Construct</th>
<th>Applied (\lambda)-Calculus</th>
<th>A Language (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>Constant</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>Application</td>
<td>(M N)</td>
<td>(M N)</td>
</tr>
<tr>
<td>Abstraction</td>
<td>(\lambda x.M)</td>
<td>(\text{fun}\ x => M)</td>
</tr>
<tr>
<td>Integer</td>
<td>(\text{succ}^0, k>0)</td>
<td>(k)</td>
</tr>
<tr>
<td></td>
<td>(\text{pred}^0, k>0)</td>
<td>(-k)</td>
</tr>
<tr>
<td>Conditional</td>
<td>if (P) (M)</td>
<td>if (P) then (M) else (N)</td>
</tr>
<tr>
<td>Let</td>
<td>((\lambda x. M) N)</td>
<td>(\text{let val} x = N\ in M\ end)</td>
</tr>
</tbody>
</table>

Aside: The Fixed-Point Operator
- One more constant, and one more rule:
 \[
 \text{fix} \quad \text{fix} M \rightarrow \delta (\text{fix} M)
 \]
- Needed to define recursive functions:
 \[
 \text{plus} x y = \begin{cases}
 y & \text{if } x = 0 \\
 \text{plus} (\text{pred} x) (\text{succ} y) & \text{otherwise}
 \end{cases}
 \]
- Therefore:
 \[
 \text{plus} = \lambda x. \lambda y. \text{if } (\text{iszero} x) y (\text{plus} (\text{pred} x) (\text{succ} y))
 \]

Aside: The Fixed-Point Operator
- But how do we define \(\text{plus}\)?

Define \(\text{plus} = \text{fix} M\), where
\[
M = \lambda f. \lambda x. \lambda y. \text{if } (\text{iszero} x) y (f (\text{pred} x) (\text{succ} y))
\]
We must show that
\[
\text{fix} M = \delta (\lambda x. \lambda y. \text{if } (\text{iszero} x) y (\text{fix} M (\text{pred} x) (\text{succ} y)))
\]

Aside: The Y Combinator
- \(\text{fix}\) is, of course, a lambda expression!
- One possibility, the famous Y-combinator:
\[
Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))
\]
Show that \(Y M\) indeed reduces to \(M (Y M)\)

Aside: The Y Combinator
- \(\text{fix}\) is, of course, a lambda expression!
- One possibility, the famous Y-combinator:
\[
Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))
\]
Show that \(Y M\) indeed reduces to \(M (Y M)\)

Aside: The Y Combinator
- \(\text{fix}\) is, of course, a lambda expression!
- One possibility, the famous Y-combinator:
\[
Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))
\]
Show that \(Y M\) indeed reduces to \(M (Y M)\)

Aside: The Y Combinator
- \(\text{fix}\) is, of course, a lambda expression!
- One possibility, the famous Y-combinator:
\[
Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))
\]
Show that \(Y M\) indeed reduces to \(M (Y M)\)

Types!
- Constants add power
- But they raise problems because they permit "bad" terms such as
 - \(\text{if } (\lambda x. y) z\) (arbitrary function values are not permitted as predicates, only true/false values)
 - \(0 x\) (0 does not apply as a function)
 - \(\text{succ true}\) (undefined in our language)
 - \(\text{plus true 0}\) etc.
Types!

- Why types?
 - Safety: Catch semantic errors early
 - Data abstraction. Simple types and ADTs
 - Documentation (statically-typed languages only)
 - Type signature is a form of specification!
 - Statically typed vs. dynamically typed languages
 - Type annotations vs. type inference
 - Type safe vs. type unsafe

Type System

- Syntax
- Dynamic semantics (aka concrete semantics!). In type theory, it is
 - A sequence of reductions
- Static semantics (aka abstract semantics!). In type theory, it is defined in terms of
 - Type environment
 - Typing rules, also called type judgments
 - This is typically referred to as the type system

Example, The Static Semantics. More On This Later!

- $\Gamma \vdash x : \tau$ (Variable)
- $\Gamma \vdash (E_1 E_2) : \tau$ (Application)
- $\Gamma, x : \sigma \vdash E_i : \tau$ (Abstraction)

Stuck States

- Informally, a term is “stuck” if it cannot be further reduced and it is not a value
 - E.g., 0 \times
- “Stuck states” characterize runtime errors
- In real programming languages “stuck states” correspond to forbidden errors such as seg faults, execution of operation on illegal arguments, etc.
- We will define “stuck states” formally for the simply typed lambda calculus, in just awhile
Stuck States Examples

- E.g., \(c (\lambda x. x) \), where \(c \) is an \texttt{int} constant, is a “stuck state”, i.e., a meaningless state.

- E.g., if \(c E_1 E_2 \) where \(c \) is an \texttt{int} constant, is a “stuck state”
 - Clearly not a value and clearly no rule applies!
 - Because the evaluation rules for \texttt{if-then-else} are
 - if true \(E_1 \rightarrow \delta E_1 \)
 - if false \(E_1 \rightarrow \delta E_2 \)

Type Soundness

- Remember, a type system accepts or rejects terms
- A sound type system never accepts a term that can get stuck
- A complete type system never rejects a term that cannot get stuck
- Typically, whether a term gets stuck is undecidable
- Type systems choose type soundness (i.e., safety)

Safety = Progress + Preservation

- Progress: A well-typed term is not stuck (i.e., either it is a value, or there is an evaluation step that applies)
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed
- Soundness follows:
 - Each state reached by program is well-typed (by Preservation)
 - A well-typed state is not stuck (by Progress)
 - Thus, each state reached by the program is not stuck

Putting It All Together, Formally

- Simply typed lambda calculus (\textit{System F}_1)
- Syntax of the simply typed lambda calculus
- The type system: type expressions, environment, and type judgments
- The dynamic semantics
 - Stuck states
 - Progress and preservation theorem

Type Environment and Type Judgments

- A term in the simply typed lambda calculus is
 - Type correct i.e., well-typed, or
 - Type incorrect
- The rules that judge type correctness are given in the form of type judgments in an environment
 - Premises
 - Conclusion

Type Expressions

- Introducing type expressions
 - \(\tau ::= b \mid \tau \rightarrow \tau \)
 - A type is a basic type \(b \) (we will only consider \texttt{int}, for simplicity), or a function type
- Examples
 - \texttt{int}
 - \texttt{int} \(\rightarrow \) (\texttt{int} \(\rightarrow \) \texttt{int}) // is right-associative, thus can write just \texttt{int} \(\rightarrow \) \texttt{int} \(\rightarrow \) \texttt{int}
- Syntax of simply typed lambda calculus:
 - \(E ::= x \mid (\lambda x : \tau . E_1) \mid (E_1 E_2) \)
Semantics

- \(x : \tau \in \Gamma \)
 looks up the type of \(x \) in environment \(\Gamma \)

\[\Gamma \vdash x : \tau \]
(Variable)

\[\Gamma \vdash E_1 : \sigma \quad \Gamma \vdash E_2 : \sigma \]
(Application)

\[\Gamma \vdash (E_1 E_2) : \tau \]
(binding: augments environment \(\Gamma \) with binding of \(x \) to type \(\sigma \))

\[\Gamma, x : \sigma \vdash E_1 : \tau \]
(Abstraction)

Examples

- Deduce the type for \(\lambda x : \text{int}. \lambda y : \text{bool}. x \) in the nil environment

Examples

- Is this a valid type?
 Nil \(\vdash \lambda x : \text{int}. \lambda y : \text{bool}. x + y : \text{int} \rightarrow \text{bool} \rightarrow \text{int} \)
 - No. It gets rightfully rejected. Term reaches a “stuck state” as it applies + on a value of the wrong type (\(y \) is \(\text{bool} \), + is defined on \(\text{int} \s)"

Examples

- Can we deduce the type of this term?
 \(\lambda x. \text{if } x = 1 \text{ then } x \text{ else } (f (x - 1)) \) : ?

Examples

- How about this
 \((\lambda x. (\lambda y. y) (x 1)) (\lambda z. z) \) : ?

Examples

- \(x \) cannot have two “different” types
 - \(x 1 \) demands \(\text{int} \rightarrow ? \)
 - \(x (\lambda y. y) \) demands \(\tau \rightarrow \tau \rightarrow ? \)

- Program does not reach a “stuck state” but is nevertheless rejected. A sound type system typically rejects some correct programs
Core Dynamic Semantics

- Syntax: $E ::= c \mid x \mid (\lambda x. E_1) \mid (E_1 E_2)$
- c is integer constant
- Values: $V ::= \lambda x. E_1 \mid c$
- A “call by value” semantics:

$$E_1 \rightarrow E_2 \quad E_1 \rightarrow E_2$$

$$\langle \lambda x. E \rangle V \rightarrow E[V/x] \quad E, E_1 \rightarrow E_2 \quad V, E_1 \rightarrow V E_2$$

- Stuck states: terms that are syntactically valid but aren't values and cannot be reduced
- E.g., $x, c, c (\lambda x. E),$ etc.

Soundness Theorem, Formally

- Definition: E can get stuck if there exist an E' such that $E \rightarrow^* E'$ and E' is stuck

- Theorem (Soundness): If $\Gamma \vdash E : \tau$ and $E \rightarrow E'$, then E' is a value, or E' is stuck
- Lemma (Preservation): If $\Gamma \vdash E : \tau$ and $E \rightarrow E'$ then $\Gamma \vdash E' : \tau$
- Lemma (Progress): If $\Gamma \vdash E : \tau$ then E is a value or there exist E' such that $E \rightarrow E'$

Progress, Proof Sketch

4. App: $\text{Nil} \vdash E_1, E_2 : \tau$. We have $\text{Nil} \vdash E_1 : \sigma \rightarrow \tau$ and $\text{Nil} \vdash E_2 : \sigma$ or otherwise E would have been ill-typed

1. If E_1 is not a value, then $E_1 \rightarrow E_2$. (Progress holds for E_2 by inductive hypothesis.) Thus, $E_1, E_2 \rightarrow E_1, E_2$
2. If E_1 is a value but E_2 is not a value, then $E_2 \rightarrow E_3$. (Again, Progress holds for E_2 by the inductive hypothesis.) Thus, $V, E_2 \rightarrow V E_3$
3. Finally, if E_1 and E_2 are both values, then E_1 must be $\lambda x. E_3$ (this is actually by a lemma, the Canonical Forms lemma). Thus, evaluation rule $(\lambda x. E_3) V \rightarrow E_3[V/x]$ applies. Done!

Preservation, Proof Sketch

Similarly, by induction on the structure of term E. Assuming Preservation holds for component terms, prove that it holds for term E

1. Var: $x \rightarrow^* \ldots$
2. Constant: $\text{Nil} \vdash c : \text{int} \rightarrow \ldots$
3. Abs: $\text{Nil} \vdash (\lambda x. E_1) : \tau \rightarrow \ldots$ again, E is a value
4. App: $\text{Nil} \vdash (E_1 E_2) : \tau \rightarrow \ldots$ Trickier because we need to properly account for substitution!
Soundness
- Soundness, worth restating
- For every state (i.e., term E) the program reaches, E is well-typed (by Preservation)
- Since E is well-typed, then it is either a value, or it can be further reduced (by Progress)
- Therefore, no state the program ever reaches is a “stuck” state

Extensions
- Dynamic semantics and static semantics for
 - Arithmetic,
 - Booleans,
 - Records,
 - Unions,
 - Recursive types,
 - Imperative features,
 - etc., etc.
- Safety = Progress + Preservation

Moving on…
- Simple type inference
 - Equality constraints
 - Unification
- Polymorphic types
 - Hindley-Milner type inference
 - Algorithm W